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Adaptive Fuzzy Control for Unknown Nonlinear Systems
with Perturbed Dead-Zone Inputs

LI Ping1 YANG Guang-Hong1

Abstract Adaptive fuzzy control is used to control a class of unknown nonlinear systems with perturbed dead-zone inputs in
this paper. A new dead-zone actuator model which contains time-varying and perturbed actuation gain is proposed. The dead-zone
nonlinearity is treated as a linear-like term, a nonlinear term and a disturbance-like term, by which the robustness of the system
can be obtained by less control efforts. Backstepping technique is employed to get the adaptive fuzzy controller for the considered
unknown nonlinear system with triangular structure. Nonlinearly parameterized fuzzy logic systems are used to design the control
scheme which ensures the stability of the closed-loop system and satisfactory tracking of the output to the given reference signal. A
numerical example is included to show the effectiveness of the approach.

Key words Adaptive control, fuzzy systems, dead-zone, time-varying gain, perturbation, backstepping technique, nonlinear
systems.

Dead-zone nonlinearity is ubiquitous in many of practical
systems, for example, some mechanical and electrical com-
ponents like valves, DC servo motors and so on are all with
dead-zone inputs. The existence of such a non-differential
nonlinearity has caused much difficulty in control design
since the dead-zone parameters are unknown in most cases.
As it may cause severe deterioration of the system perfor-
mance and serious problem in high precision control, many
efforts have been made to deal with dead-zone nonlinearity
for various systems.

There are three main approaches to design control sys-
tems with dead-zone inputs. The first one is to construct
an inverse dead-zone nonlinearity to minimize the effects
of dead-zone; the second one is based on a group of fuzzy
rules which describe some rude knowledge of the dead-zone
characteristics; and the third one models the dead-zone as
a combination of a linear term and a disturbance-like term,
then robust control technique can be used to obtain the
required control performance. The first approach is intu-
itional for control design and will be effective if the dead-
zone parameters are all known. Though successful control
was obtained in [1] for linear systems and in [2] for some
nonlinear systems, it is assumed that the dead-zone pa-
rameters are constants. The approach based on fuzzy rules
was used to control some mechanical systems in [3] and [4].
However, it depends much on the experiences of operators
or experts, when no good rules can be acquired about the
dead-zone nonlinearity, this method will not be feasible.
The existing results using the third method[5−9] employed
the upper bound of the disturbance-like term to achieve ro-
bustness of the system. Though satisfactory performance
was obtained, such design is conservative to some extent.

The above mentioned results assumed that the sys-
tems under control are well-known, but in many practical
systems, the dynamics of the system are not completely
known. Since Wang[10] proved that adaptive fuzzy sys-
tems are universal approximators, many control strategies
have been proposed for unknown nonlinear systems based
on adaptive fuzzy approximation[11−15]. These results were
obtained with the restriction that the system is feedback
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linearizable. For systems without this restriction, the au-
thors of [16-18] employed backstepping technique to devel-
ope adaptive fuzzy tracking control for single-input-single-
output (SISO) systems[16,17] and multiple-input-multiple-

output (MIMO) systems[18], respectively. Though many
complicated nonlinear systems have been studied in the
existing works, so far there is no result on control of
non-feedback-linearizable unknown systems with perturbed
dead-zone inputs to the best of our knowledge.

This paper proses a control scheme for unknown non-
linear systems with dead-zone inputs. The considered sys-
tems are general as they are not required to be feedback
linearizable. more general for the matching conditions are
not required for the system functions and the nonlineari-
ties in the controlled plant are all unknown. Actually, ac-
tuators are not strictly linear even without dead-zone, but
may be perturbed or vary with time. We give a dead-zone
model which possesses time-varying and perturbed actua-
tion gain. The model is treated as a perturbed linear-like
input, a nonlinear function, and a bounded disturbance-like
term for control design. The width of the dead-zone is un-
known and estimated explicitly by an adaptive law, so the
control scheme has the ability to adapt the uncertainties of
the width caused by circumstance changes. The unknown
functions in the design are approximated by nonlinearly pa-
rameterized adaptive fuzzy system, backstepping technique
is employed to derive the controller. The proposed control
scheme can guarantee the stability of the closed-loop sys-
tem and satisfactory output tracking to the given reference
signal.

The rest of this paper is organized as follows. Section
II formulates the problem first. Section III introduces the
proposed adaptive fuzzy control scheme in detail. In Sec-
tion IV, a simulation example illustrates the effectiveness of
the control scheme. Finally, Section V concludes the paper.

1 Problem Formulation:

Consider the following nonlinear plant

ẋi = fi(x̄xxi) + gi(x̄xxi)xi+1 1 ≤ i ≤ n− 1
ẋn = fn(x̄xxn) + gn(x̄xxn)D(u)
y = x1

(1)

where x1, x2, · · · , xn are the states of the system which
are available, x̄xxi = (x1, · · · , xi)

T , and xxx = x̄xxn =
(x1, · · · , xn) ∈ U ⊆ Rn is the state vector, U is a com-
pact set in Rn. y is the system output, ui is the designed
control law, and D(u) is the output of the actuator with
dead-zone characteristic to the plant. The nonlinear func-
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tions fi(x̄xxi) ∈ R and gi(x̄xxi) ∈ R with i = 1, · · · , n are
unknown but smooth.

The dead-zone characteristic considered in this paper is
different from the existing literature because we have taken
time variation and perturbation into account. The model
of the dead-zone is described as follows,

D(u) =

8
<
:

(m(t) + φ(xxx))(u− b) u ≥ b
0 − b < u < b
(m(t) + φ(xxx))(u + b) u ≤ −b

(2)

where m(t) + φ(xxx) > 0 with m(t) being the time-varying
slope and φ(xxx) being the perturbed term, b > 0 is the un-
known width of the above dead-zone model. From a prac-
tical point of view, it is reasonable to make the following
assumptions:

Assumption 1. There exit constants m and m̄ satisfy
0 < m ≤ m(t) + φ(xxx) ≤ m̄.

Assumption 2. There exists a constant b̄ such that
b ≤ b̄.

Remark 1. Though m(t) + φ(xxx) and b are bounded by
some constant values, they are not required to be known
to the designer, but only used for analysis.

For the control design, we rewritten the dead-zone char-
acteristic as

D(u) = (m(t) + φ(xxx))u + η(xxx, u, b) (3)

with η (short for η(xxx, u, b)) defined as

η =

8
<
:

−(m(t) + φ(xxx))b u ≥ b
−(m(t) + φ(xxx))u − b < u < b
(m(t) + φ(xxx))b u ≤ b

(4)

We further treat η as the sum of a hyperbolic tangent func-
tion and a disturbance-like term which is bounded. That
is

η = −(m(t) + φ(xxx))btanh(
u

b
) + ψ(xxx) (5)

where ψ(xxx) satisfies

|ψ(xxx)| = |η + [m(t) + φ(xxx)]btanh(u
b
)|

≤ [m(t) + φ(xxx)]b[1− tanh(1)]
(6)

Then from Assumptions 1-2, it is obvious that ψ(xxx) is
bounded.

The control objective is to design a feedback control law
for u to ensure that all closed-loop signals are bounded and
the plant output y(t) tracks a given reference signal yr(t) as
closely as possible though the nonlinearities of the system
are unknown and the actuator are with the time-varying
perturbed dead-zone characteristic described by (2).

2 Adaptive Fuzzy Control Design

2.1 Preliminaries

In this section, a new adaptive fuzzy control for system
(1) will be presented in detail. Because fuzzy logic systems
with adjustable parameters are used to approximate the
unknown system functions, we first show the approximation
property of adaptive fuzzy system in the following lemma:

Lemma 1.[10] For any given real continuous function
F (xxx), on a compact set Ω ⊆ Rn, there exists a fuzzy logic

system Y (xxx) = θθθTξξξ(xxx) such that ∀ε > 0,

sup
xxx∈Ω

˛̨
˛F (xxx)− θθθTξξξ(xxx)

˛̨
˛ ≤ ε (7)

where θθθ = (θ1, θ2, · · · , θM )T is the vector of connection
weights, and ξξξ(xxx) = (ξ1(x), ξ2(x), · · · , ξM (x))T is the vector
of fuzzy basis functions, M is the number of fuzzy rules.
One can refer [11] for more details.

In most existing designs, the fuzzy basis functions are
assumed to be known, this implies that all the fuzzy mem-
bership functions are certain for the described fuzzy sets.
However, in many cases the fuzzy membership functions
are uncertain because there is no apriori knowledge avail-
able for them. In such situation, the membership function
of the fuzzy set Aji for xi in the jth rule can be defined by

µAji(xi) = e−[σji(xi−cji)]
2

with σji and cji unknown to the designer. This is the case
considered in our design. We choose the fuzzy basis func-
tion for j rule as

ξj(x̄xxk, cccj ,σσσj) =

kY
i=1

µAji(xi) (8)

where cccj = (cj1, cj2, · · · , cjk)T , σσσj = (σj1, σj2, · · · , σjk)T

with 1 ≤ k ≤ n. Denote ccci
j and σσσi

j are the corresponding

vectors of cccj and σσσj in the ith step design, and θi
j is the

connection weight of the jth rule in step i. Supposes there
are Mi rules in the ith step design, define parameter vec-

tors θθθi = (θi
1, θ

i
2, · · · θi

Mi
)T , ccci = (ccci

1
T
, ccci

2
T
, · · · , ccci

Mi

T
)T and

σσσi = (σσσi
1

T
,σσσi

2
T
, · · · ,σσσi

Mi

T
)T , where i = 1, 2, · · · , n corre-

sponding to n step backstepping design respectively. θθθi∗,
ccci∗ and σσσi∗ denote the optimal parameters which minimize
the following expression.

sup
xxx∈U

˛̨
˛F i(xxx)− θθθiT

ξξξ(xxx,ccci,σσσi)
˛̨
˛

It is obvious that fuzzy logic systems constructed by the
fuzzy basis functions in the form of (8) are not linearly pa-
rameterized, which brings challenges to the control design.

Besides, the following lemmas and assumptions are
needed for the design of the proposed controller.

Lemma 2.[18] Let P (x1, x2, · · · , xn) be a real-value con-
tinuous function and satisfy 0 < am ≤ P (x1, x2, · · · , xn) ≤
aM with am and aM being two constants. Define functions
V (t) as follows:

V (t) =
R z(t)

0
ρP (x1, x2, · · · , xk−1, ρ

+ β(t), xk+1, · · · , xn)dρ

where z(t) and β(t) are real-value functions with t ∈ [0,∞).
Then the integral function V (t) has the following proper-
ties.

1)
1

2
amz2(t) ≤ V (t) ≤ 1

2
aMz2(t)

2)

d
dt

V (t) = z(t)P (x1, x2, · · · , xk−1, z(t) + β(t), xk+1, · · · ,

xn)ż(t) + β̇(t)z(t)P (x1, x2, · · · , xk−1,

z(t) + β(t), xk+1, · · · , xn) + z2(t)
R 1

0
[θ

nP
i=1,i6=k

ẋi(t)
∂

∂xi
P (x1, x2, · · · , xk−1, z(t) + β(t), xk+1,

· · · , xn)]dθ − z(t)β̇(t)
R 1

0
P (x1, x2, · · · , xk−1,

θz(t) + β(t), xk+1, · · · , xn)dθ

The proof of Lemma 2 can be found in [18].
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Lemma 3. For any ε > 0 and any q ∈ R, the hyperbolic
tangent function fulfills

0 ≤ |q| − qtanh(
q

ε
) ≤ κε

where κ is a constant that satisfies κ = e−(κ+1) (i.e.κ ≈
0.2785).

The proof of Lemma 3 is omitted for space limitations.
Assumption 3. For system functions gi(x̄xxi) (1 ≤ i ≤

n), there exist positive constants gl and gusuch that gil ≤
|gi(x̄xxi)| ≤ giu.

From Assumption 3 it can be concluded that the un-
known functions gi(x̄xxi) are not zero. Without loss of gen-
erality, it is assumed that gi(x̄xxi) > 0.

Assumption 4. There exist constants θ̄i, c̄i and σ̄i that
‖θθθi‖∞ ≤ θ̄i, ‖ccci‖∞ ≤ c̄i and ‖σσσi‖∞ ≤ σ̄i for i = 1, 2, · · · , n,
where ‖ · ‖∞ denotes the infinite-norm of a vector.

2.2 Control Design

1)Step 1. Define z1 = x1 − yr, then

ż1 = f1(x̄1) + g1(x̄1)x2 − ẏr (9)

Consider a Lyapunov function candidate as

V1 =
R z1
0

ρP1(ρ + yr)dρ + 1
2
θ̃θθ

1T
Γ−1

θ1 θ̃θθ
1

+ 1
2
c̃cc1T Γ−1

c1
c̃cc1+

1
2
σ̃σσ1T Γ−1

σ1 σ̃σσ1 + 1
2γ1

δ̃2
1

(10)

where P1(ρ + yr) = g−1
1 (ρ + yr), Γθ1 , Γc1 and Γσ1 are

positive definite matrices with proper dimensions, γ1 is a

positive constant, θ̃θθ
1

= θ̂θθ
1 − θθθ1∗, c̃cc1 = ĉcc1 − ccc1∗ and σ̃σσ1 =

σ̂σσ1 − σσσ1∗ with θ̂θθ
1
, ĉcc1 and σ̂σσ1 are the estimates of θθθ1∗, ccc1∗

and σσσ1∗, respectively; δ̃1 = δ̂1− δ∗1 with δ∗1 defined later, δ̂1

is the estimate of δ∗1 .
From Lemma 2 the derivative of V1 is

V̇1 = z1g
−1
1 ż1 + ẏrz1g

−1
1 − z1ẏr

R 1

0
P1(ϑz1 + yr)dϑ

+ θ̃θθ
1T

Γ−1
θ1

˙̂
θθθ1 + c̃cc1T Γ−1

c1
˙̂ccc1 + σ̃σσ1T Γ−1

σ1
˙̂σσσ1 + 1

γ1
δ̃1

˙̂
δ1

= z1(x2 + ∆f1) + θ̃θθ
1T

Γ−1
θ1

˙̂
θθθ1 + c̃cc1T Γ−1

c1
˙̂ccc1

+ σ̃σσ1T Γ−1
σ1

˙̂σσσ1 + 1
γ1

δ̃1
˙̂
δ1

(11)

where ∆f1 = g−1
1 (x1)f1(x1) − ẏr

R 1

0
P1(ϑz1 + yr)dϑ. Ac-

cording to Lemma 1, for a given ε1 there exists a fuzzy
logic system θθθ1∗T ξ(x1, ccc

1∗,σσσ1∗) such that

∆f1 = θθθ1∗Tξξξ(x1, ccc
1∗,σσσ1∗) + ε1(x1, ccc

1∗,σσσ1∗)

= θ̂θθ
1T

ξ̂ξξ
1 − (θ̂θθ

1T
ξ̂ξξ
1 − θθθ1∗Tξξξ1∗) + ε1(x1, ccc

1∗,σσσ1∗)
(12)

with ε1(x1, ccc
1∗,σσσ1∗) being the approximation error and

|ε1(x1, ccc
1∗,σσσ1∗)| ≤ ε1, ξ̂ξξ

1
= ξξξ(x1, ĉcc

1, σ̂σσ1) and ξξξ1∗ =
ξξξ(x1, ccc

1∗,σσσ1∗).

Define that δ∗1 = ε1 + ‖θ1∗‖1, ξ̂′c1 = ∂ξξξ(x1,ccc1,σσσ1)

∂ccc1
| (ccc1 =

ĉcc1,σσσ1 = σ̂σσ1) and ξ̂′σ1 = ∂ξξξ(x1,ccc1,σσσ1)

∂σσσ1 | (ccc1 = ĉcc1,σσσ1 = σ̂σσ1).

Then by Taylor series expansion of ξξξ1∗ at (ĉcc1, σ̂σσ1), one has

θ̂θθ
1T

ξ̂ξξ
1 − θθθ1∗Tξξξ1∗

= θ̃θθ
1T

ξ̂ξξ
1

+ θθθ1∗T ξ̂′c1c̃cc
1 + θθθ1∗T ξ̂′σ1σ̃σσ

1 − θθθ1∗T o(x1, c̃cc
1, σ̃σσ1)

= θ̃θθ
1T

ξ̂ξξ
1

+ θ̂θθ
1T

ξ̂′ccc1c̃cc
1 + θ̂θθ

1T
ξ̂′σ1σ̃σσ

1 − θ̃θθ
1T

ξ̂′c1c̃cc
1 − θ̃θθ

1T
ξ̂′σ1σ̃σσ

1

− θθθ1∗T o(·)

= θ̃θθ
1T

(ξ̂ξξ
1 − ξ̂′c1ĉcc

1 − ξ̂′σ1σ̂σσ
1) + θ̂θθ

1T
ξ̂′c1c̃cc

1 + θ̂θθ
1T

ξ̂′σ1σ̃σσ
1

+ θ̃θθ
1T

(ξ̂′c1ccc
1∗ + ξ̂′σ1σσσ

1∗)− θθθ1∗T o(·)
= θ̃θθ

1T
(ξ̂ξξ

1 − ξ̂′c1ĉcc
1 − ξ̂′σ1σ̂σσ

1) + θ̂θθ
1T

ξ̂′c1c̃cc
1 + θ̂θθ

1T
ξ̂′σ1σ̃σσ

1 + θ̂θθ
1T

ξ̂′c1ccc
1∗ − θθθ1∗T ξ̂′c1ĉcc

1 + θθθ1∗T ξ̂′c1c̃cc
1 + θ̂θθ

1T
ξ̂′σ1σσσ

1∗ − θθθ1∗T

ξ̂′σ1σ̂σσ
1 + θθθ1∗T ξ̂′σ1σ̃σσ

1 + θθθ1∗T (ξ̂ξξ
1 − ξξξ1∗ − ξ̂′c1c̃cc

1 − ξ̂′σ1σ̃σσ
1)

= θ̃θθ
1T

(ξ̂ξξ
1 − ξ̂′c1ĉcc

1 − ξ̂′σ1σ̂σσ
1) + θ̂θθ

1T
ξ̂′c1c̃cc

1 + θ̂θθ
1T

ξ̂′σ1σ̃σσ
1

+ θ̂θθ
1T

(ξ̂′c1ccc
1∗ + ξ̂′σ1σσσ

1∗)− θθθ1∗T (ξ̂′c1ĉcc
1 + ξ̂′σ1σ̂σσ

1)

+ θθθ1∗T (ξ̂ξξ
1 − ξξξ1∗)

≤ θ̃θθ
1T

(ξ̂ξξ
1 − ξ̂′c1ĉcc

1 − ξ̂′σ1σ̂σσ
1) + θ̂θθ

1T
ξ̂′c1c̃cc

1 + θ̂θθ
1T

ξ̂′σ1σ̃σσ
1 + ‖θ̂θθ1T

ξ̂′c1‖1c̄cc1 + ‖θ̂θθ1T
ξ̂′σ1‖1σ̄1 + ‖ξ̂′c1ĉcc1 + ξ̂′σ1σ̂σσ

1‖1θ̄1 + ‖θθθ1∗‖1
(13)

where o(·) = o(x1, c̃cc
1, σ̃σσ1), and ‖ξ̂ξξ1 − ξξξ1∗‖∞ < 1 is used.

According to (13), (11) can be rewritten as

V̇1 = z1[x2 + θ̂θθ
1T

ξ̂ξξ
1

+ ε1(x1, ccc
1∗,σσσ1∗)− θ̃θθ

1T
(ξ̂ξξ

1 − ξ̂′c1ĉcc
1

− ξ̂′σ1σ̂σσ1)− θ̂θθ
1T

(ξ̂′c1c̃cc
1 + ξ̂′σ1σ̃σσ

1)− θ̃θθ
1T

(ξ̂′c1ccc
1∗ + ξ̂′σ1

σσσ1∗) + θθθ1∗T o(x1, c̃cc
1, σ̃σσ1)] + θ̃θθ

1T
Γ−1

θ1
˙̂
θθθ1 + c̃cc1T Γ−1

c1
˙̂ccc1

+ σ̃σσ1T Γ−1
σ1

˙̂σσσ1 + 1
γ1

δ̃1
˙̂
δ1

≤ z1[x2 + θ̂θθ
1T

ξ̂ξξ
1 − θ̃θθ

1T
(ξ̂ξξ

1 − ξ̂′c1ĉcc
1 − ξ̂′σ1σ̂σσ

1)

− θ̂θθ
1T

(ξ̂′c1c̃cc
1 + ξ̂′σ1σ̃σσ

1)] + |z1ω1|+ |z1δ
∗
1 |+ θ̃θθ

1T
Γ−1

θ1
˙̂
θθθ1

+ c̃cc1T Γ−1
c1

˙̂ccc1 + σ̃σσ1T Γ−1
σ1

˙̂σσσ1 + 1
γ1

δ̃1
˙̂
δ1

(14)

where ω1 = ‖θ̂θθ1T
ξ̂′c1‖1c̄1+‖θ̂θθ1T

ξ̂′σ1‖1σ̄1+‖ξ̂′c1ĉcc1+ξ̂′σ1σ̂σσ
1‖1θ̄1.

Choose the virtue control variable α1 as

α1 = −q1z1 − θ̂θθ
1T

ξ̂ξξ
1 − ω1tanh(

z1ω1

π1
)− δ̂1tanh

z1δ̂1

τ1
(15)

where q1, π1 and τ1 are positive constants.

˙̂
θθθ1 = Proj[Γθ1z1(ξ̂ξξ

1 − ξ̂′c1ĉcc
1 − ξ̂′σ1σ̂σσ

1)−Rθ1θ̂θθ
1
]

˙̂ccc1 = Proj[Γc1z1ξ̂
′T
c1 θ̂θθ

1 −Rc1ĉcc
1]

˙̂σσσ1 = Proj[Γσ1z1ξ̂
′T
σ1θ̂θθ

1 −Rσ1σ̂σσ1]
˙̂
δ1 = γ1z1 − r1δ̂1

(16)

where Rθ1 , Rc1 and Rσ1 are positive definite matrices with
proper dimensions, r1 is a positive real constant. Proj[·] is

the projection operator to ensure that ‖θθθi‖∞ ≤ θ̄i, ‖ccci‖∞ ≤
c̄i and ‖σσσi‖∞ ≤ σ̄i for 1 ≤ i ≤ n. Let z2 = x2 − z1, the
following inequalities can be obtained.

V̇1 ≤ −q1z
2
1 + z1z2 + |z1δ̂1| − z1δ̂1tanh( z1δ1

τ1
) + |z1ω1|

− z1ω1tanh( z1ω1
π1

)− 1
2
θ̃θθ

1T
Γ−1

θ1 Rθ1θ̃θθ
1

+ 1
2
θθθ1∗T Γ−1

θ1

Rθ1θ̃θθ
1∗ − 1

2
c̃cc1T Γ−1

c1
Rc1c̃cc

1 + 1
2
ccc1∗T Γ−1

c1
Rc1ccc

1∗ − 1
2
σ̃σσ1T

Γ−1
σ1 Rσ1σ̃σσ1 + 1

2
σσσ1∗T Γ−1

σ1 Rσ1σσσ1∗ − 1
2γ1

δ̃2
1 + 1

2γ1
δ∗21

≤ −q1z
2
1 −

λmin
θ1
2

θ̃θθ
1T

Γ−1
θ1 θ̃θθ

1 − λmin
c1
2

c̃cc1T Γ−1
c1

c̃cc1

− λmin
σ1
2

σ̃σσ1T Γ−1
σ1 σ̃σσ1 − 1

2γ1
δ̃2
1 + z1z2 + κ(π1 + τ1)

+ 1
2
θθθ1∗T Γ−1

θ1 Rθ1θ̃θθ
1∗

+ 1
2
ccc1∗T Γ−1

c1
Rc1ccc

1∗

+ 1
2
σσσ1∗T Γ−1

σ1 Rσ1σσσ1∗ + 1
2γ1

δ∗21

(17)

where Lemma 3 has been used, λmin
θ1 , λmin

c1 and λmin
σ1 are

the minimal eigenvalues of Rθ1 , Rc1 and Rσ1 , respectively.
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2)Step 2.

ż2 = f2(x̄xx2) + g2(x̄xx2)x3 − α̇1 (18)

Then take a Lyapunov function candidate as

V2 = V1 +
R z2
0

ρP2(x1, ρ + α1)dρ + 1
2
θ̃θθ

2T
Γ−1

θ2 θ̃θθ
2
+

1
2
c̃cc2T Γ−1

c2
c̃cc2 + 1

2
σ̃σσ2T Γ−1

σ2 σ̃σσ2 + 1
2γ2

δ̃2
2

(19)

with P2(x1, ρ+α1) = g−1
2 (x1, ρ+α1), Γθ2 , Γc2 and Γσ2 are

positive definite matrices with proper dimensions, γ2 is a

positive constant, θ̃θθ
2

= θ̂θθ
2−θθθ2∗, c̃cc2 = ĉcc2−ccc2∗, σ̃σσ2 = σ̂σσ2−σσσ2∗

and δ̃2 = δ̂2 − δ∗2 respectively.

V̇2 = V̇1 + z2g
−1
2 ż2 + α̇1z2g

−1
2 − z2α̇1

R 1

0
P2(ϑz2 + α1)dϑ

+ z2
2 ẋ1

R 1

0
ϑ ∂P2(ϑz2+α1)

∂x1
dϑ + θθθ2T Γ−1

θ2
˙̂
θθθ2 + c̃cc2T Γ−1

c2
˙̂ccc2

+ σ̃σσ2T Γ−1
σ2

˙̂σσσ2 + 1
γ2

δ̃2
˙̂
δ2

= V̇1 + z2(x3 + ∆f2) + θ̃θθ
2T

Γ−1
θ2

˙̂
θθθ2 + c̃cc2T Γ−1

c2
˙̂ccc2

+ σ̃σσ2T Γ−1
σ2

˙̂σσσ2 + 1
γ2

δ̃2
˙̂
δ2

(20)

where ∆f2 = g−1
2 (x̄xx2)f2(x̄xx2) − α̇1

R 1

0
P2(ϑz2 + α1)dϑ +

z2ẋ1

R 1

0
ϑ ∂P2(ϑz2+α1)

∂x1
dϑ. As in step 1, ∆f2 is approximated

by a fuzzy logic system, and following similar manipulation
as (13), one can get

θ̂θθ
2T

ξ̂ξξ
2 − θθθ2∗Tξξξ2∗

≤ θ̃θθ
2T

(ξ̂ξξ
2 − ξ̂′c2ĉcc

2 − ξ̂′σ2σ̂σσ
2) + θ̂θθ

2T
ξ̂′c2c̃cc

2 + θ̂θθ
2T

ξ̂′σ2σ̃σσ
2 + ‖θ̂θθ2T

ξ̂′c2‖1c̄2 + ‖θ̂θθ2T
ξ̂′σ2‖1σ̄2 + ‖ξ̂′c2ĉcc2 + ξ̂′σ2σ̂σσ

2‖1θ̄2 + ‖θθθ2∗‖1
(21)

δ∗2 , ξ̂′c2 , ξ̂′σ2 and ω2 are defined similarly to δ∗1 , ξ̂′c1 , ξ̂′σ1 and
ω1 respectively, with subscript 2 instead of 1. Design

α2 = −q2z2 − z1 − θ̂θθ
2T

ξ̂ξξ
2 − ω2tanh(

z2ω2

π2
)− δ̂2tanh

z2δ̂2

τ2

(22)

˙̂
θθθ2 = Proj[Γθ2z2(ξ̂ξξ

2 − ξ̂′c2ĉcc
2 − ξ̂′σ2σ̂σσ

2)−Rθ2θ̂θθ
2
]

˙̂ccc2 = Proj[Γc2z2ξ̂
′T
c2 θ̂θθ

2 −Rc2ĉcc
2]

˙̂σσσ2 = Proj[Γσ2z2ξ̂
′T
σ2θ̂θθ

2 −Rσ2σ̂σσ2]
˙̂
δ2 = γ2z2 − r2δ̂2

(23)

Then (20) can be rewritten as

V̇2 ≤
2P

j=1

[−qjz
2
j −

λmin
θj

2
θ̃θθ

jT
Γ−1

θj θ̃θθ
j − λmin

cj

2
c̃ccjT Γ−1

cj c̃ccj

− λmin
σj

2
σ̃σσjT Γ−1

σj σ̃σσj − 1
2γj

δ̃2
j + κ(πj + τj)

+ 1
2
θθθj∗T Γ−1

θj Rθj θ̃θθ
j∗

+ 1
2
cccj∗T Γ−1

cj Rcjcccj∗

+ 1
2
σσσj∗T Γ−1

σj Rσjσσσj∗ + 1
2γj

δ∗2j ] + z2z3

(24)

3)Step i. (3≤ i≤ n-1) Let zi = xi − αi−1, and design

αi = −qizi − zi−1 − θ̂θθ
iT

ξ̂ξξ
i − ωitanh

ziωi

πi
− δ̂itanh

ziδ̂i

τi

(25)

˙̂
θθθi = Proj[Γθizi(ξ̂ξξ

i − ξ̂′ciĉcc
i − ξ̂′σiσ̂σσ

i)−Rθiθ̂θθ
i
]

˙̂ccci = Proj[Γciziξ̂
′T
ci θ̂θθ

i −Rciĉcci]
˙̂σσσi = Proj[Γσiziξ̂

′T
σi θ̂θθ

i −Rσiσ̂σσi]
˙̂
δi = γizi − riδ̂i

(26)

Then the Lyapunov function

Vi = Vi−1 +
R zi

0
ρPi(x̄xxi−1, ρ + αi−1)dρ + 1

2
θ̃θθ

iT
Γ−1

θi θ̃θθ
i
+

1
2
c̃cciT Γ−1

ci c̃cci + 1
2
σ̃σσiT Γ−1

σi σ̃σσi + 1
2γi

δ̃2
i

(27)

satisfies the following inequality when taking its derivative

V̇i ≤
iP

j=1

[−qjz
2
j −

λmin
θj

2
θ̃θθ

jT
Γ−1

θj θ̃θθ
j − λmin

cj

2
c̃ccjT Γ−1

cj c̃ccj−
λmin

σj

2
σ̃σσjT Γ−1

σj σ̃σσj − 1
2γj

δ̃2
j + κ(πj + τj)+

1
2
θθθj∗T Γ−1

θj Rθj θ̃θθ
j∗

+ 1
2
cccj∗T Γ−1

cj Rcjcccj∗+
1
2
σσσj∗T Γ−1

σj Rσjσσσj∗ + 1
2γj

δ∗2j ] + zizi+1

(28)

4)Step n. Let zn = xn − αn−1, żn can be written as

żn = fn(xxx) + gn(xxx)[m(t) + φ(xxx)]u− gn(xxx)[m(t) + φ(xxx)]

btanh(u
b
) + gn(xxx)[m(t) + φ(xxx)] ψ(xxx)

m(t)+φ(xxx)
− α̇n−1

(29)

Choose Pn(m,x̄xxn−1, ρ + αn−1) = g−1
n (x̄xxn−1, ρ +

αn−1)[m(t) + φ(x̄xxn−1, ρ + αn−1)]
−1 and the Lyapunov

function candidate

Vn = Vn−1 +
R zn

0
ρPn(m,x̄xxn−1, ρ + αn−1)dρ + 1

2
θ̃θθ

nT
Γ−1

θn

θ̃θθ
n

+ 1
2
c̃ccnT Γ−1

cn c̃ccn + 1
2
σ̃σσnT Γ−1

σnσ̃σσn + 1
2γn

δ̃2
n + 1

2γb
b̃2

(30)

where Γθn , Γcn and Γσn are positive definite matrices, γn

and γb are positive constants. b̃ = b̂− b with b̂ the estimate
of b. Define

∆fn = g−1
n (xxx)[m(t) + φ(xxx)]−1fn(xxx)− α̇n−1

R 1

0
Pn(ϑzn

+ αn−1)dϑ + zn

n−1P
j=1

ẋj

R 1

0
ϑ

∂Pn(ϑzn+αn−1)

∂xj
dϑ

+ znṁ
R 1

0
ϑ

∂Pn(ϑzn+αn−1)

∂m
dϑ + btanh(u/b)

Then we can get

V̇n = V̇n−1 + zn[u + ∆fn + ψ(xxx)
m(t)+φ(xxx)

] + θ̃θθ
nT

Γ−1
θn

˙̂
θθθn

+ c̃ccnT Γ−1
cn

˙̂cccn + σ̃σσnT Γ−1
σn

˙̂σσσn + 1
γn

δ̃n
˙̂
δn + 1

γb
b̃
˙̂
b

≤ V̇n−1 + zn{u + ∆fn + sgn(zn)b[1− tanh(1)]}
+ θ̃θθ

nT
Γ−1

θn
˙̂
θθθn + c̃ccnT Γ−1

cn
˙̂cccn + σ̃σσnT Γ−1

σn
˙̂σσσn

+ 1
γn

δ̃n
˙̂
δn + 1

γb
b̃
˙̂
b

(31)

where the boundary of ψ(xxx) described in (6) has been used.
By choosing control signal

u = −qnzn − zn−1 − θ̂θθ
nT

ξ̂ξξ
n − ωntanh znωn

πn
− δ̂ntanh znδ̂n

τn

− sgn(zn)b̂[1− tanh(1)]
(32)

with qn, πn and τn being some positive constants, δ̂n is

the estimate of δ∗n = εn + ‖θθθn∗‖1, ωn = ‖θ̂θθnT
ξ̂′cn‖1c̄n +
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‖θ̂θθnT
ξ̂′σn‖1σ̄n + ‖ξ̂′cnĉccn + ξ̂′σnσ̂σσn‖1θ̄n, and the adaptive laws

are

˙̂
θθθn = Proj[Γθnzn(ξ̂ξξ

n − ξ̂′cnĉccn − ξ̂′σnσ̂σσn)−Rθnθ̂θθ
n
]

˙̂cccn = Proj[Γcnznξ̂′Tcnθ̂θθ
n −Rcnĉccn]

˙̂σσσn = Proj[Γσnznξ̂′Tσnθ̂θθ
n −Rσnσ̂σσn]

˙̂
δn = γnzn − rnδ̂n

˙̂
b = γb[1− tanh(1)]|zn| − rbb̂

(33)

with Rθn , Rcn and Rσn being positive matrices with proper
dimensions, rn and rb are positive constants, and taking
(28) into account with i = n− 1, (31) can be rewritten as

V̇n ≤
nP

j=1

(−qjz
2
j −

λmin
θj

2
θ̃θθ

jT
Γ−1

θj θ̃θθ
j − λmin

cj

2
c̃ccjT Γ−1

cj c̃ccj

− λmin
σj

2
σ̃σσjT Γ−1

σj σ̃σσj − 1
2γj

δ̃2
j − 1

2γb
b̃2) +

nP
j=1

[κ(πj

+ τj) + 1
2
θθθj∗T Γ−1

θj Rθj θ̃θθ
j∗

+ 1
2
cccj∗T Γ−1

cj Rcjcccj∗

+ 1
2
σσσj∗T Γ−1

σj Rσjσσσj∗ + 1
2γj

δ∗2j + 1
2γb

b2]

(34)

with λmin
θj , λmin

cj and λmin
σj being the minimal eigenvalues

of Rθj , Rcj and Rσj , 1 ≤ j ≤ n, respectively. Then it is
ready to give the main result next.

2.3 Main Result

The main result is summarized in the following theorem.
Theorem 1. Consider the unknown nonlinear system

(1) which satisfies Assumptions 1-3, the designed control
law (32) and the adaptive laws (33), together with the in-
termediate variables (15), (22), (25) and the parameter up-
dating laws (16), (23), (26) in the design steps can ensure
all signals in the closed-loop system remain bounded. Fur-
thermore, for any given value ε0 > 0, the tracking error z1

meets lim
t→∞

‖ z1 ‖2≤ ε20

Proof. Let g
i

= gil and ḡi = giu for 1 ≤ i ≤ n − 1,

g
n

= mgnl and ḡn = m̄gnu, then from Assumption 1 and

Assumption 3, one can get ḡ−1
i ≤ g−1

i (x̄xxi) ≤ g
i

−1 for 1 ≤
i ≤ n−1 and ḡ−1

n ≤ g−1
n (xxx)(m(t)+φ(xxx))−1 ≤ g

n

−1. Then,

from Lemma 2 it follows

− 1

2g
i

z2
i ≤ −

Z zi

0

ρPi(x̄xxi−1, ρ + αi−1)dρ 1 ≤ i ≤ n (35)

It can be concluded from (34) and (35) that

V̇n ≤
nP

j=1

[−2g
j
qj

R zj

0
ρPj(x̄xxj−1, ρ + αj−1)dρ− λmin

θj

2
θ̃θθ

jT

Γ−1
θj θ̃θθ

j − λmin
cj

2
c̃ccjT Γ−1

cj c̃ccj − λmin
σj

2
σ̃σσjT Γ−1

σj σ̃σσj − 1
2γj

δ̃2
j

− 1
2γb

b̃2] +
nP

j=1

[κ(πj + τj) + 1
2
θθθj∗T Γ−1

θj Rθj θ̃θθ
j∗

+ 1
2
cccj∗T Γ−1

cj Rcjcccj∗ + 1
2
σσσj∗T Γ−1

σj Rσjσσσj∗

+ 1
2γj

δ∗2j + 1
2γb

b2]

≤ −µVn + β
(36)

where µ = min{2g
j
qj , λmin

θj , λmin
cj , λmin

σj } and β =
Pn

j=1[κ(πj + τj) + 1
2
θθθj∗T Γ−1

θj Rθj θ̃θθ
j∗

+ 1
2
cccj∗T Γ−1

cj Rcjcccj∗ +
1
2
σσσj∗T Γ−1

σj Rσjσσσj∗ + 1
2γj

δ∗2j + 1
2γb

b2]. Then for t > 0

Vn ≤ [Vn(0)− β

µ
e−µt] +

β

µ
(37)

From Assumption 2, b is a nonnegative bounded constant,
besides, πj , τj , Γ−1

θj Rθj , Γ−1
cj Rcj , Γ−1

σj Rσj , γj and γb are all
determined by the designer, so β is bounded and can be
designed as small as possible to obtain the desired tracking

performance. It can be seen from (37) that zi, θ̃θθ
i
, c̃cci, σ̃σσi, δ̃i

and b̃ are bounded by the set Ωs = {(zi, θ̃θθ
i
, c̃cci, σ̃σσi, δ̃i, b̃)|Vn ≤

max(Vn(0), β
µ
)}. Thus it can be deduced that xi θ̂θθ

i
, ĉcci, σ̂σσi,

δ̂i and b̂ remain bounded for bounded Vn(0).
Note that µ and β can be tuned by choosing different

design parameters, then one can always select appropri-
ate parameters such that for any ε0 > 0, the inequality
β
µ
≤ ε20/(2ḡ1) is true. Then according to Assumption 3 and

Lemma 2, the following inequalities can be obtained.

1

2ḡ1
‖ z2

1 ‖≤
Z z1

0

ρP1(ρ + yr)dρ ≤ V1 (38)

From this, we can further get that

lim
t→∞

‖ z1 ‖2≤ lim
t→∞

2ḡ1V1 ≤ 2ḡ1
β

µ
≤ ε20 (39)

This proves that the tracking error can be made as small as
possible by appropriately choosing the design parameters.
So far Theorem 1 has been proved. ¤
Remark 2. Compared with the existing methods [8-12],
the control design presented in this paper has the following
advantages:
1) Unlike [8-12] where η is considered as a disturbance-like
term, we further treat η as the sum of a nonlinear term
and a disturbance-like term ψ(x), where the nonlinear
term can be approximated by fuzzy logic system together
with the unknown system functions, and ψ(x) has smaller
upper bound than η, so the control effort needed to
eliminate the disturbance-like term will be smaller than
the one that treats η totally as a disturbance-like term;

2) The design of robust control against the disturbance-
like term can be designed with neither the bound of
m(t) + φ(x) nor the bound of b, while the exiting methods
need at least one of them;

3) The considered system (1) is more general than in
[8-12], since there are unknown nonlinear functions in the
dynamics of each xi 1 ≤ i ≤ n. Furthermore, the con-
sidered dead-zone model in this paper is with time-varying
and perturbed slope which the existing methods cannot be
applicable.

3 Simulation Example

We consider a dead-zone nonlinear system as follows.

ẋ1 = f1(x1) + g1(x1)x2

ẋ2 = f2(xxx) + g2(xxx)D(u)
y = x1

(40)

where f1(x1) = 0.5x2
1, f2(xxx) = x1x2−2, g1(x1) = 1+0.1x2

1,
g2(xxx) = 2 + cos(x1x2). D(u) is defined as (2) with m(t) =

1.25e(−0.01t), φ(xxx) = 0.1 sin(x1), and b = 10. The reference
signals are generated from the following system:

ẋr1 = xr2

ẋr2 = −xr1 + 0.001(1− x2
r1)xr2

yr = xr1, i = 1, 2
(41)

The initial conditions are chosen as xxxr(0) = (1.5, 0.8)T ,
xxx(0) = (0.5, 2)T . Two fuzzy logic systems with 11
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fuzzy rules for each on are used as approximators in
the backstepping design. The initial estimate values

are θ̂θθ
1
(0) = θ̂θθ

2
(0) = 000 ∈ R11, ĉcc1(0) = ĉcc2(0) =

(−10,−8,−6,−4,−2, 0, 2, 4, 6, 8, 10)T , σ̂σσ1(0) = σ̂σσ2(0) =

0.5III11 with III11 a unit column vector in R11, δ̂1(0) =

δ̂2(0) = 0, b̂(0) = 1. The design parameters are chosen
as θ̄i = 1, c̄i = 10, σ̄i = 0.5, qi = 1.5, Γθi = 1.5I11×11,
Γci = 1.5I11×11, Γσi = 1.5I11×11, Rθi = 0.1I11×11, Rci =
0.1I11×11, Rσi = 0.1I11×11, where I11×11 is the unit ma-
trix, γi = 1.5, ri = 0.1, πi = 0.5, τi = 0.5, for i = 1, 2,
γb = 1.5, rb = 0.1.
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Fig. 1 The output tracking curves of the dead-zone control:
yr(dash), y(solid)
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Fig. 2 The control input of the dead-zone actuator u
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Fig. 3 The output of the dead-zone actuator D(u)

0 2 4 6 8 10
−40

−30

−20

−10

0

10

20

30

40

time(s)

C
om

pa
ris

on
 o

f d
ea

dz
on

e 
in

pu
t

Fig. 4 The input of the dead-zone actuator u from the
controller which is designed by viewing η as a disturbance-like
term totally
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Fig. 5 The output of the dead-zone actuator D(u) driven by
the controller which is designed by viewing η as a
disturbance-like term totally

The simulation results are showed in Figs. 1-3 where the
output tracking, control output of the controller and the
control input of the plant are plotted respectively. In order
to show that the proposed scheme is less conservative by
specially treat the dead-zone nonlinearity, we also design a
controller where η is viewed as a disturbance-like term to-
tally, and the input and output of the dead-zone actuator
are plotted in Figs. 4-5 respectively, it can be seen obvi-
ously that the control is more conservative than the ones
in Figs. 2-3.

Remark 3. The proposed control approach needs a
fuzzy approximator in each design step, so the computa-
tion burden may be heavy when the controlled system is
high-order and the fuzzy logic systems have lots of rules.
Generally speaking, the more fuzzy rules can lead the more
exact approximation to the unknown functions. Therefore,
the number of the fuzzy rules should be made as small as
possible on the premise that the desired control can be ob-
tained. As additional control is employed to compensate
approximation error, few rules are needed for each fuzzy
approximator to get a good control performance. Then
the online computation burden can be reduced so that the
controller can be achieved timely for application. We have
tested the time needed for realizing the controller of Exam-
ple 1 in matlab, it is 0.16s. The computer we have is with
Pentium 4, 2.93 GHz CPU and 512 MB RAM.
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4 Conclusion

In this paper, a class of unknown nonlinear systems with
time-varying and perturbed dead-zone inputs has been suc-
cessfully controlled by an adaptive fuzzy control scheme.
Since the system considered are not restricted to be feed-
back linearizable, backstepping technique is employed to
obtain the controller step by step. In each step, a nonlin-
early parameterized fuzzy logic system is used to approx-
imate the packaged unknown function because there is no
much apriori knowledge about the fuzzy membership func-
tions. Adaptive laws are given based on Lyapunov stability
to update the parameters online, so that the tracking error
can be made as small as possible. The dead-zone width is
estimated explicitly, thus the control scheme has the ability
to adapt the width of the dead-zone actuator. By specially
treating the dead-zone characteristic as a perturbed linear-
like term, a nonlinear term and a disturbance-like term,
the robustness of the system can be achieved by less con-
trol efforts, thus the control law obtained is less conserva-
tive. It is proved in theory and showed in simulation that
the closed-loop system is stable and the output tracks the
given reference signal satisfactorily.
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