www.chem.pku.edu.cn/whxb

February

无胺法合成高硅丝光沸石的表征

祁晓岚^{1,2*} 王 战³ 李士杰¹ 李 斌¹ 刘希尧^{1,3} 林炳雄¹

('北京大学化学与分子工程学院物理化学研究所,北京 100871;

²中国石油化工股份有限公司上海石油化工研究院,上海 201208; ³北京燕山石油化工公司研究院,北京 102500)

摘要采用 XRD、SEM、FT-IR、MAS NMR 等表征手段, 对以氟离子为结构导向剂无胺法合成的高硅丝光沸石进行了表征.结果表明:高硅丝光沸石结构属立方晶系, 晶胞参数小于传统低硅丝光沸石, 但 b、c 值要比相近硅铝比非氟体系合成的丝光沸石样品的大; 样品形貌及粒径与其硅铝比有关, 表明晶化条件对产物形貌及粒径均有影响; 随硅铝比的增大, FT-IR 光谱中 450、544、1053 cm⁻¹ 谱带向高频移动, 720 cm⁻¹ 谱带强度减弱, 表明骨架中铝减少而硅增多; 采用含氟无胺体系合成高硅丝光沸石时基本上不会产生非骨架铝.

关键词: 氟离子, 高硅丝光沸石, 表征 中图分类号: O643

Characterization of High Silica Mordenite Synthesized from Amine-free System Using Fluoride as Structure-directing Agent

QI, Xiao-Lan^{1,2*} WANG, Zhan³ LI, Shi-Jie¹ LI, Bin¹ LIU, Xi-Yao^{1,3} LIN, Bing-Xiong¹ (¹Institute of Physical Chemistry, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R.China; ²Shanghai Research Institute of Petrochemical Technology, SINOPEC, Shanghai 201208, P.R. China; ³Research Institute of Beijing Yanshan Petrochemical Corporation, Beijing 102500, P. R. China)

Abstract A series of high silica mordenite samples synthesized from amine-free system using fluoride as structuredirecting agent were characterized by XRD, SEM, FT-IR, and MAS NMR. The results confirmed that the samples were truly mordenite with high SiO₂/Al₂O₃ molar ratio. The unit cell constants a, b, c and the unit cell volume $(a \times b \times c)$ of M-36 sample were smaller than those of mordenite with silica alumina molar ratio (SAR)=10 reported in the literature, which indicated the unit cell contraction caused by the replacement of Al atoms by smaller Si atoms. However, compared with the sample with SAR=31.5 synthesized from free-fluoride system, the lattice parameters of M-36 were somewhat increased in the a and c directions, but elongated obviously in b direction, which indicated some influences on 8-membered ring parallel to the b axis of mordenite structure should be brought by using fluoride as structuredirecting agent. As the SAR of mordenite samples increased, a variety of crystal morphologies (cuboids, hexagonal prismatic crystals, rectangular parallelepiped crystals) was observed and a wide variation in the crystallite size was presented. As the SAR changed from 14 to 55, in the infrared spectra of the samples, the band attributed to T-O bending vibration shifted from 434 cm⁻¹ to 450 cm⁻¹, and its absorption intensity also increased. The band at 720 cm⁻¹ which corresponded to the internal symmetric stretching vibration of the AlO₄ tetrahedral in the mordenite from a weak band developed into a broad band and nearly disappeared at last, indicating that the number of SiO_4 in the framework was increased. In ²⁷Al MAS NMR spectra, almost all high silica mordenite samples presented a peak at $\delta(55.6)$ and no non-framework Al species peak at about $\delta(0)$, which was different from steamed or acid-leached siliceous mordenite.

Keywords: Fluoride anion, High silica mordenite, Characterization

Received: August 17, 2005; Revised: October 10, 2005. *Correspondent, E-mail: qixl@sript.com.cn; Tel: 021-68462197-5123. 国家自然科学基金(20373002)资助项目

©Editorial office of Acta Physico-Chimica Sinica

丝光沸石(MOR)拥有二维通道结构,十二元环 的主通道是平行于 c 轴的椭圆形通道, 孔口尺寸 0.65 nm×0.70 nm, 平行于 b 轴的八元环侧通道沟通 其间, 孔口尺寸 0.26 nm×0.57 nm^{III}. 其典型的化学组 成为 Na₈[Al₈Si₄₀O₉₆]·24H₂O¹¹. 丝光沸石具有高的热 稳定性及酸稳定性,被用作许多重要催化反应的催 化剂,如加氢裂化、加氢异构、烷基化、重整、脱蜡,尤 其是用作合成二甲胺的催化剂,表现出优异的性 能[2-10]; 丝光沸石也被应用于气体或液体混合物的分 离[11-12]. 近年来,已有学者尝试使用丝光沸石作半导 体材料、化学传感器和非线性光学材料13.通常,反 应的催化活性、选择性和稳定性在一定程度上随丝 光沸石硅铝比的增大而提高四,而且直接合成的高硅 丝光沸石的活性和稳定性,明显优于酸处理脱铝所 得的相近硅铝比沸石^{15]}.采用不同脱铝方法得到的高 硅丝光沸石,性能差异较大,经常产生较多非骨架 铝¹⁶,且脱铝所得高硅沸石的热稳定性低于直接合成 的样品^[17].因此高硅铝比丝光沸石的合成规律研究 一直受人们重视,但对直接法合成的高硅丝光沸石 的表征鲜有报道[18-20].

采用无胺法直接合成高硅丝光沸石,不仅可以 避免使用有机胺模板剂带来的环境污染^[7],而且可以 降低合成成本.我们在含氟无胺体系中以工业水玻 璃为硅源,硫酸铝为铝源,通过控制晶化条件水热晶 化合成出高硅丝光沸石^[21-22],并发现在无胺法合成时, 氟离子不仅对高硅丝光沸石的形成起结构导向作 用,而且在热力学上对稳定丝光沸石介稳态有重要 作用^[23].本研究进一步采用XRD、SEM、FT-IR、MAS NMR等技术对无胺条件下合成的高硅丝光沸石进 行了表征.

1 实验部分

1.1 原料与试剂

水玻璃(工业品,含SiO₂26%,模数3.1~3.4,北京 红星泡花碱厂);硫酸铝(分析纯,99%,南召华鑫化工 有限公司);氟化钠(分析纯,98%,北京化工厂);去离 子水(自制).

1.2 分子筛的合成

不同硅铝比丝光沸石按文献[23]方法水热合成, 晶化条件及所得丝光沸石硅铝比见表 1.

1.3 分子筛表征方法

用岛津 XD-D1 型 X 射线粉末衍射(XRD)仪鉴 定产物的物相, Cu K_α辐射, 管电压 30 kV, 管电流 表 1 含氟无胺体系合成高硅丝光沸石的组成

 Table 1
 Composition of gel and mordenite synthesized from amine-free system with fluoride

Sample	<i>T</i> /℃	t/d	$n(SiO_2)/n(Al_2O_3)$		
			gel	mordenite	
M-1 4	170	2	30	14	
M-17	170	3	30	17	
M-22	170	3	50	22	
M-36	170	2	78	36	
M-41	170	2	100	41	
M-55	160	3	100	55	

40 mA, 在5°≤ 2θ ≤ 45°间连续扫描, 扫描速率2 (°)· min-1. 用英国莱卡 S440 型扫描电子显微镜(SEM)摄 取样品形貌照片,观察合成的分子筛形貌,并估算其 粒径大小.用 Bio-Rad FTS-135 红外光度计测定分 子筛骨架振动谱,分辨率为4 cm⁻¹,扫描累加次数20 次;将固体样品与 KBr 按质量比 1:200 混合, 研磨 后,放入不锈钢模具内压成圆形锭片,记录骨架振动 谱. 用 Bruker AM-300 型核磁共振仪进行分子筛 MAS NMR 测试, 29Si-NMR 共振频率为 59.62 MHz, 转子工作频率为 4000 r·s⁻¹, 重复延迟时间 2 s, 采样 时间 0.246 s, 脉宽为 45°, 谱宽 8333 Hz, 数据采集 4000 点, 累加次数为 800 次, 测试温度为室温; ²⁷Al-NMR 共振频率为 78.20 MHz, 转子工作频率为 4000 r·s⁻¹, 重复延迟时间 0.1 s, 采样时间 0.04 s, 脉 宽为 45°, 谱宽 50000 Hz, 数据采集 4000 点, 累加次 数为800次,测试温度为室温.固体样品经碱熔处理 成溶液后,用 IRIS/AP 型电感耦合等离子发射光谱 仪分析其硅和铝元素的含量.

2 结果与讨论

2.1 无胺法合成的高硅丝光沸石的结晶学数据

表1给出了所合成不同高硅丝光沸石样品的硅 铝比数据,收集表1中样品 M-36 的 XRD 数据,并 与文献[24]中硅铝比为10 的典型丝光沸石的 XRD 数据对比(见表2),发现二者各衍射峰位置基本相同, 表明所合成的样品为丝光沸石分子筛.样品的结晶 学数据见表3,晶胞参数α=β=γ=90°,结构属典型丝 光沸石的立方晶系,*Cmcm*空间群.与文献[24]硅铝 比为10 的样品比较,晶胞参数 a、b、c 和晶胞体积都 有一定程度减小,这是由于硅铝比提高,Si—O 键长 比 Al—O 键的键长短所致.与文献[14]非氟体系合 成硅铝比为31.5的样品比较, a、c 值基本相同,但 b

表 2	含氟无胺体系合成丝光沸石的 XRD	数据

 Table 2
 The XRD data of mordenite synthesized from aminefree system with fluoride

hkl –	SAR*=10 (Ref. [24])			SAR=36 (this work)		
	2θ/(°)	<i>d</i> /nm	I/I_0	2θ/(°)	<i>d</i> /nm	I/I_0
110	6.51	1.358	100	6.51	1.359	18
020	8.61	1.027	13.1	8.62	1.024	7
200	9.77	0.906	56.4	9.73	0.908	73
111	13.45	0.658	40.4	13.43	0.659	41
130	13.83	0.640	29.1	13.86	0.639	14
021	14.59	0.607	13.3	14.58	0.607	11
310	15.30	0.579	9.5	15.26	0.580	20
400/330	19.61	0.453	22.7	19.60	0.453	46
150	22.20	0.400	46.1	22.23	0.400	79
241	23.16	0.384	16.9	23.17	0.384	24
002	23.64	0.376	6.9	23.67	0.375	15
202	25.63	0.348	75.7	25.68	0.347	100
350	26.25	0.340	43.5	26.27	0.340	76
511	27.67	0.322	46.1	27.67	0.322	80
530/260	27.87	0.320	28.8	27.84	0.320	63
402	30.89	0.289	12.9	30.91	0.289	33
352	35.61	0.252	15.5	35.67	0.252	19

*SAR = silica alumina molar ratio

值高了 0.0176 nm. b 方向是八元环侧孔方向,表明 氟离子作结构导向剂时可能对八元环影响较大;由 于每个八元环都与两个四元环相连,铝原子优先占 据四元环,硅铝比提高导致铝原子数目的减少,从而 引起四元环张力增大,氟离子可能处于四元环附近, 对 TO₄ 四面体中心原子 T (Si 或 Al)产生静电引力, 使 T—O 键略有增加,为四元环提供额外的稳定化 能量^[23],导致 b 值增大.

2.2 晶粒形貌

天然丝光沸石的形貌常为沿 c 方向生长的针状 结晶,合成丝光沸石时所用的硅源、铝源及晶化参数 对产物形貌及粒度都有较大影响^{114,1920,2530]}.本文采用 无胺含氟体系合成的不同硅铝比丝光沸石样品的 SEM 照片见图 1. 由图可见,不同硅铝比样品皆表

表 3 丝光沸石的结晶学数据

Table 3 Crystallography data of synthetic mordenite

Parameter	a/nm	<i>b</i> /nm	c/nm	α=β=γ/(°)	V/nm ³
SAR=10 ^[24]	1.811	2.053	0.753	90	2.800
SAR=31.5 ^[14]	1.807	2.029	0.746	90	2.735
SAR=36 (this work)	1.8078	2.0466	0.7498	90	2.774

面光洁,未发现针状结晶;但随硅铝比的变化,分子 筛形貌及粒径均发生变化. M-17 样品形貌呈立方型 或六角棱柱形,晶粒尺寸长×宽约为 27 μm×l4 μm; M-22 样品形貌呈细长棒状,晶粒尺寸约为 5 μm× 1.2 μm; M-41 样品形貌呈六角棱柱形或片状,晶粒 尺寸约为 20 μm×l0 μm. M-22 样品的粒径最小, M-17 样品粒径最大,这与文献[29]报道的产物粒径随 硅铝比提高而增大明显不同.同样采用硫酸铝作铝 源, M-17 和 M-41 形貌与文献[29]中产物形貌类似, 但粒径却增大一倍,这可能是由于氟化钠有加快晶 体生长速率的作用^[19]. 文献[19-20]采用有胺含氟体 系或进一步添加晶种,所得产物形貌也与 M-17 和 M-41 形貌相近.可见,在无胺含氟体系中,不同铝含 量凝胶的生长过程有较大差别,需进一步研究其晶 化机制.

2.3 骨架振动红外光谱

图 2 为样品 M-14、M-41 和 M-55 的骨架红外

图 1 含氟无胺体系合成丝光沸石样品的 SEM 照片 Fig.1 SEM images of mordenite sampels a)M-17; b)M-22; c)M-41

图 2 含氟无胺体系合成高硅丝光沸石红外吸收谱 Fig.2 FT-IR spectra of the mordenite samples a) M-14; b) M-41; c) M-55

吸收谱,从图中可观察到 434~450、540~620、720、 800、1053~1090、1220 cm⁻¹ 振动谱带.

近450 cm⁻¹ 谱带是 T—O 弯曲振动的贡献,随 硅铝比的提高,谱带由434 cm⁻¹ 位移到450 cm⁻¹,且 强度加强,应当是Si—O键长(0.161 nm)短于Al—O 键长(0.175 nm)所导致 T—O 振动增强的结果.540~ 620 cm⁻¹ 吸收归属于与丝光沸石的五元环结构单元 相关的振动^[3132],544 cm⁻¹带强度随硅铝比提高而增 强且锐化,这可能是由于硅铝比提高引起晶胞收缩, 导致通过氧桥连接角度微变的结果;620 cm⁻¹带的 位置不随样品硅铝比变动,强度变化也很小,反映出 两五元环共用一条边的特点.

720 cm⁻¹带归属于沸石 AlO₄ 四面体面内对称 伸缩振动, 丝光沸石硅铝比增大会减弱 720 cm⁻¹带 强度^[14, 18, 31, 33], 本文样品硅铝比为 14、41 及 55 的 720 cm⁻¹带由弱且宽化而趋于消失, 强烈表现出骨架 SiO₄增多的事实. 800 cm⁻¹带归属于 T—O—T 面外 对称伸缩振动, 随硅铝比增大, 该峰锐化, 且强度增 强, 与文献[18]结果吻合. 1053 cm⁻¹带位移并分裂为 1055~1083 cm⁻¹和1055~1090 cm⁻¹双峰, 与酸处理脱 铝后谱带位移类似^[33]. 1220 cm⁻¹带归属于四面体面 外不对称伸缩振动^[34], 该谱带随硅铝比增大而逐渐增 强也反映了骨架铝减少而硅增多影响了 T—O—T 面内及面外不对称伸缩振动的结果.

2.4 核磁共振谱

不同硅铝比样品的 ²⁹Si MAS NMR 谱见图 3. 在 ²⁹Si NMR 中, M-17 和 M-22 样品都可见三个谱峰, 化学位移 δ 均分别为-109、-103 和-97, M-36 样品 可见两个谱峰, δ 分别为-109 和-103, 而 M-55 样品

图 3 不同硅铝比样品的²⁹Si MAS NMR 谱

Fig.3 ²⁹Si MAS NMR spectra of the mordenite samples a) M-17; b) M-22; c) M-36; d)M-55

中 δ 为-107 谱峰已变得很弱,主要是 δ (-110.6)谱峰. δ (-110.6)和 δ (-109)谱峰归属为Si(0Al), δ (-107) 和 δ (-103)谱峰归属为Si(1Al), δ (-97)谱峰归属为Si(2Al)^[3537]. 上述²⁹Si MAS NMR 实验结果与红外光 谱表征一致.

丝光沸石晶胞中含有48个T(Si或Al)原子, 硅铝 比为10对应每个四元环中有两个铝原子, 硅铝比为 22对应每个四元环中平均有一个铝原子, 硅铝比为 46对应每两个四元环中平均有一个铝原子. 因此硅 铝比10~22的样品中肯定有Si(2Al)存在, 这与硅铝比 22样品的³⁹Si MAS NMR谱中存在δ(-97)谱峰相符.

图 4 为不同硅铝比样品的 ³Al MAS NMR 谱. 由图可见,除 M-36 样品在 δ(0.7)处出现了表示非骨 架六配位铝的小峰外,不同硅铝比样品的谱图基本 相同,都只有 δ(55.6)一个谱峰,这是四面体配位骨 架铝信号.而通过脱铝得到的高硅丝光沸石往往产

生大量非骨架铝^[33], 表明无胺法合成的高硅丝光沸 石基本不产生非骨架铝. M-36 样品的特殊表现可能 与其制备条件有关.

3 结 论

1) 无胺法合成的高硅丝光沸石的晶胞参数 a、 b、c 和晶胞体积较常规丝光沸石有一定程度收缩, 氟离子作结构导向剂,导致 b 值比有胺合成时增大.

2) 硅铝比对晶粒形貌及大小有影响.

3) FT-IR 谱中 720 cm⁻¹ 带随样品硅铝比的增加 由弱至宽化至趋于消失,强烈表现出骨架 SiO₄ 增多 的事实.

4)²⁹Si MAS NMR 谱归属于 Si(2Al)的 δ(-97)谱 峰强度随样品硅铝比的增加逐渐减弱直至消失, 证 明沸石骨架硅原子的环境铝原子减少, 但丝光沸石 结构未变.

5) 无胺法合成的高硅丝光沸石基本不产生非 骨架铝.

References

- Baerlocher, C.; Meier, W. M.; Olson, D. H. Atlas of zeolite framework types. 5th revise ed. Amsterdam: Elsevier, 2001: 157
- Gao, Z. Zeolite catalysis and separation technology. Beijing: China Petrochemical Press, 1999 [高 滋主编. 沸石催化与分离 技术. 北京: 中国石化出版社, 1999]
- 3 Cheng, W. C.; Kong, D. J.; Yang, D. Q.; Fu, P. A.; Chen, F. C.; Wang, L. *Petrochemical Technology*, **1999**, **28**(2):107 [程文才, 孔德金,杨德琴,符盼安,陈凤池,王 磊. 石油化工(*Shiyou Huagong*), **1999**, **28**(2):107]
- Li, T. L.; Liu, X. Y.; Piao, Y. L.; Cai, C. F.; Wang, X. S. Chin. J. Catal., 1998, 19(2):181 [栗同林, 刘希尧, 朴玉玲, 蔡春飞, 王祥生. 催化学报(Cuihua Xuebao), 1998, 19(2):181]
- 5 Cejka, J.; Wichterlova, B. Catal. Rev., 2002, 44(3): 375
- 6 Corma, A. Chem. Rev., 1995, 95: 559
- 7 Qi, X. L.; Liu, X. Y. J. Mol. Catal., 2002, 16(4): 312 [祁晓岚, 刘希尧. 分子催化(Fenzi Cuihua), 2002, 16(4): 312]
- Ke, Y. Y.; Zhang, Y. Z.; Wang, J.; Zhou, X. M.; Xu, Z. L. J. Mol. Catal., 1997, 11(2): 121 [柯于勇, 张盈珍, 王 军, 周贤敏, 许 章林. 分子催化(Fenzi Cuihua), 1997, 11(2): 121
- 9 Sheldon, R. A.; Downing, R. S. Appl. Catal., 1999, 189(2): 163
- 10 Song, C. Stud. Surf. Sci. Catal., 1998, 113: 163
- 11 Bajpai, P. K. Zeolites, 1986, 6(1): 2
- 12 Shao, C.; Kim, H. Y.; Li, X.; Park, S. J.; Lee, D. R. *Mater. Lett.*, 2002, 56: 24
- 13 Gilbert, J. E.; Mosset, A. Mater. Res. Bull., 1998, 33: 997
- 14 Kim, G. J.; Ahn, W. S. Zeolites, 1991, 11(7): 745
- Hou, X. L. New advance in chinese oil refining technology.
 Beijing : China Petrochemical Press, 1998: 153 [侯祥麟. 中国炼

油技术新进展.北京:中国石化出版社,1998:153]

- 16 Triantafillidis, C. S.; Vlessidis, A. G.; Nalbandian, L.; Evmiridis, N. P. Micropor. Mesopor. Mater., 2001, 47(2-3): 369
- 17 Beyer, H. K.; Belenykaja, I. M.; Mishin, I. W.; Borbely, G. In: Jacobs, P. A.; Jaeger, N. I.; Jiru, P.; Kazansky, V. B.; Schulz-Ekloff, G. ed. Structure and reactivity of modified zeolites. Amsterdam: Elsevier, 1984: 133
- 18 Chumbhale, V. R.; Chandwadkar, A. J.; Rao, B. S. Zeolites, 1992, 12(1): 63
- Lu, B.; Tsuda, T.; Sasaki, H.; Oumi, Y.; Itabashi, K.; Teranishi, T.; Sano, T. *Chem. Mater.*, **2004**, **16**(2): 286
- 20 Lu, B.; Tsuda, T.; Oumi, Y.; Itabashi, K.; Sano, T. *Micropor. Mesopor. Mater.*, 2004, 76(1): 1
- Liu, X. Y.; Qi, X. L.; Chen, G.; Wang, Z. Method for synthesizing mordenite. CN Patent, 1257831. 2000 [刘希尧, 祁晓岚, 陈 钢, 王 战. 合成具有丝光沸石结构的沸石的方法. 中国专利, 1257831. 2000]
- 22 Qi, X. L.; Liu, X. Y.; Wang, Z. Stud. Surf. Sci. Catal., 2001, 135: 02P39
- 23 Qi, X. L.; Li, S. J.; Wang, Z.; Liu, X. Y.; Lin, B. X. Chin. J. Catal.,
 2003, 24(7): 535 [祁晓岚, 李士杰, 王 战, 刘希尧, 林炳雄. 催 化学报(Cuihua Xuebao), 2003, 24(7): 535]
- 24 Treacy, M. M. J.; Higgins, J. B. Collection of simulated XRD powder patterns for ziloites. 4th revise ed. Amsterdam: Elsevier, 2001: 244
- 25 Feng, F.; Balkus, Jr. K. J. J. Porous. Mater., 2003, 10: 235
- 26 Hincapie, B. O.; Garces, L. J.; Zhang, Q.; Sacco, A.; Suib, S. L. Micropor. Mesopor. Mater., 2004, 67(1): 19
- 27 Sano, T.; Wakabayashi, S.; Oumi, Y.; Uozumi, T. Micropor. Mesopor. Mater., 2001, 46(1): 67
- 28 Sun, Y.; Song , T.; Qiu, S.; Pang, W.; Shen, J.; Jiang, D.; Yue, Y. Zeolites, 1995, 15: 745
- 29 Shaikh, A. A.; Joshi, P. N.; Jacob, N. E.; Shiralkar, V P. Zeolites, 1993, 13: 511
- 30 Warzywoda, J.; Dixon, A. G.; Thompson, R. W.; Sacco, Jr. A.; Suib, S. L. Zeolites, 1996, 16: 125
- Lee, K. H.; Ha, B. H. Micropor. Mesopor. Mater., 1998, 23(3-4):
 211
- 32 Jacob, P. A.; Martens, J. A. Stud. Surf. Sci. Catal., 1987, 33: 42
- 33 van Niekerk, M. J.; Fletcher, J. C. Q.; O'Connor, C. T. J. Catal., 1992, 138(1): 150
- 34 de Macedo, J. L.; Dias, S. C. L; Dias, J. A. Micropor. Mesopor. Mater., 2004, 72(1-3): 119
- 35 Hays, G. R. Zeolites, 1985, 5(1): 45
- 36 Xie, A. H.; You, C. T.; Bi, C. Z.; Hu, Y. X.; Qiu, Y. Q. Chin. J. Catal., **1991**, **12**(5): 353 [谢安惠, 游传挺, 毕财章, 胡延秀, 裘乙琦. 催化学报(Cuihua Xuebao), **1991**, **12**(5): 353]
- Wu, P.; Kamatsu, T.; Yashima, T. J. Phys. Chem., 1995, 99(27): 10923
- Zhang, M. J.; Chen, L.; Yi, D. L.; Zheng, A. M.; Yang, J.; Deng, F.; Yue, Y.; Ye, Z. H. Chem. J. Chin. Univ., 2004, 25(8): 1490
 [张铭金, 陈 雷, 易德莲, 郑安民, 杨 俊, 邓 风, 岳 勇, 叶朝 晖. 高等学校化学学报(Gaodeng Xuexiao Huaxue Xuebao), 2004, 25(8): 1490]