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A New Splitting Active Contour Framework Based on

Chan-Vese Piecewise Smooth Model
LI Can-Fei1 WANG Yao-Nan1 LIU Guo-Cai1

Abstract On the basis of the Chan-Vese model, a new splitting active contour method for image segmentation is presented. The
main idea following is to divide an image into two parts at every iteration, which is similar to the procedure of cell splitting. Then,
the model is able to detect all the objects or details in the image. In addition, it enjoys the merit of processing any specific region
in the image, even the inconsecutive one. This directly leads to the improvement of computing efficiency whereas segmentation
is limited to region of interest (ROI) rather than the whole image. Furthermore, due to the regional constraint of operation, our
model outperforms the existing multiphase Chan-Vese model in terms of sensitivity to the initialization. The principle of our model
is described in detail, and the method is implemented under the level set framework. Experiments on both synthetic and medical
images are carried out, and the comparative results to Chan-Vese model and multiphase Chan-Vese model are also shown.
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Since the introduction of the “snake” methodology[1−2]

and the proposal of the geodesic active contour model for
image segmentation by Caselles et al.[3−4] and Kichenas-
samy et al.[5], active contours have become particularly
popular for segmentation applications[6−9]. These classi-
cal snakes and active contour models mainly use an edge-
detector, which depends on the gradient of the image to
stop the evolving curve on the boundary of the desired ob-
ject. To make up the shortcomings of edge-detector, Chan
and Vese[10] proposed a model based on the Mumford-
Shah[11] segmentation technique. With the unnecessity to
smooth the initial image, the model can detect objects with
very weak boundaries. Besides, it can detect holes in the
object. However, the Chan-Vese model has inherent draw-
backs. The reason that it can detect holes in the object is
that the gray density of the holes is similar to the back-
ground. When replaced by other objects whose gray den-
sity is close to that of the object, they can not be distin-
guished from each other (see Fig. 1). In nature, based on
the gray densitiy difference, the model divides the image
into two parts: one is the background and the other is
the object. This means it can only segment images with
two regions/classes, but can not segment those with more
than two regions/classes. For the latter, multiphase level
set[12−15] needs to be used.

Under the basic ideal of dividing one image into two
parts, we propose a new splitting active contour model. It
is named for the reason that the image is divided into two
(one inside curve and one outside curve) at every iteration
during the evolution, which is similar to the cell splitting
procedure. The model can maintain all the advantages of
the Chan-Vese model[11], and is able to break its limita-
tion in segmenting images with more than two classes. In
addition, our model is easier to be implemented than tradi-
tional multiphase Chan-Vese level set model[12] for it only
considers one level set function.

The outline of the paper is as follows. Sections 1 and 2
introduces our model, gives the principle of the model, and
formulates the model in terms of level set formulations.
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The algorithm implementation is described in Section 3.
Section 4 includes the validation and image segmentation
experiments, and Section 5 is the conclusion.

1 Description of the model

Let the evolving curve C in Ω be the boundary of an
open subject ω of Ω (i.e., ω ⊂ Ω, and C = ∂ω). The region
inside C is represented by ω, and Ω\$ denotes the region
outside C.

The basic idea of the model in [10] is as follows. As-
sume that the image un is formed by two approximately
piecewise-constant regions with intensities ui

n and uo
n. Fur-

ther, assume that the object to be detected is represented
by the region with intensity ui

n. Let C denote its boundary.
Thus, we have u0 ≈ uo

n outside C, and u0 ≈ ui
n inside C.

Consider an energy function

E = F1(C) + F2(C) (1)

where
F1(C) =

∫∫
Ωc
|u0(x, y)− c1|2dxdy

F2(C) =
∫∫

Ωc
|u0(x, y)− c2|2dxdy

(2)

here C is on the boundary of the object, i.e., it is the fittest
curve C, the energy function gets the minimum.

Emin = inf(F1(C) + F2(C)) ≈ 0 ≈ F1(Ct) + F2(Ct) (3)

Obviously,




F1(C) > 0, F2(C) ≈ 0 C outside O

F1(C) ≈ 0, F2(C) > 0 C inside O

F1(C) > 0, F2(C) > 0 C both inside and outside O

F1(C) ≈ 0, F2(C) ≈ 0 C on the boudary of O
(4)

See Fig. 1, where O is the object. The energy function
gets the minimum only when the curve is on the boundary
of the object.

Minimizing the energy function and adding some regu-
larizing terms, Chan and Vese proposed the energy function
F (C, c1, c2), defined by

F (C, c1, c2) = µ(length(C) + ν · are(inside(C))+

λ1

∫∫
Ωc

(u0 − c1)
2dxdy + λ2

∫∫
Ω\Ωc

(u0 − c2)
2dxdy

(5)
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where µ, ν, λ1, and λ2 are fixed parameters, µ ≥ 0, ν ≥ 0,
λ1 > 0, and λ2 > 0. c1 and c2 are the averages inside and
outside C, respectively.

Fig. 1 Explanation of the basic ideal of the model in [10]

The function acts as dividing an image into two parts in
terms of the difference of the average intensity between the
background and the object.

Fig. 2 is the segmentation by the model (5). It is shown
that the rectangle in the circle cannot be correctly seg-
mented because its gray density is closer to the circle than
to the background.

Fig. 2 Result segmented by the model in [10]

To solve the problem, Chan and Vese proposed multi-
phase level set method[12]. In this paper, motivated by
the principle of Chan-Vese model, i.e., splitting an image
into two parts in term of the average intensity between the
background and the object, we find a different method to
solve the previous problem. It finally leads to a new split-
ting active contour model. Here, we describe our idea as
follows.

Let us consider a synthetic image shown in Fig. 3 (a),
where a little rectangle is included inside the circle ob-
ject. Fig. 3 (b) is the segmentation result using the orig-
inal Chan-Vese model. Here, the curve is the fittest one to
divide the image into two parts based on the difference of
the average intensity between them. Obviously, the model
pulled out the big object only (see Fig. 3 (c)). Further, if
we consider a new energy function, and repeat the evolu-
tion inside the previous extracted object, we can obtain the
segmentation result in Fig. 3 (d), where we have achieve the
purpose of segmenting the interior rectangular. Therefore,
a new model, the splitting segmentation model comes in
focus, and the frame is as follows:

Fig. 3 Explanation of the basic ideal of our model

F (C′, c′1, c
′
2) = µ(length(C′) + ν·are (inside(C′))+

λ1

∫∫
Ωc

(u′0 − c′0)
2dxdy + λ2

∫∫
Ω\Ωc

(u′0 − c′2)
2dxdy

(6)

Obviously, (6) is the same as the model (5) in [10] ex-

cept for the superscript. This is important to indicate the

distinction between our model and the Chan-Vese model in

[10]. Similar to (5), where µ, ν, λ1, λ2 are fixed parameters,

µ ≥ 0, ν ≥ 0, λ1 > 0, λ2 > 0, and in all our numerical

calculations, we fix ν = 0.

For the first splitting stage, u′0 is the initial image to be

segmented, C′is the evolving front in the image, c′1, c
′
2 are

the averages of u′0 inside and outside C′, respectively. After

the first splitting, the image is divided into two parts: one

is the part inside C′ (where φ < 0, and φ corresponds to

the signed distance functions of level set method described

in the following section) and the other is the part outside

C′ (where φ > 0). Accordingly, there are two parts to

be segmented for the second splitting and the segmenta-

tion process is similar. To segment the part outside the old

curve C′, u′0 is the new image pulled out from the old image

(where φ > 0), and c′1, c
′
2 are the averages of the new image

inside and outside the new evolving curve C′, respectively.

This can be implemented conveniently under the level set

framework. After the second splitting, we obtain four, i.e.,

22 parts totally. If necessary, the splitting process can be

continued to the nth, and the original images will be di-

vided into 2n parts mostly. As a post-processing step, all

the splitting results are merged to form the final segmen-

tation. For a specific image, the splitting times and the

segmentation precision are correlative. The splitting times

can be computed according to the precision. Assume that

there are M gray levels in an image, then, the precision

can be calculated from m = M/2n, where n is the splitting

times. Usually, the gray value is from 0∼ 255, i.e., 28 = 256

gray levels. Then, at most 8 splitting times are needed to

reach single gray level precision. For the resolvable limit of

naked human eyes is approximately 20 gray scales, only 4

or 5 splitting times are enough for general applications.
Generally, the basic ideal behind our new model is to di-

vide each region into two parts by splitting during the seg-
mentation (see Fig. 4), which is similar to the cell′s split-
ting. Therefore, we named it the splitting segmentation
model. At first glance, our model seems difficult to imple-
ment because of its splitting characteristic. Actually, it is
easier than the multiphase level set for the reason that it
uses only one level set function but evolves with the same
formula. For all the splitting, the algorithm implementa-
tion is similar except for a little difference in the first split-
ting step. This will be explored further in Sections 4 and
5.

Fig. 4 Ideal of our model, where the splitting is the

characteristic
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2 Level set formulation of the model

The level set method was originally proposed by Osher
and Sethian[16]. It describes the evolving curve implicitly
by using the zero level set φ(x, y) = 0. Usually the level
set function φ(x, y) is taken as a signed distance function
(SDF), i.e., φ(x, y) = 0 on the curve, φ(x, y) < 0 inside the
curve, and φ(x, y) > 0 outside the curve. Thus,





C = ∂ω = {(x, y) ∈ Ω : φ(x, y) = 0}
inside (C) = ω = {(x, y) ∈ Ω : φ(x, y) < 0}
outside (C) = Ω\ω̄ = {(x, y) ∈ Ω : φ(x, y) > 0}

(7)

In [11], by minimizing F (C, c1, c2), the level set formulation
of (5) is obtained as




∂φ

∂t
= δ(φ)[µ∇ · ∆φ

|∆φ| − ν + λ1(u0 − c1)
2 − λ2(u0 − c2)

2]

φ(0, x, y) = φ0(x, y) in Ω

δ(φ)

|∇φ| ·
∂φ

∂n
= 0 on ∂Ω

(8)
where n denotes the exterior normal to the boundary; ∂φ,
and ∂φ/∂n represents the normal derivative of φ at the
boundary.

Analogously, by minimizing F (C′, c′1, c
′
2), the level set

formulation of our model is




∂φ′

∂t
= δ(φ′)[µ∇ · ∆φ′

|∆φ′| − ν + λ1(u
′
0 − c′1)

2−
λ2(u

′
0 − c′2)

2]

φ′(0, x, y) = φ′0(x, y) in Ω′

δ(φ′)
|∇φ′| ·

∂φ′

∂n
= 0 on ∂Ω′

(9)

where similar to (8), n denotes the exterior normal to
boundary ∂φ′, and ∂φ′/∂n denotes the normal derivative
of φ′ at the boundary as before.

3 Numerical approximation of the
model

To extend the evolution to all level sets of φ′, and also to
ensure algorithmic stability, δ(φ′) is replaced by |∆φ′|[11].
Then, the level sets formulation is rewritten to

∂φ′

∂t
=

∣∣∆φ′
∣∣ [µ∇ · ∆φ′

|∆φ′| − ν + λ1(u
′
0 − c′1)

2 − λ2(u
′
0 − c′2)

2]

(10)

For k = ∇ · ∆φ′
|∆φ′| , it can also be described as

∂φ′

∂t
= µk

∣∣∆φ′
∣∣ +

∣∣∆φ′
∣∣ [−ν + λ1(u

′
0 − c′1)

2 − λ2(u
′
0 − c′2)

2]

(11)
Then, φ′ can be obtained by solving the partial differential
equation (11). For the first term is independent of the
curvature, the upwind finite difference[17] is used for the
discrete case. Because the second term is dependent on the
curvature, the central difference[18] is used instead.

Because the level set function does not remain SDF
through the evolution, the reinitializing step is necessary
as mentioned in [9, 19], to assure that φ′ does not become

too flat or too steep near the curve C′. The reinitialization
is implemented by using the following equation[19]:





∂φ′

∂t
= sgn(φ′)(1−

∥∥∇u′
∥∥)

φ′(0, ·) = φ′(t, ·)
(12)

(12) is a partial differential equation (PDE), which can be
discretized using upwind finite differences as above for it is
independent of the curvature.

The algorithm is divided into three stages. Stage 1 is
the first splitting segmentation, which is the same as the
Chan-Vese model. Stage 2 is the subsequent splitting seg-
mentation. Stage 3 is the merger of all the splitting.

Stage 1. Operating on the original image.
1) Give a freely initial curve C′, initialize φ′0 by comput-

ing the sign distance function, and n = 0.
2) Compute the averages c′1, c′2, inside C′ and outside

C′, respectively.
3) Solve the PDE in φ from (11) to obtain φ′n+1.
4) Reinitialize φ′n+1 to the signed distance function by

(12) (this step is optional).
5) Check whether the solution is stationary. If not, n =

n + 1 and go to 2) of Stage 1. If yes, φ′0 = (φ′n > 0) (to
detect the objects outside the curve), or φ′0 = (φ′n < 0) (to
detect the objects inside the curve), enter Stage 2.

Stage 2. Operating on the new image which is
pulled from the original image.

1) u′0 = I ′. I ′ is the new image pulled out, which is
composed of the pixels, where φ′n > 0 (resp. φ′n < 0) if to
detect the objects outside (resp. inside) the curve.

2) Initialize the φ′0 in the new image I ′ by a new curve
C′. Note that the elementary condition in the initialization
is to keep φ′0 SDF in the new image I ′. In our experiments,
we initialized the whole image by using many little circles
first, then kept it only in the new image I ′. Then we gave
a big enough positive or negative constant in the rest area
of the old image to make it look as the outer of the new
image, which need not be computed (negative or positive
depending on the sign of the SDF).

3) After initializing, let n = 0, and start iteration as
2), 3), and 4) in Stage 1. When the solution is stationary,
check whether the segmentation needs to continue. If yes,
φ′0 = (φ′n > 0) (to detect the objects outside the curve),
and φ′0 = (φ′n < 0) (to detect the objects inside the curve)
and go to 1) of Stage 2. If not, enter Stage 3.

Stage 3. Merge the segmentation results of all the split-
ting.

4 Experimental results

In this section, we will give some numerical results us-
ing our new model on both synthetic and real images. It
should be pointed out that the choice of parameters, espe-
cially µ, is critical. The µ should take a small value when
detecting small objects, and a large value for big ones[11].
In our implementation, the parameter µ is decreased with
the iteration times, i.e., a larger value for the first splitting
segmentation and smaller ones for the following, which will
help to extract useful details. Moreover, since the extracted
regions are sparse parts of a matrix, the pixels rested are
replaced by 255 in order to show it more clearly.

A synthetic image experiment is shown in Fig. 5. We
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use the same original image as Fig. 2. It requires twice
splitting. The first image is the first splitting result, which
corresponds to the result of Fig. 2, and the following images
are the second splitting and the final merged segmentation
result. In the second splitting, there is only one part that
needs to be segmented, where the initialization image, two
intermediate results, and the final result are shown. Note
that all the objects are detected after the second splitting
by using our model.

Fig. 5 Example for segmenting synthetic image by the

splitting model (The first one is the first spitting result, the

following four are in the second splitting course, and the last

one is the merged segmentation result.)

Fig. 6 Example for segmenting synthetic image by the

splitting segmentation model ((a) The first splitting

segmentation; (b) and (c) The second splitting; (d) The final

merged segmentation result)

Another synthetic image experiment is shown in Fig. 6.
It needs twice splitting, and both parts in the second split-
ting need to be segmented. In Fig. 6, (a) is the first split-
ting, (b) and (c) are the second splitting, (d) is the final
merged segmentation result. In Fig. 6 (a), (b), and (c), they
are original image or the new image pulled out with the ini-
tialization curves, two intermediate results, and the result
in the corresponding splitting, respectively. In fact, (a) is
the result using the model in [11], which only partitions the
image into two parts. The two circles in the background

and the star in the middle circle cannot be segmented for
their gray density is similar to the gray density of the re-
gion around. The interior little circle is correctly segmented
because its grey value is close to the background, whereas
differs remarkably from those of the round regions. Note
that some boundaries segmented in the first splitting are
segmented again in the second splitting. Actually, it is the
reappearance of the new image boundaries. After the sec-
ond splitting, all the objects are detected.

Fig. 7 Segmentation of an MRI by the splitting segmentation

model ((a) The original image; (b) The original image with the

initialization curves; (d) ∼ (f) One part of the second splitting;

(g) ∼ (i) The other part of the second splitting; (j) The merged

segmentation result of the both splitting)

An MRI image segmentation of the splitting segmenta-
tion model is shown in Fig. 7. It needs twice splitting. In
Fig. 7, (a) is the original image, (b) is the original image
with the initialization curves, (c) is the first splitting result,
which is also the result using the model in [10], (d), (e), and
(f) are one part of the second splitting. Among them, (d)
is the new image pulled out from the old image with ini-
tialization curves, (e) is the segmentation result shown in
the new image, and (f) is the segmentation result shown
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in the original image. Similarly, (g), (h), and (i) are the
other part of the second splitting. The last image (j) is
the merged segmentation result of all splitting shown in
the original image. In the first splitting, it only segments
mainly the contour, and there are many objects not de-
tected. After the second splitting, more objects or more
details are detected. If necessary, splitting can be contin-
ued to get more objects or details. Generally, the more
splitting is made, the more are the objects or details pro-
duced. Fig. 8 and Fig. 9 are the segmentation results by
multiphase Chan-Vese model[15]. The original image is the
same as Fig. 7. Note that their initialization is different.
The circles used for the initialization in Fig. 9 are denser
than those in Fig. 8. Thus, their segmentation results are
different. The two level sets almost overlap together in
Fig. 8, but the segmentation in Fig. 9 is similar to the new
model.

Fig. 8 Segmentation result for an MRI by the multiphase

Chan-Vese model in [15]

Fig. 9 Segmentation result for an MRI by the multiphase

Chan-Vese model in [15]

5 Discussions and conclusion

In this paper, we proposed a splitting active contours
model based on the Chan-Vese model and the level set
method. Due to the usage of Chan-Vese model in the first
splitting, the improved model not only keeps all the origi-
nal advantages of Chan-Vese model, but also obtained addi-
tional merits. First, it can segment all the objects or details
in the image if enough splitting is involved in the segmen-
tation process; Second, it is easier to implement than the
multiphase level set for it only considers one level set func-
tion; Third, the new model is not sensitive to the initial-
ization, for which the multi-phase Chan-Vese model limits
the operation only to the pulled out regions in the follow-
ing splitting; Finally, the data processed in the model can
be any regions of an image, even the inconsecutive ones,
which leads to the improvement of computing efficiency
whereas the segmentation is limited to region of interest
(ROI) rather than the whole image. We implemented the
model under the level set framework and validated it with
both synthetic and real image experiments.
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