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Formation Control and Obstacle

Avoidance for Multiple

Mobile Robots
YANG Tian-Tian1 LIU Zhi-Yuan1 CHEN Hong2

PEI Run1

Abstract This paper considers the problem of formation con-
trol and obstacle avoidance for a group of nonholonomic mobile
robots. On the basis of suboptimal model predictive control, two
control algorithms are proposed. Both algorithms are formulated
such that they solve as solving the optimal control problems in
which the cost functions are coupled with the dynamics of each
interacting robot. A potential function is used to define the ter-
minal state penalty term, and a corresponding terminal state
region is added to the optimization constraints. Moreover, the
main issues inclusive of stability and safety are also discussed.
Simulation results show the feasibility of the proposed control
strategies.
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The problem of controlling formations of multiple mo-
bile robots has drawn a considerable amount of research
efforts (see [1] for an account of recent results). Many con-
trol approaches have been put forward to solving the prob-
lem. Leader-follower strategy is the most studied formation
control strategy, which uses a hierarchical arrangement of
individual controllers. So the problem of formation control
is reduced to individual tracking problems[2−4]. In [5−6],
a behavior-based approach was presented. The basic be-
haviors were assigned to the independent systems to form
a guidance algorithm. Then the controllers for achieving
different objectives were combined. The concept of virtual
structure was first introduced in [7]. In the virtual struc-
ture architecture, control methods were developed to force
a group of robots to behave in a rigid formation[8]. Similar
to the leader-follower controller, a cyclic architecture was
formed by connecting individual robot controllers[9]. The
difference is that the cyclic controller connections are not
hierarchical.

In [10], model predictive control (MPC) was applied to
cooperative control of multiple robots. MPC is a feedback
control scheme, in which an optimization problem is solved
at each sampling time. Centralized MPC has been widely
developed for constrained systems, with many results re-
lated to stability and robustness[11]. However, solving a
single optimization problem for the entire team typically
requires significant computation, which scales with the size
of the system (e.g., the number of robots in the team). In
[12], it was proved that under mild conditions feasibility
rather than optimality is sufficient for stability, then the
computational requirement is reduced to finding a control
profile that satisfies a set of constraints.

Recently, focus is on distributed MPC because of issues
related to computation and communication in a large-scale
application[13]. When decisions are made in a distributed
fashion, although the requirement for stability and perfor-
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mance criteria can be met for individual subsystem, the
coupled system may show serious instabilities. So the key
point is that the actions of each subsystem must be consis-
tent with those of other subsystems, so that decisions taken
independently can guarantee the coupled system stability.

Obstacle avoidance is another well-studied problem in
mobile robotics. One of the obstacle avoidance algorithm
is potential field method, where an artificial potential func-
tion depending on the obstacles is constructed[14−15]. In
[15], an artificial potential function called navigation func-
tion was proposed when the obstacles were represented by
star shaped sets. This potential function has no local min-
ima except the global minimum at the goal. Furthermore,
it is continuously differentiable and attains its maximum
value at all the obstacle boundaries.

In this paper, we propose two suboptimal model pre-
dictive control methods for formation control and obstacle
avoidance of multiple mobile robots on the basis of the
problem formulation and results in [13]. First, we present
an integrated optimal control problem by introducing the
potential function as the terminal state penalty term. A
centralized suboptimal model predictive control method
that achieves the control objective is stated, with stabil-
ity and safety guaranteed. Then by decomposing the in-
tegrated optimal control problem into a family of simple
optimal control problems, a distributed suboptimal model
predictive control method is developed. Under this scheme,
on-line optimization of the whole multi-robot system is
decomposed into the optimization of several cooperative
robots. These robots can cooperate and communicate with
each other to achieve the control objective. Thus, the com-
putational complexity can be significantly reduced.

The rest of the paper is organized as follows. In Sec-
tion 1, the model to describe the dynamics of the mobile
robot is established and the goal of the controller design
is stated. In Section 2, two suboptimal control algorithms
are presented. Moreover, stability and safety of the closed-
loop system are discussed. Some simulation results are pre-
sented to validate the theoretical analysis in Section 3.

1 Dynamic model and problem formula-
tion

In a group of N mobile robots, the dynamics of the i-th
robot is given as follows[3].
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where (xi, yi) is the inertial position, θi is the orientation,
vi is the linear speed, ωi is the angular speed, Fi is the
applied force, Ni is the applied torque, mi is the mass, and
Ii is the moment of inertia.

Because of violation of the Brockett′s condition, system
(1) cannot be asymptotically stabilized using continuous

static state feedback[16]. By using the results in [17], the dy-
namics of the mobile robot can be converted to the canon-
ical form. With the state transformation

x1i = xi, x2i = yi, x3i = tan θi, x4i = vi cos θi, x5i =
ωi

cos2 θi
and the input transformation
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(1) is transformed into

ξ̇ξξi =
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ẋ4i

ẋ5i


 =




x4i

x3ix4i

x5i
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 =

fff i(ξξξi,uuui), i = 1, · · · , N

(2)

Obviously, states qqqi = [x1i, x2i]
T are the position of the

i-th robot in the X-Y plane. States pppi = [x3i, x4i, x5i]
T are

generalized angle, linear speed, and angular speed, respec-
tively. uuui = [u1i, u2i]

T are generalized inputs.
By concatenating the states and inputs into the vectors

as ξξξ(t) = [ξξξT
1 (t), · · · , ξξξT

N (t)]T, uuu(t) = [uuuT
1 (t), · · · ,uuuT

N (t)]T,
the multirobot system can be described as follows

ξ̇ξξ =




fff1(ξξξ1,uuu1)
...

fffN (ξξξN ,uuuN )


 = FFF (ξξξ,uuu) (3)

In this paper we consider the problem of moving a group
of robots towards a final destination with obstacle avoid-
ance. There are two objectives. The first objective is to
move the robots to their final destinations while maintain-
ing formation as specified. The second objective is to avoid
collision with the obstacles.

To incorporate these competing objectives, the object
functions will be defined respectively. Let Eg be the center
error, qqqd be the desired destination of the core robots that
are used to relate to the desired center of geometry loca-
tion. Without loss of generality, the core robots are robot
1, robot 2, and robot 3. Then we have

Eg = gggTQgggg (4)

where Qg is a symmetric positive definite matrix, and ggg =
1/3(qqq1 +qqq2 +qqq3)−qqqd. Similarly, define Ef as the formation
error. Introduce a map R : i ∈ {1, · · · , N} → R(i) ⊂
{1, · · · , N}, where R(i) represents the set of robots that
communicate with robot i.

Ef = 1/2

N∑
i=1

∑

j∈R(i)

fffT
ijQfifff ij (5)

where Qfi is a symmetric positive definite matrix. fff ij =
qqqi − qqqj −dddij , and dddij is the desired relative vector between
any two neighbors i and j.

Then the total objective for formation control is

Et = Eg + Ef + Ep (6)

where Ep =
∑N

i=1(pppi − pppc
i )

TQpi(pppi − pppc
i ), pppc

i is the desired
state, and Qpi is a symmetric positive definite matrix.

Obviously Et = 0 is equivalent to Ef = 0, Eg = 0, and
Ep = 0. Note that Ef = 0, if and only if fff ij = 0 for all i.
This means that qqqi − qqqj = dddij , which will only be true if
the robots are in the desired formation. When Eg = 0, we
have 1/3(qqq1 + qqq2 + qqq3) = qqqd, which means that the center
of the robots arrives at the desired position. Therefore,
when Et = 0, the group of robots achieves the desired
destination, i.e., qqqi = qqqc

i . Here, qqqc
i is the desired position

for the i-th robot.
Another main challenge in formation control for mul-

tiple mobile robots is obstacle avoidance. In this paper,
it is assumed that there are M walls or isolated obsta-
cles, such as a pillar on the ground and each obstacle

Ok(k = 1, · · · , M) can be expressed by a real-valued ob-

stacle function Ok(k = 1, · · · , M) as follows[15]

Ok = {rrr ∈ R2|Ok(rrr) ≤ 0} (7)

where rrr ∈ R2 is the position vector in R2. The obstacle
function Ok is zero on the boundary of the obstacle, positive
outside of the obstacle, and negative inside of the obstacle.
When the mobile robot moves to the desired point avoiding
collision with the obstacles, the state variable rrr must sat-
isfy Ok(rrr) > 0. In this paper, we introduce the potential
function NF (·), which is a continuous approximation of the

length of the shortest obstacle-free path to the goal[15].
Then, the problem considered in the next section is to

drive the formation control objective Et asymptotically to
zero while avoiding collision with the obstacles.

2 Control algorithms
In this section, two suboptimal MPC algorithms are pro-

posed for solving the problem described in Section 1. First,
a centralized optimal problem is constructed.

Problem 1. At each update time t, given the current
states ξξξ(t), solve the following optimal problem

J∗(ξξξ(t),uuu∗(·), T ) = min
u(·)

J(ξξξ(t),uuu(·), T ) (8)

with

J(ξξξ(t),uuu(·), T ) =

N∑
i=1

Ji(ξξξi(t), ξξξj(t),uuui(·), T ) (9)
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subject to




ξ̇ξξi(τ) = fff(ξξξi(τ),uuui(τ))
uuui(τ) ∈ U τ ∈ [t, t + T ]
Ok(qqqi(τ)) > 0

(12)

ξξξi(t + T ) ∈ Ωi (13)

i = 1, · · · , N, k = 1, · · · , M

where Ri and Hi are symmetric positive definite matrices,
and T is the open-loop horizon time.

It is obvious that J(ξξξ(t),uuu(·), T ) ≥ 0, and
J(ξξξ(t),uuu(·), T ) = 0 if and only if ξξξ(t) = ξξξc, with

ξξξc = [ξξξc
1
T, · · · , ξξξc

N
T]T, ξξξc

i = [qqqc
i
T, pppc

i
T]T.

(13) is called terminal constraint, as it is a constraint
enforced only at the terminal or end time. Here, a potential
function NF (·) is developed as the terminal penalty term,
and a corresponding terminal state controller is designed
to guarantee the stability.

The solutions of Problem 1 yield the optimal control law
applied to the system

uuu∗(t) = [uuu∗1(t)
T, · · · ,uuu∗N (t)T]T (14)
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Theorem 1. (Stability) Suppose Problem 1 is feasible
at time t = 0. With the MPC control algorithm (14),
system (3) is asymptotically stable at the point ξξξc if there
is a terminal state controller uuuL(t) = [uuuT

1L(t), · · · ,uuuT
NL(t)]T,

such that the following conditions are satisfied

ġi(ξξξi(t)) + Li(ξξξi(t), ξξξj(t),uuuiL(t)) ≤ 0 i = 1, · · · , N (15)

for any state ξξξi(t) belonging to the terminal region Ωi.
Proof. The proof is similar to stability theorem in [18]

and hence omitted. ¤
Theorem 2. (Safety) If the control algorithm (14) is

used and the robots start at rest in an unoccupied position,
then, the robots will not run into obstacles.

Proof. At each update time t, the control profile can be
split into two parts: uuui(τ), t ≤ τ ≤ t + T , and uuui(τ), τ >
t + T . Because uuui(τ), t ≤ τ ≤ t + T are free decision
variables, constraints on ξξξi(τ, ξξξi(t)), t ≤ τ ≤ t + T can be
imposed directly. From the definition of obstacle function,
the robot i can avoid the obstacles if Ok(qqqi(τ)) > 0 with
k = 1, · · · , M . For future motion in the terminal region Ωi,
the proof of safety is obtained from [15]. ¤

In Problem 1, the control profile is found by minimiz-
ing the objective globally. At each sampling time t, only
the first control is applied to the system. In the next time,
the controller needs to solve the constrained nonlinear opti-
mization problem again. Because the online computational
burden related to MPC of large nonlinear system hampers
its real-time application, another method is proposed to re-
duce computation time. It was presented in [12] that the
proved stability does not necessarily depend on the opti-
mality of the cost function. So a suboptimal MPC control
algorithm is built up by using a suboptimal solution or fea-
sible solution to the system. Next, two suboptimal MPC
algorithms are presented by using the result in [12].

Algorithm 1. (Centralized suboptimal MPC)
Step 1. At time t = 0, get the initial state ξξξi(0) with

i = 1, · · · , N . An open loop optimal control uuu∗(0) =
[uuu∗1(0)T,uuu∗2(0)T, · · · ,uuu∗N (0)T]T can be found by solving the
optimization problem (8) subject to (12), (13), and (15),
with terminal state controller uuuiL(t) = Kiξξξi(t). Subse-
quently, apply uuu∗(0) to the system.

Step 2. At time t, choose control sequences that are
constructed on the basis of uuu∗i (τ, ξξξi(t−δ)) and the terminal
state controller

ûuui(τ, ξξξi(t)) ={
uuu∗i (τ, ξξξi(t− δ)) t ≤ τ ≤ t + T − δ
uuuiL(τ, ξξξi(t− δ)) t + T − δ ≤ τ ≤ t + T

(16)

Then, ûuu(t) = [ûuu1(t)
T, · · · , ûuuN (t)T]T which is applied to the

system.
Step 3. Set t = t + δ, and return to Step 2 at the next

sampling time.
Step 4. At time t + T0, T0 ≤ T , find a new control

sequence as is done at time t = 0.
Given the current state ξξξi(t) and a suboptimal control

ûuui(τ, ξξξi(t)) with τ ∈ [t, t + T ], the suboptimal state ξ̂ξξi(τ) is
computed using the dynamic model (2). Because of the use
of the constructed control (16), the feasible solution to the
optimization problem always exists as long as the initial
feasible solution exists. Now, it will be shown that our
suboptimal MPC control algorithm is also asymptotically
stable by examining the three conditions of Theorem 1 in
[12].

Theorem 3. By using Algorithm 1, system (3) is
asymptotically stable at point ξξξc. Moreover, the robots
will not run into obstacles.

Proof. There are two cases: first, uuu(t) is an optimal
solution, and uuu(t+ δ) is a suboptimal solution; and second,
uuu(t) and uuu(t + δ) are both suboptimal solutions.

If uuu(t) is an optimal solution and uuu(t+δ) is a suboptimal
solution, the stability is directly from Theorem 1.

Then, if uuu(t) and uuu(t+ δ) are both suboptimal solutions,
the stability will be shown by examining the three condi-
tions of Theorem 1 in [12].

Let ξ̂ξξ(t) = [ξ̂ξξ1(t)
T, · · · , ξ̂ξξN (t)T]T denote the suboptimal

state trajectory and Ĵ(ξ̂ξξ(t)) denote the suboptimal model
predictive value function. Then, we have

Ĵ(ξ̂ξξ(t)) =

N∑
i=1

∫ t+T

t

Li(ξ̂ξξi(τ, ξ̂ξξi(t)), ξ̂ξξj(τ, ξ̂ξξj(t)), ûuui(τ))dτ+

N∑
i=1

gi(ξ̂ξξi(t + T ))

From [13], we have

N∑
i=1

Li(ξ̂ξξi(t), ξ̂ξξj(t), ûuui(t)) = ||ξ̂ξξ(t)− ξξξc||2Q + ||ûuu||2R (17)

where ξξξc = [ξξξc
1
T, · · · , ξξξc

N
T]T, and Q is a positive definite

and symmetric matrix.
Obviously, we have

Ĵ(t, ξ̂ξξ(t)) ≥ ||ξ̂ξξ(t)− ξξξc||2Q (18)

This proves the condition 1 of Theorem 1 in [12].
Because of the stability condition (15), we can have the

following result at two sampling times t and t + δ

Ĵ(t + δ, ξ̂ξξ(t + δ))− Ĵ(t, ξ̂ξξ(t)) ≤ −
∫ t+δ

t

L(ξ̂ξξ(τ), ûuu(τ))dτ

where L(ξ̂ξξ(t), ûuu(t)) =
∑N

i=1 Li(ξ̂ξξi(t), ξ̂ξξj(t), ûuui(t)). This
proves the condition 2 of Theorem 1 in [12].

Finally, by selecting a terminal state controller uuuiL(t) =
Kiξξξi(t), the condition 3 of Theorem 1 in [12] is satisfied.

The proof of safety is similar to the proof of Theorem 2.
¤

Note that Algorithm 1 is a centralized fashion, which will
bring large online computational burden. A distributed so-
lution to the problem is desirable for potential scalability
and improved tractability of the approach. So we will de-
fine N separate optimal problems, which are solved and
implemented in a distributed fashion. The main idea is to
break the centralized MPC controller into a number of dis-
tinct MPC controllers of smaller sizes. For each robot, the
current state and model of its neighbors are used to predict
their possible trajectories.

Problem 2. For every robot i = 1, · · · , N and at each

update time t, given the current state ξξξi(t), ξ̂ξξj(t) = ξξξj(t),
solve the following optimal problem

J∗i (ξξξi(t), ξ̂ξξj(t),uuu
∗
i (·), T ) = min

ui(·)
Ji(ξξξi(t), ξ̂ξξj(t),uuui(·), T ) (19)

subject to




ξ̇ξξi(τ) = fff(ξξξi(τ),uuui(τ))
˙̂
ξξξj(τ) = fff(ξ̂ξξj(τ), ûuuj(τ)) τ ∈ [t, t + T ]
uuui(τ) ∈ U
||uuui(τ)− ûuui(τ)|| ≤ δ2γ
Ok(qqqi(τ)) > 0, k = 1, · · · , M

(20)

ξξξi(t + T ) ∈ Ωi (21)
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where δ is the model predictive update time, and γ is a
positive constant.

The difference between Problem 1 and Problem 2 is that
in the latter problem ξ̂ξξj is a suboptimal solution and cor-
respondingly a control comparison constraint is added.

Algorithm 2. (Distributed suboptimal MPC)
Step 1. At time t = 0, get the initial states ξξξi(0) and

ξξξj(0), and set ûuui(τ, ξξξi(0)) = 0 for all τ ∈ [0, T ]. For
each robot i, solve the optimization problem (19) sub-
ject to (20), (21), and (15), with terminal state controller
uuuiL(t) = Kiξξξi(t). Then, uuu∗(0) = [uuu∗1(0)T, · · · ,uuu∗N (0)T]T

which is applied to the system.
Step 2. At time t, for each robot i, choose a control

sequence

ûuui(τ, ξξξi(t)) ={
uuu∗i (τ, ξξξi(t− δ)) t ≤ τ ≤ t + T − δ
uuuiL(τ, ξξξi(t− δ)) t + T − δ ≤ τ ≤ t + T

(22)

Then, ûuu(t) = [ûuu1(t)
T, · · · , ûuuN (t)T]T which is applied to the

system.
Step 3. Set t = t + δ, and return to Step 2 at the next

sampling time.
Step 4. At time t = t+T0 where T0 ≤ T , for each robot

i, get the current state ξξξi(t) and obtain ξξξj(t), ûuuj(τ, ξξξj(t))
for all j ∈ Ni. Solve the optimization problem (19) sub-
ject to (20), (21), and (15), with terminal state controller
uuuiL(t) = Kiξξξi(t). Then, uuu∗(t) = [uuu∗1(t)

T, · · · ,uuu∗N (t)T]T

which is applied to the system.
Step 5. Set t = t + δ, and return to Step 2 at the next

sampling time.
Theorem 4. By application of Algorithm 2 with suf-

ficiently fast update (small δ), the robots will achieve the
desired formation asymptotically without colliding with ob-
stacles.

Proof. The proof is quickly obtained from Theorem 3
and the result in [13]. ¤

In [13], an upper bound on the update time was pre-
sented, and the limit for δ was conservative. In practice,
values for δ much larger than those specified by the theory
are successful. The next section reveals that for a fixed
small value δ, convergence can still be obtained with good
accuracy.

3 Simulation results
This section presents the results of numerical simulation

to show the application of the control algorithms described
in Section 2. The objective is to drive five robots to track
the reference trajectory in the desired formation without
colliding with the obstacle. Initially, the robots have de-
tected the obstacle. After initialization they avoid the ob-
stacle and then track the reference trajectory with forma-
tion maintained. Both of the two control algorithms are
implemented, with comparison to each other.

It is assumed that there is an obstacle O1

O1 =

[
rrr −

[
6
−1

] ]T [
rrr −

[
6
−1

] ]
− 1

As discussed in [15], the navigation function depending
on the obstacle O1 can be designed as follows.

NF (rrr) =
||rrr||2(

‖ rrr ‖2 +

∥∥∥∥
[

rrr −
[

6
−1

] ]∥∥∥∥
2

− 1

)0.5

The same initial conditions are used for the two
algorithms: ςςς1 = [4, 1, 0.78, 0, 0]T, ςςς2 =

[2, 2, 0.78, 0, 0]T, ςςς3 = [2, 0, 0.78, 0, 0]T, ςςς4 =
[0, 3, 0.78, 0, 0]T, and ςςς5 = [0, −1, 0.78, 0, 0]T.
The relative vectors are defined as ddd12 = [2,−1]T, ddd13 =
[2, 1]T, ddd24 = [2,−1]T, and ddd35 = [2, 1]T. The desired ref-
erence trajectory for the core robots is qqqd = [0.5t + 10, 0]T

with t ≥ 0. For clarity, we mark the initial formation
with “◦” marks, and the final formation with “4” marks.
The following parameters are used: δ = 0.5 s, T = 3 s,
T0 = 1.5 s, Qg = I, Qfi = 2I, Qpi = I, Ri = I, Hi = I, and

Ki =

[
0 0 0 0.8 0
0 0 0 0 0.8

]
with i = 1, · · · , 5.

For the distributed suboptimal control algorithm, the
control comparison constraint is enforced by setting γ = 5.
The position trajectories of the five robots are shown in
Fig. 1. It is obvious that after initialization the robots suc-
cessfully avoid the obstacle in the environment and then,
achieve tracking the reference trajectory. Moreover, the for-
mation is almost maintained throughout the motion, which
can be confirmed from Fig. 2.

Fig. 1 Position trajectories of five robots using distributed
suboptimal algorithm

Fig. 2 2-norm of formation error vector using distributed
suboptimal algorithm

For the update time δ, the centralized suboptimal con-
trol algorithm is implemented, and the simulation result is
shown in Fig. 3. From the figure, the position trajectories
are close to those of the distributed implementation, and
the formation is observed to meet the objective.

Figs. 2 and 4 show the norms of the formation error vec-
tors using the two control algorithms. We can observe both
the algorithms and keep the 2-norm of the formation error
vectors almost zero. Moreover, under the distributed con-
trol algorithm, the formation meets the objective to almost
the same precision as in the centralized fashion.



592 ACTA AUTOMATICA SINICA Vol. 34

The simulations for the two algorithms are run in Matlab
on a single Windows XP computer with a Celeron 2.4GHz
processor. The mean computation time for the distributed
algorithm is 14.7min and is 96.8 min for the centralized
algorithm. It is clear that the distributed method offers
a considerable computational advantage, averaging almost
seven times faster than the centralized method. The larger
problems, e.g., with six or more robots, that are not at-
tempted use the centralized method as the computation
time becomes prohibitively long.

Fig. 3 Position trajectories of the five robots using centralized
suboptimal algorithm

Fig. 4 2-norm of formation error vector using centralized
suboptimal algorithm

4 Conclusion

This paper presents the methods for formation control
and obstacle avoidance of multiple mobile robots. Two sub-
optimal MPC algorithms are proposed. Both algorithms
can guide a group of robots in a maintained formation to
the specified destination while avoiding collision with ob-
stacles. Because the distributed algorithm offers a consider-
able computational advantage, it is more suitable for larger
problems, e.g., with five or more robots. The feasibility of
the algorithms is also verified by simulations.
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