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Delay-Dependent Stability for
Systems with Fast-Varying
Neutral-Type Delay via A
PTVD Compensation

LIU Zhen-Wei1, 2 ZHANG Hua-Guang1, 2

Abstract The stability for a class of linear neutral systems
with time-varying delays is studied in this paper, where delay in
neutral-type term includes a fast-varying case (i.e., the deriva-
tive of delay is more than 1), which is never considered in current
literature. The less conservative delay-dependent stability crite-
ria for this systems are proposed by applying a new Lyapunov-
Krasovskii functional and a novel polynomials with time-varying
delay (PTVD) compensation technique. The aim dealt with sys-
tems with fast-varying neutral-type delay can be achieved by
using the new functional. And the benefit brought by applying
the PTVD compensation technique is that some useful elements
can be included in criteria, which are generally ignored when es-
timating the upper bound of derivative of Lyapunov-Krasovskii
functional. A numerical example is provided to verify the effec-
tiveness of the proposed results.

Key words Linear neutral systems, stability, delay-
dependent, fast-varying neutral-type delay, PTVD compensa-
tion technique

There are two kinds of discrete time delays in systems,
retarded-type delay and neutral-type delay. Retarded-type
delay means that the delay is in the states of systems,
whereas neutral-type delay means that the delay is in the
derivatives of states of systems. In recent years, the neu-
tral systems with delay (i.e., systems with retarded-type
delay and neutral-type delay) have received much atten-
tion, due to it can be found in many fields, such as pop-
ulation ecology[1], distributed networks containing lossless
transmission lines[2], propagation and diffusion models[3],
partial element equivalent circuits in VLSI systems[4], and
etc. Thus, the stability of linear neutral systems with delay
has developed a hot topic both in theory and in practice[5].
At present, the stability results for linear neutral systems
with delay can be generally classified into two types: delay-
independent case which can be applied at delay with arbi-
trary size, and delay-dependent case which makes use of
the size of delay. Generally speaking, the delay-dependent
case is less conservative than the delay-independent one.
Therefore, researches on delay-dependent stability for lin-
ear neutral systems with delay had been extensively carried
out. For example, literature [6] and [7] proposed a descrip-
tor system approach to deal with linear neutral systems
with delay. In [8] and [9], the Lyapunov-Krasovskii func-
tional with term xxx(t) − Cxxx(t − τ) was employed, where
xxx(t) was the state of systems, C was constant matrix with
‖C‖ < 1, and τ was delay. Then, a free-weighting ma-

trix approach[10][11] was proposed to deal with linear delay
systems.

Recently, some new techniques had been used in sta-
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bility analysis of systems with delay. Those results were
included in [12]−[23]. In [12] and [13], the methods based
on characteristic function (or transfer function) were used
to deal with linear neutral systems with constant de-
lay. In [14] and [15], the authors considered the term

− ∫ t−d(t)

t−dM
ẋxxT(t)Zẋxx(t)ds in Lyapunov functional, which was

usually neglected in previous literature, where d(t) denoted
time-varying delay and dM denoted the upper bound of
d(t), i.e., d(t) ∈ [0, dM ]. The augmented Lyapunov-
Krasovskii functional was employed to reduce the conser-
vativeness of stability results in [14], [16]–[18]. In [19] and
[20], the robust stability for the neutral systems with de-
lay and nonlinear perturbations were studied. And then,
neutral systems with distributed delay and interval delay
were found in [21] and [22]. In [23], the absolute stability of
neutral systems was studied. To the best of our knowledge,
there is no stability criterion which can deal with systems
with fast-varying neutral-type delay, i.e., the derivative of
neutral-type delay is more than 1. How to obtain the sta-
bility results dealt with fast-varying neutral-type delay and
reduce their conservativeness, which motivate the present
study.

In this paper, the stability of linear neutral system with
time-varying retarded-type delay and time-varying neutral-
type delay (including the fast-varying neutral-type delay)
is studied. By employing a new Lyapunov-Krasovskii func-
tional and a novel polynomials with time-varying delay
(PTVD) compensation technique, the less conservative sta-
bility criteria are obtained. Compared with previous re-
sults, it is the first time to consider the fast-varying neutral-
type delay in neutral system with delay, which is achieved
by the new functional. And since the PTVD compensation
technique is used, some useful terms can be introduced by
using some polynomials with time-varying delays in sys-
tem, which are usually ignored at the process of estimat-
ing the upper bound of derivative of Lyapunov-Krasovskii
functional. Obviously, the criteria are less conservative by
applying this novel technique. A numerical example shows
that our results are effective and less conservative than the
other reports in previous literature.

In the following, D = [dij ]n×n denotes an n × n real
matrix. DT and ‖D‖ represent the transpose and norm
of matrix, where ‖ · ‖ is Euclidean norm. D > 0 (D <
0) denotes that D is a positive (negative) definite matrix.
D > 0 (D 6 0) denotes that D is a positive (negative)
semidefinite matrix. I denotes the identity matrix with
appropriate dimensions.

1 Systems Description and Preliminaries
Considering the following linear neutral system with

time-varying delays:

ẋxx(t) =Axxx(t) + Bxxx(t− d(t)) + Cẋxx(t− τ(t)), t > 0

xxx(t) =φφφ(t) ∀t ∈ [−max (dM , τM ), 0],
(1)

where xxx(·) = [x1(·) x2(·) · · · xn(·)]T is the state vector
of system, A, B, and C are constant matrices, and ‖C‖ < 1.
The initial condition φφφ(t) is a continuous and differentiable
vector-valued function of t ∈ [−max (dM , τM ), 0]. The
time-delays d(t) and τ(t) are two irrelevant differentiable
functions that satisfy

0 6 d(t) 6 dM , ḋ(t) 6 µ, (2)

and
0 6 τ(t) 6 τM , η1 6 τ̇(t) 6 η2 (3)
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where dM > 0 and τM > 0. For parameters η1 and η2 in
(3), only two cases are considered in this paper. There are
1) η1 6 η2 < 1 (slowly-varying delay, i.e., τ̇(t) < 1) and 2)
1 < η1 6 η2 (fast-varying delay, i.e., τ̇(t) > 1). Especially
for case 2), it is the first time to be discussed in the systems
with neutral-type time-varying delay.

The following lemmas will be used to prove the results
of this paper.

Lemma 1 (Jensen’s Inequality[24]). For any con-
stant matrix Ω > 0, vector function χχχ(t) with appropriate
dimensions, and function σ(t) ∈ R satisfies 0 < σ(t) 6 δ,
we have

[∫ t

t−σ(t)

χχχ(s)ds

]T

Ω

[∫ t

t−σ(t)

χχχ(s)ds

]

6σ(t)

∫ t

t−σ(t)

χχχT(s)Ωχχχ(s)ds.

Lemma 2. The following inequalities

{
∆ + βX1 < 0,

∆ + βX2 < 0,
(4)

are equivalent to the following condition

∆ + zX1 + (β − z)X2 < 0, (5)

where X1, X2, ∆ are constant matrices with appropriate
dimensions, variable z ∈ [0, β] ∈ R, and β > 0.

Proof: See Appendix A. ¤
Remark 1. Lemma 2 is proposed based on the idea of

convex combination[25]. Since the proof isn’t given in [25],
the detailed proof is provided in this paper. Some similar
results have been employed in literature [26]–[28].

2 Main Results
In this section, the new stability criteria can be proposed

to deal with linear neutral systems with time-varying delay.
An augmented Lyapunov-Krasovskii functional and PTVD
compensation technique will be used in proposed criteria.
Firstly, the case of slow-varying neutral-type delay will be
considered, i.e., η1 6 η2 < 1.

Theorem 1. The system (1) with time-varying delays
d(t) and τ(t) satisfying (2) and (3) is asymptotically stable,
for the given scalar parameters dM , µ, τM , and η1 6 η2 < 1,
if there exist some matrices

P = PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0,

Q1 = QT
1 > 0, Q2 = QT

2 > 0, R1 = RT
1 > 0, R2 = RT

2 > 0,

Y1 = Y T
1 > 0, Y2 = Y T

2 > 0, Z1 = ZT
1 > 0, Z2 = ZT

2 > 0,

S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0

such that the following matrix inequalities hold:

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1 − eT

3 Z2e3 < 0 (6)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1 − eT

4 Z2e4 < 0 (7)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2 − eT

3 Z2e3 < 0 (8)

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2 − eT

4 Z2e4 < 0 (9)

where Φ is shown at the bottom of this page,

Φ1 =P11A + ATP11 + Q1 + Q2 + R1 − Z1 − Z2 + η2S1

Φ2 =− (1− µ)Q1 − 2Z1

Φ3 =−Q2 − Z1

Φ4 =− (1− η2)R1 + (1− η1)R2 − 2Z2 + η2S2

Φ5 =−R2 − Z2 + η2S3

Φ6 =− (1− η2)Y1 + (1− η1)Y2 + η2P
T
12S

−1
1 P12

+ η2P22S
−1
2 P22 + η2P23S

−1
3 PT

23

Ā =
[

A B 0 0 0 C 0
]
,

e1 =
[

I −I 0 0 0 0 0
]
,

e2 =
[

0 I −I 0 0 0 0
]
,

e3 =
[

I 0 0 −I 0 0 0
]
,

e4 =
[

0 0 0 I −I 0 0
]
,

and ? denotes the symmetric terms in a symmetric matrix.
Proof. Construct the following Lyapunov-Krasovskii

functional:

V (xxx(t)) = V1(xxx(t)) + V2(xxx(t)) + V3(xxx(t)) + V4(xxx(t)), (10)

where

V1(xxx(t)) =δδδT(t)Pδδδ(t),

V2(xxx(t)) =

∫ t

t−d(t)

xxxT(s)Q1xxx(s)ds +

∫ t

t−dM

xxxT(s)Q2xxx(s)ds,

V3(xxx(t)) =

∫ t

t−τ(t)

(
xxxT(s)R1xxx(s) + ẋxxT(s)Y1ẋxx(s)

)
ds

+

∫ t−τ(t)

t−τM

(
xxxT(s)R2xxx(s) + ẋxxT(s)Y2ẋxx(s)

)
ds,

V4(xxx(t)) =dM

∫ 0

−dM

∫ t

t+θ

ẋxxT(s)Z1ẋxx(s)dsdθ

+ τM

∫ 0

−τM

∫ t

t+θ

ẋxxT(s)Z2ẋxx(s)dsdθ,

where δδδT(t) =
[
xxxT(t) xxxT(t− τ(t)) xxxT(t− τM )

]
, P =

PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0, Qk = QT

k > 0, Rk =

RT
k > 0, Yk = Y T

k > 0, Zk = ZT
k > 0, and k = 1, 2.

Φ =




Φ1 P11B + Z1 0 ATP12 + Z2 ATP13 P11C + P12 P13

? Φ2 Z1 BTP12 BTP13 0 0
? ? Φ3 0 0 0 0
? ? ? Φ4 Z2 PT

12C + P22 P23

? ? ? ? Φ5 PT
13C + PT

23 P33

? ? ? ? ? Φ6 0
? ? ? ? ? ? −Y2



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Calculating the time derivatives of Vi(xxx(t)) (i = 1, 2, 3, 4)
along the trajectories of system (1) yields

V̇1(xxx(t)) =2




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33




×



Axxx(t) + Bxxx(t− d(t)) + Cẋxx(t− τ(t))
(1− τ̇(t))ẋxx(t− τ(t))

ẋxx(t− τM )




(11)

V̇2(xxx(t)) 6xxxT(t)(Q1 + Q2)xxx(t)

− (1− µ)xxxT(t− d(t))Q1xxx(t− d(t))

− xxxT(t− dM )Q2xxx(t− dM ) (12)

V̇3(xxx(t)) 6xxxT(t)R1xxx(t)− xxxT(t− τM )R2xxx(t− τM )

− (1− η2)xxx
T(t− τ(t))R1xxx(t− τ(t))

+ (1− η1)xxx
T(t− τ(t))R2xxx(t− τ(t))

+ ẋxxT(t)Y1ẋxx(t)− ẋxxT(t− τM )Y2ẋxx(t− τM )

− (1− η2)ẋxx
T(t− τ(t))Y1ẋxx(t− τ(t))

+ (1− η1)ẋxx
T(t− τ(t))Y2ẋxx(t− τ(t)) (13)

V̇4(xxx(t)) =d2
MẋxxT(t)Z1ẋxx(t)− dM

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds

+ τ2
MẋxxT(t)Z2ẋxx(t)− τM

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds

(14)

For the terms with τ̇(t) in (11), by using some matrices
S1 = ST

1 > 0, S2 = ST
2 > 0, and S3 = ST

3 > 0, there is the
following inequality,

− 2τ̇(t)




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


P12

P22

P T
23


 ẋxx(t− τ(t))

6η2




xxx(t)
xxx(t− τ(t))
xxx(t− τM )




T 


S1 0 0
0 S2 0
0 0 S3







xxx(t)
xxx(t− τ(t))
xxx(t− τM )




+ η2ẋxx
T(t− τ(t))

(
PT

12S
−1
1 P12 + P22S

−1
2 P22

+P23S
−1
3 PT

23

)
ẋxx(t− τ(t)). (15)

To utilize the information that is ignored in previous
results, we apply two following polynomials,

ρ1 = d(t)

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds−τ(t)

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds,

(16)

ρ2 = τ(t)

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds−d(t)

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds,

(17)
where the polynomials ρ1 and ρ2 are named as PTVD com-
pensation terms. It is clear that ρ1 + ρ2 = 0. Then,
using PTVD compensation terms ρ1 and ρ2, Jensen’s
inequality[24], and Leibniz-Newton formula, V̇4(xxx(t)) can
be rewritten as follows

V̇4(xxx(t)) =V̇4(xxx(t)) + ρ1 + ρ2

=d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)

− d(t)

∫ t

t−d(t)

ẋxxT(s)Z1ẋxx(s)ds

− (dM − d(t))

∫ t

t−d(t)

ẋxxT(s)Z1ẋxx(s)ds

− (dM − d(t))

∫ t−d(t)

t−dM

ẋxxT(s)Z1ẋxx(s)ds

− d(t)

∫ t−d(t)

t−dM

ẋxxT(s)Z1ẋxx(s)ds

− τ(t)

∫ t

t−τ(t)

ẋxxT(s)Z2ẋxx(s)ds

− (τM − τ(t))

∫ t

t−τ(t)

ẋxxT(s)Z2ẋxx(s)ds

− (τM − τ(t))

∫ t−τ(t)

t−τM

ẋxxT(s)Z2ẋxx(s)ds

− τ(t)

∫ t−τ(t)

t−τM

ẋxxT(s)Z2ẋxx(s)ds

6d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)

−
[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1

[∫ t

t−d(t)

ẋxx(s)ds

]

−
[∫ t−d(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−d(t)

t−dM

ẋxx(s)ds

]

−
[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2

[∫ t

t−τ(t)

ẋxx(s)ds

]

−
[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]

− dM − d(t)

d(t)

[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1

×
[∫ t

t−d(t)

ẋxx(s)ds

]
− d(t)

dM − d(t)

×
[∫ t−d(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−d(t)

t−dM

ẋxx(s)ds

]

− τM − τ(t)

τ(t)

[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2

×
[∫ t

t−τ(t)

ẋxx(s)ds

]
− τ(t)

τM − τ(t)

×
[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]

6d2
MẋxxT(t)Z1ẋxx(t) + τ2

MẋxxT(t)Z2ẋxx(t)− ζζζT(t)Z0ζζζ(t)

− dM − d(t)

dM
ζζζT(t)eT

1 Z1e1ζζζ(t)

− d(t)

dM
ζζζT(t)eT

2 Z1e2ζζζ(t)

− τM − τ(t)

τM
ζζζT(t)eT

3 Z2e3ζζζ(t)

− τ(t)

τM
ζζζT(t)eT

4 Z2e4ζζζ(t) (18)
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where ζζζT(t) = [xxxT(t) xxxT(t − d(t)) xxxT(t − dM ) xxxT(t −
τ(t)) xxxT(t− τM ) ẋxxT(t− τ(t)) ẋxxT(t− τM )] and

Z0 =




Z1 + Z2 −Z1 0 −Z2 0 0 0
−Z1 2Z1 −Z1 0 0 0 0

0 −Z1 Z1 0 0 0 0
−Z2 0 0 2Z2 −Z2 0 0

0 0 0 −Z2 Z2 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0




.

Thus, according to (11)–(13), (15), and (18), V̇ (xxx(t)) can
be rewritten as follows

V̇ (xxx(t)) 6ζζζT(t)
[
Φ + ĀT(Y1 + d2

MZ1 + τ2
MZ2)Ā

− dM − d(t)

dM
eT
1 Z1e1 − d(t)

dM
eT
2 Z1e2

−τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4

]
ζζζ(t) (19)

Obviously, if matrix inequality Φ + ĀT(Y1 + d2
MZ1 +

τ2
MZ2)Ā− dM−d(t)

dM
eT
1 Z1e1− d(t)

dM
eT
2 Z1e2− τM−τ(t)

τM
eT
3 Z2e3−

τ(t)
τM

eT
4 Z2e4 < 0, it means that V̇ (xxx(t)) < 0. Based on

Lemma 2, it is equivalent to the following matrix inequali-
ties

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
1 Z1e1

−τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0, (20)

and

Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā− eT
2 Z1e2

−τM − τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0, (21)

when d(t) = 0 and d(t) = dM , respectively. Then, applying
Lemma 2 again, (20) and (21) are equivalent to (6)−(9),

i.e., Φ + ĀT(Y1 + d2
MZ1 + τ2

MZ2)Ā − dM−d(t)
dM

eT
1 Z1e1 −

d(t)
dM

eT
2 Z1e2 − τM−τ(t)

τM
eT
3 Z2e3 − τ(t)

τM
eT
4 Z2e4 < 0 is equiv-

alent to (6)–(9). Thus, if the (6)−(9) are satisfied, then

V̇ (xxx(t)) < 0, i.e., system (1) is asymptotically stable. ¤
Remark 2. In Theorem 1, there are two points which

are different from the previous results for linear neutral
systems with time-varying delay.

1. An augmented Lyapunov-Krasovskii functional V1 is
used to deal with stability problem of linear neutral
systems with time-varying delays. Meanwhile, the
functionals used in previous literature are listed as fol-
lows,

xxxT(t)Pxxx(t) = δδδT(t)




P 0 0
0 0 0
0 0 0


δδδ(t), (22)

(xxxT(t)− xxxT(t− τM )CT)P (xxx(t)− Cxxx(t− τM ))

=δδδT(t)




P 0 −PC
0 0 0

−CTP 0 CTPC


δδδ(t). (23)

Obviously, (22) and (23) are just the special cases of
functional V1. That is to say, compared with results
employed (22) and (23), the criterion used functional
V1 has larger solution set.

2. Theorem 1 does not only depend on delay d(t), but
also depends on neural-type delay τ(t). Since the
delay-dependent criteria are less conservative than
delay-independent ones, it also means that Theorem 1
is less conservative than the criteria independent of
neural-type delay. The numerical example in Section 3
can also verify this point.

Remark 3. When Jensen’s inequality is
used to deal with −dM

∫ t

t−dM
ẋxxT(s)Z1ẋxx(s)ds and

−τM

∫ t

t−τM
ẋxxT(s)Z2ẋxx(s)ds in (14), it can be dealt

with as follows,

− dM

∫ t

t−dM

ẋxxT(s)Z1ẋxx(s)ds− τM

∫ t

t−τM

ẋxxT(s)Z2ẋxx(s)ds

6−
[∫ t

t−d(t)

ẋxx(s)ds

]T

Z1

[∫ t

t−d(t)

ẋxx(s)ds

]

−
[∫ t−τ(t)

t−dM

ẋxx(s)ds

]T

Z1

[∫ t−τ(t)

t−dM

ẋxx(s)ds

]

−
[∫ t

t−τ(t)

ẋxx(s)ds

]T

Z2

[∫ t

t−τ(t)

ẋxx(s)ds

]

−
[∫ t−τ(t)

t−τM

ẋxx(s)ds

]T

Z2

[∫ t−τ(t)

t−τM

ẋxx(s)ds

]
. (24)

According to (18), it means that the terms

− d(t)

∫ t−d(t)

t−dM

ẋxxT(s)Z1ẋxx(s)ds,

− (dM − d(t))

∫ t

t−d(t)

ẋxxT(s)Z1ẋxx(s)ds,

− τ(t)

∫ t−τ(t)

t−τM

ẋxxT(s)Z2ẋxx(s)ds,

− (τM − τ(t))

∫ t

t−τ(t)

ẋxxT(s)Z2ẋxx(s)ds

can be ignored at the process of estimating the upper bound
of V̇ (xxx(t)) in the previous literature. Obviously, it leads to
the increase of conservativeness in stability results. In this
paper, we apply the novel PTVD compensation technique
shown as (18) to compensate these ignored terms. Thus, a
new stability criterion applied this method can be obtained.
Furthermore, since there are two irrelevant time-varying
delays d(t) and τ(t), PTVD compensation technique can be
used only for function d(t) or τ(t). Thus, on the premise of
reducing the load of calculation, the satisfactory stability
results can be derived.

In Theorem 1, the stability result does not only depend
on retarded-type delay but also depend on neutral-type de-
lay. Then, the only dependent on retarded-type delay sta-
bility criterion will be proposed. Especially, the case of
fast-varying neutral-type delay will be first considered in
following theorem.

Theorem 2. The system (1) with time-varying delays
d(t) and τ(t) satisfying (2) and (3) is asymptotically stable,
for the given scalar parameters dM , µ, and η1 6 η2 < 1 or
1 < η1 6 η2, if there exist some matrices

P = PT =




P11 P12 P13

PT
12 P22 P23

PT
13 PT

23 P33


 > 0,
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Table 1 Maximum allowable upper bound dM for different µ and τM = 0.1

Method µ = 0.7 µ = 0.8 µ = 0.9 Unknown µ

η1 = η2 = 0(τ(t) = τM ) [8] dM = 0.3890 dM = 0.2547 dM = 0.1253 –

[19] dM = 1.0071 dM = 0.9201 dM = 0.8347 dM = 0.7603

[22] dM = 1.0425 dM = 0.9515 dM = 0.8596 dM = 0.7652

[20] dM = 1.0628 dM = 0.9642 dM = 0.8642 dM = 0.7652

Theorem 2 dM = 1.1281 dM = 1.0941 dM = 1.0882 dM = 1.0882

Theorem 1 dM = 1.1642 dM = 1.1294 dM = 1.1210 dM = 1.1208

η1 = 0, η2 = 0.5 [22] dM = 0.9938 dM = 0.9083 dM = 0.8224 dM = 0.7345

Theorem 2 dM = 1.0448 dM = 1.0160 dM = 1.0093 dM = 1.0093

Theorem 1 dM = 1.1071 dM = 1.0755 dM = 1.0688 dM = 1.0688

η1 = 1.1, η2 = 2.0 Theorem 2 dM = 1.2170 dM = 1.1824 dM = 1.1774 dM = 1.1774

Q1 = QT
1 > 0, Q2 = QT

2 > 0, R1 = RT
1 > 0, R2 = RT

2 > 0,

Y1 = Y T
1 > 0, Y2 = Y T

2 > 0, Z1 = ZT
1 > 0,

S1 = ST
1 > 0, S2 = ST

2 > 0, S3 = ST
3 > 0

such that the following matrix inequalities hold:

Φ̄ + ĀT(Y1 + d2
MZ1)Ā− eT

1 Z1e1 < 0 (25)

Φ̄ + ĀT(Y1 + d2
MZ1)Ā− eT

2 Z1e2 < 0 (26)

where Φ̄ is shown at the bottom of this page,

Φ̄1 =P11A + ATP11 + Q1 + Q2 + R1 − Z1 + η2S1

Φ̄4 =− (1− η2)R1 + (1− η1)R2 + η2S2

and the other parameters are the same as those defined in
Theorem 1.

Proof. Construct the following Lyapunov-Krasovskii
functional:

V̄ (xxx(t)) = V1(xxx(t)) + V2(xxx(t)) + V3(xxx(t)) + V̄4(xxx(t)), (27)

where V1(xxx(t)), V2(xxx(t)), and V3(xxx(t)) are the same as the
definition in Theorem 1, and

V̄4(xxx(t)) = dM

∫ 0

−dM

∫ t

t+θ

ẋxxT(s)Z1ẋxx(s)dsdθ.

The process of proof is similar with Theorem 1. ¤
Remark 4. The systems with fast-varying neutral-type

delay (i.e., τ̇(t) > 1) can be first considered in Theorem 2,
which is achieved by using condition (3) and functional V3.
So far, there is no literature referred to this case.

Remark 5. For Theorems 1 and 2, only by setting Q1 =
0, the criteria independent of derivative of delay function
d(t) can be derived.

3 Numerical Example
In this section, an example will be given to verify the

proposed criteria.
Consider linear neutral system (1) with the following pa-

rameters, see [9],

A =

[ −0.9 0.2
0.1 −0.9

]
, B =

[ −1.1 −0.2
−0.1 −1.1

]
,

C =

[ −0.2 0
0.2 −0.1

]
,

delay functions d(t) and τ(t) satisfy the condition (2) and
(3).

Applying LMI Toolbox of MATLAB, we can solve the
maximum allowable upper bounds dM by setting τM , µ,
η1, and η2. Let τM = 0.1, the stability results between [8],
[19], [20], [22], and this paper will be obtained in Table 1
for different µ, η1, and η2, respectively. It is clear that the
stability results by using our method are less conservative.
When η1 6 η2 < 1, the upper bound dM obtained by using
Theorem 1 is larger than that by using Theorem 2. Mean-
while, Theorem 2 is more effective and suitable to deal
with linear systems with fast-varying neutral-type delay.
And since only two matrix inequalities need to be solved,
Theorem 2 is less load of calculation.

4 Conclusion
A class of linear neutral systems with time-varying

retarded-type delay and time-varying neutral-type delay
is investigated in this paper. Since a new Lyapunov-
Krasovskii functional and a novel PTVD compensation
technique are introduced, the less conservative stability cri-
terion is proposed. The gain used new functional is that the
stability of linear neutral systems with fast-varying neutral-
type delay (i.e., τ̇(t) > 1) can be obtained, which is the first

Φ̄ =




Φ̄1 P11B + Z1 0 ATP12 ATP13 P11C + P12 P13

? Φ2 Z1 BTP12 BTP13 0 0
? ? Φ3 0 0 0 0
? ? ? Φ̄4 0 PT

12C + P22 P23

? ? ? ? −R2 + η2S3 PT
13C + PT

23 P33

? ? ? ? ? Φ6 0
? ? ? ? ? ? −Y2



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time to be considered in stability criteria. And some useful
terms can be considered by using the PTVD compensa-
tion technique, which are usually ignored at the process
of estimating the upper bound of V̇ (xxx(t)). The numerical
example has proved that the proposed criteria are effective.

Appendix A
The Proof of Lemma 2

1). (5)⇒(4)
Since variable z satisfies the following condition at inter-

val [0, β]
∆ + zX1 + (β − z)X2 < 0.

Thus, when variable z = β and z = 0, two following
inequalities hold

∆ + βX1 < 0, ∆ + βX2 < 0.

2). (4)⇒(5)
Let matrices ∆1 and ∆2 satisfy the following conditions

∆1 = ∆ + βX1 < 0, ∆2 = ∆ + βX2 < 0.

We can get the following result

z∆1 + (β − z)∆2 < 0,

i.e.,
β(∆ + zX1 + (β − z)X2) < 0.

Since β > 0, the following inequality holds

∆ + zX1 + (β − z)X2 < 0.
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