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An Optimal Control Scheme for a Class of Discrete-Time
Nonlinear Systems with Time Delays Using Adaptive

Dynamic Programming
WEI Qing-Lai1 ZHANG Hua-Guang2 LIU De-Rong1 ZHAO Yan3

Abstract In this paper, an optimal control scheme for a class of nonlinear systems with time delays in state and control variables
with respect to a quadratic performance index function is proposed using a new iterative adaptive dynamic programming (ADP)
algorithm. By introducing a delay matrix function, the explicit expression of the optimal control is obtained using the dynamic
programming theory and the optimal control can iteratively be obtained using the adaptive critic technique. Convergence analysis
is presented to prove the performance index function to reach the optimum by the proposed method. Neural networks are used to
approximate the performance index function, compute the optimal control policy, solve delay matrix function and model the nonlinear
system, respectively, for facilitating the implementation of the iterative ADP algorithm. Two examples are given to demonstrate the
validity of the proposed optimal control scheme.

Key words Adaptive dynamic programming, approximate dynamic programming, time delay, optimal control, nonlinear system,
neural networks

The optimal control problem of nonlinear systems has
always been the key focus in the control field in the last
several decades. Coupled with this is the fact that noth-
ing can happen instantaneously, as is so often presumed
in many mathematical models. So strictly speaking, time
delays exnist in the most practical control systems. Time
delays may result in degradation in the control efficiency
even instability of the control systems. So there have been
many studies on the control systems with time delay in var-
ious research fields such as electrical, chemical engineering
and networked control[1,2]. The optimal control problem for
the time-delay systems always attracts much attention of
the researchers and many results have been obtained[3−5].
In general, the optimal control for the time-delay systems
is an infinite-dimensional control problem[3], which is very
difficult to solve. So lots of analysis and applications are
limited to a very simple case: the linear systems with only
state delays[6]. For nonlinear case with state delays, the
traditional method is to adopt fuzzy method and robust
method which transform the nonlinear time-delay systems
to a linear one [7]. For the systems with time delays both
in states and controls, it is still an open problem [4,5]. The
main difficulty lies in the formulation of the optimal con-
troller which must use the information of the delayed con-
trol term so as to obtain an efficient control. This makes
the analysis of the system much more difficult, and there
is no method strictly facing this problem even in the linear
cases, much or less for the nonlinear cases. This motivates
our research.

Adaptive dynamic programming (ADP), combining
adaptive critic and reinforcement learning into dynamic
programming[8,9], is a powerful tool in solving the optimal
control problems and attached much attention by many
researchers and groups in recent years, such as [10 − 16].
However, most of the results focus on the optimal control
problems without delays. To the best of our knowledge,
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there are no results discussing how to use ADP to solve the
time-delay optimal control problems. In this paper, it is
the first time that the time-delay optimal control problem
is solved by the iterative ADP algorithm. By introduc-
ing a delay matrixn function, we can obtain the explicit
expression of the optimal control function. The optimal
control can iteratively be obtained using the proposed iter-
ative ADP algorithm which avoids the infinite-dimensional
computation. Also, it is proved that the performance in-
dex function converges to the optimum using the proposed
iterative ADP algorithm.

This paper is organized as follows. Section 1 presents the
preliminaries. In Section 2, the time-delay optimal control
scheme is proposed based on iterative ADP algorithm. In
Section 3, the neural network implementation for the con-
trol scheme is discussed. In Section 4, two examples are
given to demonstrate the effectiveness of the proposed con-
trol scheme. The conclusion is drawn in Section 5.

1 Preliminaries

Basically, we consider the following diecrete-time affine
nonlinear system with time delays in state and control vari-
ables

xxx(k + 1) =f(xxx(k),xxx(k − σ)) + g0(xxx(k),xxx(k − σ))uuu(k)

+ g1(xxx(k),xxx(k − σ))uuu(k − τ) (1)

with the initial condition given by xxx(s) = φ(s), s =
−σ,−σ + 1, . . . , 0, where xxx(k) ∈ <n is the state vector,
f : <n × <n → <n and g0, g1 : <n × <n → <n×m are differ-
entiable functions and the control uuu(k) ∈ <m. The state
and control delays σ and τ are both nonnegative integral
number. Assume that f(xxx(k),xxx(k − σ)) + g0(xxx(k),xxx(k −
σ))uuu(k) + g1(xxx(k),xxx(k − σ))uuu(k − τ) is Lipschitz continu-
ous on a set Ω in <n containing the origin, and that the
system (1) is controllable in the sense that there exists a
bounded control on Ω that asymptotically stabilizes the
system. In this paper, we mainly discuss how to design an
optimal state feedback controller for this class of delayed
discrete-time systems. Therefore, it is desired to find the
optimal control uuu(xxx) satisfying uuu(xxx(k)) = uuu(k) to minimize
the generalized performance functional as follows

V (xxx(0),uuu) =

∞∑

k=0

(
xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuuT(k)R0uuu(k)
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+2uuuT(k)R1uuu(k − τ) + uuuT(k − τ)R2uuu(k − τ)
)

(2)

where

[
Q0 Q1

QT
1 Q2

]
≥ 0 and

[
R0 R1

RT
1 R2

]
> 0 and l(xxx(k),xxx(k −

σ),uuu(k),uuu(k − τ)) = xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ) +
xxxT(k− σ)Q2xxx(k− σ) +uuuT(k)R0uuu(i) + 2uuuT(k)R1uuu(k− τ) +
uuuT(k − τ)R2uuu(k − τ) is the utility function. Let V ∗(xxx) de-
note the optimal performance index function which satisfies

V ∗(xxx) = min
u

V (xxx,uuu). (3)

According to the Bellman’s optimal principle, we can get
the following HJB equation

V ∗(xxx(k)) = min
uuu(k)

{
xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuuT(k)R0uuu(k)

+ 2uuuT(k)R1uuu(k − τ)+uuuT(k − τ)R2uuu(k − τ)

+V ∗(xxx(k + 1))} . (4)

For optimal control problem, the state feedback control
uuu(xxx) must not only stabilize the system on Ω but also guar-

antee that (2) is finite, i.e., uuu(xxx) must be admissible[17].

Definition 1 A control uuu(xxx) is defined to be admissible
with respect to (4) on Ω if uuu(xxx) is continuous on Ω,
uuu(0) = 0, uuu(xxx) stabilizes (1) on Ω, and ∀xxx(0) ∈ Ω,
V (xxx(0)) is finite.

2 Properties of the Iterative ADP Ap-
proach

Noting that the nonlinear delayed system (1) is infinite-

dimensional[3], the control variable uuu(k) couples with uuu(k−
τ). It is nearly impossible to obtain the expression of the
optimal control by solving the HJB equation (4). To over-
come the difficulty, a new iterative algorithm is proposed
in this paper. The following lemma is necessary to apply
the algorithm.

Lemma 1 For the delayed nonlinear system (1) with re-
spect to the performance index function (2), if there exists
a control uuu(k) 6= 0 at time point k, then there exists a
bounded matrix function M(k) that makes

uuu(k − τ) = M(k)uuu(k) (5)

hold for j = 0, 1, . . . , n.

Proof. As uuu(k) and uuu(k−τj), j = 0, 1, . . . , n are bounded
real vector, then we can construct a function that satisfies

uuu(k − τ) = h(uuu(k)) (6)

where j = 0, 1, . . . , n. Then using the method of undeter-
mined coefficients, let M(uuu(k)) satisfy

h(uuu(k)) = M(uuu(k))uuu(k). (7)

Then we can obtain M(uuu(k)) expressed as

M(uuu(k)) = h(uuu(k))uuuT(k)
(
uuu(k)uuuT(k)

)−1

(8)

where
(
uuu(k)uuuT(k)

)−1
means the generalized inverse ma-

trix of
(
uuu(k)uuuT(k)

)
. On the other side, uuu(k) and uuu(k − τ)

are both bounded real vector, then we have h(uuu(k)) and(
uuu(k)uuuT(k)

)−1
are bounded. So M(k) = M(uuu(k)) is the

solution. ¤
According to Lemma 1, the HJB equation becomes

V ∗(xxx(k)) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ)

+ uuu∗T(k)R0uuu
∗(k) + 2uuu∗T(k)R1M

∗(k)uuu∗(k)

+ uuu∗T(k)M∗T(k)R2M
∗(k)uuu∗(k)

+ V ∗(xxx(k + 1)) (9)

where uuu∗(k) is the optimal control and uuu∗(k − τ) =
M∗(k)uuu∗(k).

2.1 Derivation of the Iterative ADP Algorithm

According to the Bellman’s principle of optimality, we
can obtain the optimal control by differentiating the HJB
equation (9) with respect to control u. Then we can obtain
the optimal control uuu∗(k) formulated as

uuu∗(k) =− 1

2

(
R0 + 2R1M

∗(k) + M∗T(k)R2M
∗(k)

)−1

× (
g0 (xxx(k),xxx(k − σ))

+ g1 (xxx(k),xxx(k − σ)) M∗(k)
)T ∂V ∗(xxx(k + 1))

∂xxx(k + 1)
.

(10)

In equation (10), the inverse of the term(
R0 + 2R1M

∗(k) + M∗T (k)R2M
∗(k)

)
should exist

and a proof is presented in the Appendix to guarantee the
existence of the inverse.

From equation (10), the explicit optimal control expres-
sion uuu∗ is obtained by solving the HJB equation (9). We
can see that the optimal control uuu∗ depends on M∗ and
V ∗(x) where V ∗(x) is a solution of the HJB equation (9).
While how to solve the HJB equation is still open and there
is currently no method for rigorously seeking for this perfor-
mance index function of this delayed optimal control prob-
lem. Furthermore, the optimal delay matrix function M∗

is also unknown which makes the optimal control uuu∗ more
difficult to obtain. So an iterative index i is introduced into
the ADP approach to obtain the optimal control iteratively.

Firstly, for i = 0, 1, . . ., let

uuu(i+1)(k − τ) = M (i)(k)uuu(i+1)(k) (11)

where M (0)(k) = I and uuu(0)(k − τ) = M (0)(k)uuu(0)(k). We

start with initial performance index V (0)(xxx(k)) = 0, and

the control uuu(0)(k) can be computed as follows

uuu(0)(xxx(k)) = arg min
u

{
Γ0 + V (0)(xxx(k + 1))

}
, (12)

where

Γ0 =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuu(0)T (k)R0uuu
(0)(k)

+ 2uuu(0)T (k)R1M
(0)(k)uuu(0)(k)

+ uuu(0)T (k)M (0)T (k)R2M
(0)(k)uuu(0)(k).

Then the performance index function is updated as

V (1)(xxx(k)) = Γ0 + V (0)(xxx(k + 1)). (13)
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Thus for i = 1, 2, . . ., the iterative ADP can be used to
implement the iteration between

uuu(i)(xxx(k)) = arg min
u

{
Γ(i) + V (i)(xxx(k + 1))

}

=− 1

2

(
R0 + 2R1M

(i−1)(k)

+M (i−1)T(k)R2M
(i−1)(k)

)−1(
g0(xxx(k),xxx(k−σ))

+g1(xxx(k),xxx(k−σ))M(i−1)(k)
)T∂V (i)(xxx(k + 1))

∂xxx(k + 1)
,

(14)

where

Γ(i) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuu(i)T (k)R0uuu
(i)(k)

+ 2uuu(i)T (k)R1M
(i−1)(k)uuu(i)(k)

+ uuu(i)T (k)M (i−1)T (k)R2M
(i−1)(k)uuu(i)(k),

and

V (i+1)(xxx(k)) = Γ(i) + V (i)(xxx(k + 1)). (15)

Then the optimal control can be obtained iteratively. From
(14) and (15), it can be seen that during the iteration pro-
cess, the control actions for different control steps obey dif-
ferent control laws. After the iteration number of i, the ob-
tained control laws sequence is (uuu(0),uuu(1), . . . ,uuu(i)). For the
infinite-horizon problem, both the optimal performance in-
dex function and the optimal control law is unique. There-
fore, it is necessary to show that the iterative performance
index function V (i)(xxx(k)) will converge when the iteration

number i → ∞ under the iterative control uuu(i)(k) and it
will be proved in the following subsection.

2.2 Properties of the Iterative ADP Algorithm

In this subsection, we focus on the proof of convergence
of the iteration between (14) and (15), with the perfor-

mance index V (i)(xxx(k)) → V ∗(xxx(k))), ∀k.

Lemma 2 [17] Let ũuu(i)(k), k = 0, 1 . . . be any sequence

of control, and uuu(i)(k) is expressed as (14). Define

V (i+1)(xxx(k)) as (15) and Λ(i+1)(xxx(k)) as

Λ(i+1)(xxx(k)) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + ũuu(i)T (k)R0ũuu
(i)(k)

+ 2ũuu(i)T (k)R1M
(i−1)(k)ũuu(i)(k)

+ ũuu(i)T (k)M (i−1)T (k)R2M
(i−1)(k)ũuu(i)(k)

+ Λ(i)(xxx(k + 1)). (16)

If V (0)(xxx(k)) = Λ(0)(xxx(k)) = 0, then V (i)(xxx(k)) ≤
Λ(i)(xxx(k)), ∀i.

In order to prove the convergence of the performance index
function, the following theorem is also necessary.

Theorem 1 Let the performance index function
V (i)(xxx(k)) be defined by (15). If xxx(k) for the system
(1) is controllable, then there exists an upper bound Y such
that 0 ≤ V (i)(xxx(k)) ≤ Y , ∀i .

Proof. As the system (1) is Lipschitz, M (i)(k) is a
bounded matrix for i = 0, 1, . . .. Define a delay matrix
function M̄(k) which makes

χT
(
R0 + 2R1M̄(k) + M̄T(k)R2M̄(k)

)
χ− χT (R0

+2R1M
(i)(k) + M (i)T (k)R2M

(i)(k)
)

χ ≥ 0 (17)

hold for ∀i, where χ is any nonzero m-dimensional vector.
Let ūuu(k), k = 0, 1 . . . be any admissible control input. De-

fine a new sequence P (i)(xxx(k)) as follows:

P (i+1)(xxx(k)) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + ūuuT(k)R0ūuu(k)

+ 2ūuuT(k)R1M̄(k)ūuu(k)

+ ūuuT(k)M̄T(k)R2M̄(k)ūuu(k)+P (i)(xxx(k + 1))
(18)

where let P (0)(xxx(k)) = V (0)(xxx(k)) = 0 and ūuu(k − τ) =

M̄(k)ūuu(k). V (i)(xxx(k)) is updated by (15). Thus we can
obtain

P (i+1)(xxx(k))−P (i)(xxx(k)) = P (i)(xxx(k + 1))−P (i−1)(xxx(k + 1))

...

= P (1)(xxx(k + i))−P (0)(xxx(k + i)).

(19)

Because P (0)(xxx(k + i)) = 0, we have

P (i+1)(xxx(k)) =P (1)(xxx(k + i)) + P (i)(xxx(k))

=

i∑
j=0

P (1)(xxx(k + j)). (20)

According to (18), (20) can be rewritten as

P (i+1)(xxx(k))=

i∑
j=0

Ξ(k + j) ≤
∞∑

j=0

Ξ(k + j) (21)

where

Ξ(k + j) = xxxT(k + j)Q0xxx(k + j)

+2xxxT(k + j)Q1xxx(k + j − σ)

+xxxT(k + j − σ)Q2xxx(k + j − σ)

+ ūuuT(k + j)R0ūuu(k + j)

+ 2ūuuT(k + j)R1M̄(k + j)ūuu(k + j)

+ūuuT(k + j)M̄T(k + j)R2M̄(k + j)uuu(k + j).

Noting that the control input ūuu(k), k = 0, 1, . . . is an ad-
missible control, we can obtain

∀i : P (i+1)(xxx(k)) ≤
∞∑

j=0

P (1)(xxx(k + j)) ≤Y. (22)

From Lemma 1, we have

∀i : V (i+1)(xxx(k)) ≤ P (i+1)(xxx(k)) ≤Y. (23)

¤
With Lemma 1 and Theorem 1, the following main the-

orem can be derived.
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Theorem 2 Define the performance index function
V (i)(xxx(k)) as (15), with V (0)(xxx(k)) = 0. If xxx(k) for the

system (1) is controllable, then V (i)(xxx(k)) is a nonde-

creasing sequence that is V (i)(xxx(k)) ≤ V (i+1)(xxx(k)) and

V (i)(xxx(k)) is convergent as i →∞.

Proof. For the convenience of analysis, define a new se-
quence Φ(i)(xxx(k)) as follows:

Φ(i+1)(xxx(k)) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+xxxT(k−σ)Q2xxx(k−σ)+uuu(i+1)T(k)R0uuu
(i+1)(k)

+ 2uuu(i+1)T (k)R1M
(i)(k)uuu(i+1)(k)

+ uuu(i+1)T (k)M (i)T (k)R2M
(i)(k)uuu(i+1)(k)

+ Φ(i)(xxx(k + 1)) (24)

with uuu(i)(k) obtained by (14) and Φ0(xxx(k)) = V0(xxx(k)) = 0.

V (i)(xxx(k)) is updated by (15).

In the following part, we prove Φ(i)(xxx(k)) ≤ V (i+1)(xxx(k))
by mathematical induction.

First, we prove it holds for i = 0. Noting that

V (1)(xxx(k))−Φ(0)(xxx(k))=xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ)

≥ 0. (25)

Thus for i = 0, we can get

V (1)(xxx(k)) ≥ Φ(0)(xxx(k)). (26)

Second, we assume it holds for i − 1, i.e. V (i)(xxx(k)) −
Φ(i−1)(xxx(k)) ≥ 0, ∀xxx(k). Then, for i, from (15) and (24),
we can obtain

V (i+1)(xxx(k))−Φ(i)(xxx(k)) =V (i)(xxx(k + 1))−Φ(i−1)(xxx(k + 1))

≥0, (27)

i.e.,

Φ(i)(xxx(k)) ≤ V (i+1)(xxx(k)). (28)

Therefore, the mathematical induction proof is com-
pleted.

Moreover, from Lemma 1, we know that V (i)(xxx(k)) ≤
Φ(i)(xxx(k)) and therefore we can obtain

V (i)(xxx(k)) ≤ Φ(i)(xxx(k)) ≤ V (i+1)(xxx(k)) (29)

which proves that V (i)(xxx(k)) is a nondecreasing sequence

bounded by (23). Hence, we conclude that V (i)(xxx(k)) a
nondecreasing convergent sequence as i →∞. ¤

We note the obvious corollary.

Corollary 1 If Theorem 2 holds, then the delay matrix
function M (i)(k) is a convergent sequence, as i →∞.

According to Corollary 1, we define

M (∞)(k) = lim
i→∞

M (i)(k). (30)

Next we will prove that the performance index function
sequence V (i)(xxx(k)) converges to V ∗(xxx(k)) as i → ∞. As

V (i)(xxx(k)) is a convergent sequence as i →∞, we define

V (∞)(xxx(k)) = lim
i→∞

V (i)(xxx(k)). (31)

Let ūuul be the lth admissible control, similar to the proof
of Theorem 1, we can construct the performance index

function sequence P
(i)
l (xxx) as follows

P
(i+1)
l (xxx(k)) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ)

+ ūuuT
l (k)R0ūuul(k) + 2ūuul(k)R1M

(∞)(k)ūuul(k)

+ ūuul(k)M (∞)T (k)R2M
(∞)(k)ūuul(k)

+ P
(i)
l (xxx(k + 1)), (32)

with P
(0)
l (·) = 0 and ūuul(k) = M (∞)(k)ūuul(k− τ). According

to Theorem 1, we have

P
(i+1)
l (xxx(k)) =

i∑
j=0

(
xxxT(k + j)Q0xxx(k + j)

+2xxxT(k + j)Q1xxx(k + j − σ)

+xxxT(k + j − σ)Q2xxx(k + j − σ)

+ ūuuT
l (k + j)R0ūuul(k + j)

+ 2ūuuT
l (k + j)R1M

(∞)(k + j)ūuul(k + j)

+ūuuT
l (k + j)M (∞)T (k + j)R2

×M (∞)(k + j)ūuul(k + j)
)

(33)

Let
P

(∞)
l (xxx(k)) = lim

i→∞
P

(i+1)
l (xxx(k)) (34)

So we have

P
(i)
l (xxx(k)) ≤ P

(∞)
l (xxx(k)). (35)

Theorem 3 Define P
(∞)
l (xxx(k)) as in (34), define the

performance index function V (i)(xxx(k)) as in (15) with

V (0)(·) = 0. For any state vector xxx(k), define V ∗(xxx(k)) =

min
l

{
P

(∞)
l (xxx(k))

}
starting from xxx(k) for all admissible

control sequences. Then we can conclude that V ∗(xxx(k)) is

the limit of the performance index function V (i)(xxx(k)) as
i →∞.

Proof. For any l, there exists an upper bound Yl such that

P
(i+1)
l (xxx(k)) ≤ P

(∞)
l (xxx(k)) ≤ Yl (36)

According to (23), for ∀l, we have

V (∞)(xxx(k)) ≤ P
(∞)
l (xxx(k)) ≤ Yl. (37)

Since V ∗(xxx(k)) = min
l

{
P

(∞)
l (xxx(k))

}
, for any ε > 0, there

exists an admissible control ūuuK where K is a nonnegative
number such that the associated performance index func-

tion satisfies P
(∞)
K (xxx(k)) ≤ V ∗(xxx(k))+ε. According to (23),

we have V (∞)(xxx(k)) ≤ P
(∞)
l (xxx(k)) for any l. Thus we can

obtain V (∞)(xxx(k)) ≤ P
(∞)
K (xxx(k)) ≤ V ∗(xxx(k)) + ε. Noting

that ε is chosen arbitrarily, we have

V (∞)(xxx(k)) ≤ V ∗(xxx(k)). (38)

On the other hand, since V (i)(xxx(k)) is bounded for ∀i,
according to the definition of admissible control, the con-
trol sequence associated with the performance index func-
tion V (∞)(xxx(k)) must be an admissible control, i.e., there
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exists an admissible control ūuu
(i)
N such that V (∞)(xxx(k)) =

P
(∞)
N (xxx(k)). Combining with the definition V ∗(xxx(k)) =

min
l

{
P

(∞)
l (xxx(k))

}
, we can obtain

V (∞)(xxx(k)) ≥ V ∗(xxx(k)). (39)

Therefore, combining (38) and (39), we can conclude that

V (∞)(xxx(k)) = lim
i→∞

V (i)(xxx(k)) = V ∗(xxx(k)), (40)

i.e., V ∗(xxx(k)) is the limit of the performance index function

V (i)(xxx(k)), as i →∞. ¤
Based on Theorem 3, we will prove that the performance

index function V ∗(xxx(k)) satisfies the principle of optimality,

which shows that V (i)(xxx(k)) can reach the optimum as i →
∞.

Theorem 4 For any state vector xxx(k), the “opti-
mal” performance index function V ∗(xxx(k)) satisfies
V ∗(xxx(k)) = min

uuu(k)
{xxxT(k)Q0xxx(k)+2xxxT(k)Q1xxx(k−σ)+xxxT(k−

σ)Q2xxx(k − σ) + uuuT(k)R0u(k) + 2uuuT(k)R1M(k)u(k)
+uuuT(k)M(k)R2M(k)u(k)+V ∗(xxx(k+1))} where u(k−τ) =
M(k)u(k).

Proof. For any uuu(k) and i, based on Bellman’s optimality
principle, we have

V (i)(xxx(k)) ≤ Υ(i−1) + V (i−1)(xxx(k + 1)), (41)

where

Υ(i−1) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ)

+ uuuT(k)R0u(k) + 2uuuT(k)R1M
(i−1)(k)u(k)

+ uuuT(k)M (i−1)T (k)R2M
(i−1)(k)u(k).

As V (i)(xxx(k)) ≤ V (i+1)(xxx(k)) ≤ V (∞)(xxx(k)) and

V (∞)(xxx(k)) = V ∗(xxx(k)), we can obtain

V (i)(xxx(k)) ≤ Υ(i−1) + V ∗(xxx(k + 1)). (42)

Let i →∞, we have

V ∗(xxx(k)) ≤ Υ(∞) + V ∗(xxx(k + 1)). (43)

Since uuu(k) in the above equation is chosen arbitrarily, the
following equation holds

V ∗(xxx(k)) ≤ min
uuu(k)

{
Υ(∞) + V ∗(xxx(k + 1))

}
. (44)

On the other hand, for any i, the performance index func-
tion satisfies

V (i)(xxx(k))= Ω(i−1) + V (i−1)(xxx(k + 1)), (45)

where

Ω(i−1) =xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k−σ)Q2xxx(k−σ)+uuu(i−1)T (k)R0uuu
(i−1)(k)

+ 2uuu(i)T (k)R1M
(i−2)(k)uuu(i−1)T (k)

+ uuu(i−1)T (k)M (i−2)T(k)R2M
(i−2)(k)uuu(i−1)T (k).

Combining with V (i)(xxx(k)) ≤ V ∗(xxx(k)), ∀i, we have

V ∗(xxx(k)) ≥ Ω(i−1) + V (i−1)(xxx(k + 1)). (46)

Let i →∞, and then

V ∗(xxx(k)) ≥ lim
i→∞

{
Ω(i−1) + V (i−1)(xxx(k + 1))

}

≥ min
uuu(k)

{
Ω(∞) + V ∗(xxx(k + 1))

}
. (47)

Combining (44) with (47), we have

V ∗(xxx(k)) =min
uuu(k)

{Ω(∞) + V ∗(xxx(k + 1))}

=xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuu∗T(k)R0uuu
∗(k)

+ 2uuu∗T(k)R1M
(∞)(k)uuu∗(k)

+ uuu∗T(k)M (∞)T (k)R2M
(∞)(k)uuu∗(k)

+ V ∗(xxx(k + 1)). (48)

Thus we have that uuu(i)(k) → uuu∗(k) as i → ∞ so does

uuu(i)(k − τ). On the other hand, we also have M (i)(k) →
M (∞)(k) and uuu(i)(k − τ) = M (i−1)(k)uuu(i)(k). Let i → ∞,
we get

uuu∗(k − τ) = M (∞)(k)uuu∗(k). (49)

Therefore, we have M (∞)(k) = M∗(k) and (48) can be
written as

V ∗(xxx(k)) = xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k − σ)

+ xxxT(k − σ)Q2xxx(k − σ) + uuu∗T(k)R0uuu
∗(k)

+ 2uuu∗T(k)R1M
∗(k)uuu∗(k)

+ uuu∗T(k)M∗T(k)R2M
∗(k)uuu∗(k)

+ V ∗(xxx(k + 1)) (50)

where uuu∗(k − τ) = M∗(k)uuu∗(k). ¤
Therefore, we can conclude that the performance index

function V (i)(xxx(k)) converges to the optimum V ∗(xxx(k)) as
i →∞.

2.3 The Implementation of Iterative ADP Algo-
rithm

Given the above preparation, we may formulate the de-
sired iterative ADP approach for nonlinear systems with
delays.

1. Give initial state xxx(s) = φ(s), s = −σ,−σ + 1, . . . , 0,
initial control uuu(ρ), ρ = 0, 1, . . . , k−1; give imax, com-
putation accuracy ε.

2. Set the iterative step i = 0, M (0)(k) = I, V (0)(·) = 0.

3. Compute uuu(0)(k) by (12) and the performance index

function V (1)(xxx(k)) by (13).

4. For the iterative step i ≥ 1, compute uuu(i)(k) by (14).

5. Compute the performance index function V (i)(xxx(k))
by (15).
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6. If

[
V (i)(xxx(k))− V (i−1)(xxx(k))

]2

< ε, (51)

go to Step 9; otherwise, go to Step 7.

7. If i > imax, go to Step 9; otherwise, compute M (i)(k)
by

M (i)(k)=uuu(i)(k − τ)uuu(i)T(k)
(
uuu(i)(k)uuu(i)T (k)

)−1

. (52)

8. Set i = i + 1 and go to Step 4.

9. Stop.

In (52) of the above algorithm, the term(
uuu(i)(k)uuu(i)T (k)

)−1

can be obtained by the Moore-

Penrose pseudoinverse technique to compute the delay
matrix function M (i)(k). There are another two methods

to compute M (i)(k). One choice is to introduce a small
zero-mean Gaussian noise with variances γ2 denoted by
δ(0, γ2) into the control uuu(k − τ) (see [18], for detail).

The other choice is to use a neural network to approxi-
mate delay matrix function M (i)(k). In this paper, we use
the neural network approximation method and the details
will be shown in the next section.

3 Neural network implementation

In the case of linear systems the performance index func-
tion is quadratic and the control policy is linear. In the
nonlinear case, this is not necessarily true and therefore we
use neural networks to approximate uuu(i)(k) and V (i)(xxx(k)).

Assume the number of hidden layer neurons is denoted
by l, the weight matrix between the input layer and hid-
den layer is denoted by V , the weight matrix between the
hidden layer and output layer is denoted by W . Then the
output of three-layer NN is represented by:

F̂ (XXX, V, W ) = WTσ(V TXXX) (53)

where σ(V TXXX) ∈ Rl, [σ(z)]i = e
z

i−e−zi

e
z

i +e−zi
, i = 1, . . . l, are the

activation function.
The NN estimation error can be expressed by

F (XXX) = F (XXX, V ∗, W ∗) + ε(XXX) (54)

where, V ∗, W ∗ are the ideal weight parameters, ε(XXX) is the
reconstruction error.

Here, there are four neural networks, which are critic
network, model network, action network and delay matrix
function network (M network) respectively. All the neu-
ral networks are chosen as three-layer feedforward network.
The whole structure diagram is shown in Fig.1. The utility
term in the figure denotes xxxT(k)Q0xxx(k) + 2xxxT(k)Q1xxx(k −
σ)+xxxT(k−σ)Q2xxx(k−σ)+uuuT(k)R0uuu(k)+2uuuT(k)R1uuu(k−
τ) + uuuT(k − τ)R2uuu(k − τ).

( )x k

( )x k

( 1)x k  

ˆ( ( ))V x k

ˆ( ( 1))V x k 
utility

 

 

 

( )M k
( )u k !"

( )u k

( )x k

( )x k #"

( )x k #"

Fig. 1 The structure diagram of the algorithm

3.1 The Model Network

The model network is to approximate the system dy-
namic and it should be trained before the implementation
of the iterative ADP algorithm. The update rule of the
model network is adopted as gradient decent method. The
training process is simple and general. The details can be
seen in [13,19] and it is omitted here.

After the model network is trained, its weights are kept
unchanged.

3.2 the M network

The M network is to approximate the delay matrix func-
tion M(k). The output of the M network is denoted as

ûuu(k − τ) = WT
Mσ(V T

Muuu(k)). (55)

We define the error function of the model network as

eM (k) = ûuu(k − τ)− uuu(k − τ). (56)

Define the performance error measure as:

EM (k) =
1

2
e2

M (k). (57)

Then the gradient-based weight updating rule for the
critic network can be described by

wM (k + 1) = wM (k) + ∆wM (k), (58)

∆wM (k) = αM

[
−∂EM (k)

∂wM (k)

]
(59)

where αM is the learning rate of the M network.

3.3 The critic network

The critic network is used to approximate the perfor-
mance index function V (i)(xxx(k)). The output of the critic
network is denoted as

V̂ (i)(xxx(k)) = WT
ciσ(V T

ci zzz(k)). (60)

The target function can be written as

V (i+1)(xxx(k)) = Γ(i) + V̂ (i)(xxx(k + 1)). (61)

Then we define the error function for the critic network
as

eci(k) = V̂ (i+1)(xxx(k))− V (i+1)(xxx(k)). (62)

And the objective function to be minimized in the critic
network is

Eci(k) =
1

2
e2

ci(k). (63)
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So the gradient-based weight updating rule for the critic
network is given by

wc(i+1)(k) = wci(k) + ∆wci(k), (64)

∆wci(k) = αc

[
−∂Eci(k)

∂wci(k)

]
, (65)

∂Eci(k)

∂wci(k)
=

∂Eci(k)

∂V̂ (i)(xxx(k))

∂V̂ (i)(xxx(k))

∂wci(k)
(66)

where αc > 0 is the learning rate of critic network and
wc(k) is the weight vector in the critic network.

3.4 The Action Network

In the action network the state xxx(k) is used as input to
create the optimal control as the output of the network.
The output can be formulated as

ûuu(i)(k) = WT
aiσ(V T

aixxx(k)). (67)

And the target of the output of the action network is
given by (14). So we can define the output error of the
action network as

eai(k) = ûuu(i)(k)− uuu(i)(k) (68)

where uuu(i)(k) is the target function which can be described
by

uuu(i)(k)=− 1

2

(
R0+2R1M

(i−1)(k)+M (i−1)T(k)R2M
(i−1)(k)

)−1

× (
g0 (xxx(k),xxx(k − σ))

+g1 (xxx(k),xxx(k − σ)) M (i−1)(k)
)T ∂V̂ (i)(xxx(k + 1))

∂xxx(k + 1)
.

As uuu(i)(k− τ) = M (i−1)(k)uuu(i)(k), we have
∂uuu(i)(k − τ)

∂uuu(i)(k)
=

M (i−1)(k). Then according to (55), M (i−1)(k) can be ex-
pressed as

M
(i−1)
ij (k) = V T

Mi

[
1−

(
σ(V T

Muuu(k))
)2

i

]
WMj (69)

for i, j = 1, 2, . . . , m. M
(i−1)
ij (k) denotes the element of row

i, column j of matrix M (i−1)(k); VMi and WMj mean the
column i and column j of the weight matrices VM and WM ,
respectively;

(
σ(V T

Muuu(k))
)
i is the ith element of the vector

σ(V T
Muuu(k)).

The weighs in the action network are updated to mini-
mize the following performance error measure:

Eai(k) =
1

2
e2

ai(k). (70)

The weights updating algorithm is similar to the one for
the critic network. By the gradient descent rule, we can
obtain

wa(i+1)(k) = wai(k) + ∆wai(k), (71)

∆wai(k) = βa

[
−∂Eai(k)

∂wai(k)

]
, (72)

∂Eai(k)

∂wai(k)
=

∂Eai(k)

∂eai(k)

∂eai(k)

∂uuu(i)(k)

∂uuu(i)(k)

∂wai(k)
(73)

where βa > 0 is the learning rate of action network.

4 Simulation

In this section, two examples are provided to demon-
strate the effectiveness of the control scheme proposed in
this paper.

4.1 optimal control for state delayed system

For the first example, the nonlinear system is the mod-
ification of the example 1 in [13] which introduces state
delays into the system.

Consider the following affine nonlinear system

xxx(k + 1) = f(xxx(k),xxx(k − σ)) + g(xxx(k),xxx(k − σ))uuu(k) (74)

where xxx(k) =
[
xxx1(k) xxx2(k)

]T
, uuu(k) =

[
u1(k) u2(k)

]T
,

and f(xxx(k),xxx(k − σ)) =

[
xxx1(k) exp(xxx3

2(k))xxx2(k − 2)
xxx3

2(k)xxx1(k − 2)

]
,

g(xxx(k),xxx(k − σ)) =

[−0.2 0
0 −0.2

]
The time delay in the

state is σ = 2 and the initial condition is xxx(k) = [1−1]T

for −2 ≤ k ≤ 0. The performance index function is defined
as (2) where Q0 = Q2 = R0 = I and Q1 = R1 = R2 = 0.

And we implement the algorithm at the time instant
k = 5. We choose three-layer neural networks as the critic
network, the action network and the model network with
the structure 4-10-2, 2-10-1 and 6-10-2 respectively. The
initial weights of action network, critic network and model
network are all set to be random in [−0.5, 0.5]. It should be
mentioned that the model network should be trained first.
For the given initial state, we train the model network for
3000 steps under the learning rate αm = 0.05. After the
training of the model network completed, the weights keep
unchanged. Then the critic network and the action net-
work are trained for 3000 steps so that the given accuracy
ε = 10−6 is reached. In the training process, the learn-
ing rate βa = αc = 0.05. The convergence curve of the
performance index function is shown in Fig.2. Then we
apply the optimal control to the system for Tf = 30 time
steps and obtain the following results. The state trajecto-
ries are given as Fig.3 and the corresponding control curves
are given as Fig.4.
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Fig. 2 The convergence of performance index function
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Fig. 3 The state variables trajectories
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Fig. 4 The optimal control trajectories

4.2 optimal control for nonlinear system with
state and control delays

For the second example, the control time delay is added
into the system of example 1 and the system becomes

xxx(k + 1) =f(xxx(k),xxx(k − σ)) + g0(xxx(k),xxx(k − σ))uuu(k)

+ g1(xxx(k),xxx(k − σ))uuu(k − τ) (75)

where xxx(k) =
[
xxx1(k) xxx2(k)

]T
, uuu(k) =

[
u1(k) u2(k)

]T
, and

f(xxx(k),xxx(k − σ)) is the same to example 1, g0(xxx(k),xxx(k −
σ)) = g1(xxx(k),xxx(k − σ)) =

[−0.2 0
0 −0.2

]
. The state time

delay σ = 2 and the control time delay τ = 1. The initial
condition is xxx(k) = [−1−1]T and uuu(k) = 0 for −2 ≤ k ≤ 0
. The performance index function is defined as (2) where
Q0 = Q2 = R0 = R2 = I and Q1 = R1 = 0.

We also implement the algorithm at the time instant
k = 5. We choose three-layer neural networks as the critic
network, the action network, the model network and the M
network with the structure 4-10-2, 2-10-1, 8-10-2 and 2-8-2
respectively. All th other parameters are set the same as
example 1. The initial weights of action network, critic net-
work, model network and the M network are all set to be
random in [−0.5, 0.5]. For the given initial state, we train
the model network for 4000 steps. After the training of
the model network completed, the weights keep unchanged.
Then the critic network, the action network and the M net-

work are trained for 3000 steps to reach the given accuracy
ε = 10−6. The convergence curve of the performance index
function is shown in Fig.5. Then we apply the optimal con-
trol to the system for Tf = 30 time steps and obtain the
following results. The state trajectories are given as Fig.6
and the corresponding control curves are given as Fig.7.
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Fig. 5 The convergence of performance index function
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5 Conclusion

In this paper, we propose an effective algorithm to find
the optimal infinite-time controller for a class of discrete-
time nonlinear systems with time delays in state and con-
trol variables. Introducing a delay matrix function, the ex-
plicit expression of the optimal control is obtained. Then
the iterative ADP algorithm is implemented to deal with
the time delay problem with rigorous convergence analy-
sis. Four neural networks are used as parametric structures
to approximate the performance index function, compute
the optimal control policy, model the unknown system and
solve delay matrix function respectively, i.e. the critic net-
work, the action network, the model network and the M
network. The simulation studies have successfully demon-
strated the upstanding performance of the proposed time-
delay optimal control scheme for various discrete-time non-
linear systems.

6 Appendix

Lemma 3 If

[
R0 R1

RT
1 R2

]
is a positive definite matrix where

R0, R1, R2 ∈ <n×n, then for any nonsingular matrix M ∈
<n×n,

[
R0 R1M

MTRT
1 MTR2M

]
> 0.

Proof. Since

[
R0 R1

RT
1 R2

]
is positive definite matrix, accord-

ing to Schur complement[20], we have

R2 −RT
1 R−1

0 R1 > 0. (76)

As the matrix M ∈ <n×n is nonsingular, let M−1 denote
the inverse matrix of M , and then (76) can be written as

R2 −RT
1 MTM−TR−1

0 M−1MR1 > 0 (77)

where M−T = (M−1)T. Again, using Schur complement,
we can obtain

[
R0 R1M

MTRT
1 MTR2M

]
> 0. (78)
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