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Design of Robust Model Predictive Control Based on
Multi-step Control Set

LI De-Wei1 XI Yu-Geng1

Abstract By proposing the multi-step control set and using it as the terminal set, a new design method of robust model predictive
control (MPC) is presented for the constrained polyhedral uncertain systems. Through designing a series of feedback control laws, the
new robust controller can achieve large feasible region and high control performance. The characteristic property of the multi-step
control set also makes it possible to derive an algorithm with low online computation burden. It could make a good trade off among
the initial feasible region, the control performance, and the online computation burden. The numerical examples verify these results.
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Model predictive control (MPC), also named as receding
horizon control (RHC), is a kind of control algorithms char-
acterized with receding horizon optimization. At each time
instant, the MPC controller solves an optimization problem
to get the current control input. So the online computation
burden is always an important issue for MPC, especially for
robust MPC. Since the last decade, robust MPC with low
online computation burden, high control performance, and
large feasible region has been a very attractive topic.

Based on the theory of control invariant set and using
LMI tool, Kothare[1] proposed a design method of robust
MPC controller for constrained polyhedral uncertain sys-
tems. Although the method in [1] is effective, if the num-
ber of models is large or the system dimension is high, the
online computation burden will be heavy. To reduce its
online computation burden, [2] proposed an offline design
method. In addition, in order to release the conservative-
ness in [1], [3−4] suggested to use parameter dependent
Lyapunov functions instead of a single Lyapunov function.
Another spectrum of robust MPC based on the theory of
control invariant set is efficient robust predictive control
(ERPC)[5−7]. It designs offline an invariant set for an aug-
ment system and online gets the control inputs based on the
unconstrained optimal feedback control law so as to reduce
the online computation burden and achieve high control
performance. However, all the above works are based on a
control invariant set with a single feedback control law and
assume that the current system state should be located in
the control invariant set, so the design methods are conser-
vative and the initial feasible region should be restricted.

In [8], Wan proposed an efficient robust MPC controller
with low online computation burden, high control perfor-
mance, and large feasible region, where free control moves
followed by the terminal invariant set were introduced to
release the conservativeness of [1]. The similar method was
also adopted in [9]. But due to the uncertainty of systems,
the feasibility and stability in [8−9] cannot be guaranteed.
Reference [10] proposed a modified design to [8], but the
online computation burden of the modified controller was
very heavy.

For uncertain systems, Mayne[11] suggested to adopt the
feedback MPC framework instead of free control moves to
guarantee the feasibility of the MPC controller. This sug-
gestion is important and instructive. But how to design
it with acceptable online computation burden is still open.
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Recently, by using a series of feedback control laws, Lee[12]

proposed the concept of periodic invariance. Although it
is novel, the periodic invariance and the design methods
based on it in [12] have two weaknesses. First, the control
performance is not considered in the design. Second, the
series of feedback control laws are mainly used to guaran-
tee the invariance of the set and not to enlarge the feasible
region of the controller.

In this paper, we propose a new concept, i.e., multi-step
control set, which uses a series of feedback control laws to
steer the system states from one ellipsoidal set to another
and finally into a control invariant set. With this new con-
cept and by introducing the index of the multi-step control
set, a robust MPC controller with high control performance
and large feasible region is designed. Furthermore, through
offline designing the multi-step control sets, the online com-
putation burden can be reduced such that we can reason-
ably balance the control performance, the feasible region,
and the online computation burden.

This paper is organized as follows. In Section 1, the
uncertain system model and some background are intro-
duced. Section 2 gives the concept of multi-step control set
and its design method. Then, two feedback robust MPC
controllers are developed in Section 3. Numerical examples
in Section 4 verify the effectiveness of the proposed robust
MPC controllers.

Notations. Denote uuu(k + i|k) and xxx(k + i|k) as the
control input and system state of time k + i, predicted at
time k. ||xxx||W = xxxTWxxx and xxx(k|k) = xxx(k).

1 Background

Consider the following polyhedral uncertain system:

xxx(k + 1) = A(k)xxx(k) + B(k)uuu(k) (1)

where A(k) ∈ Rn×n, B(k) ∈ Rn×m, and

(A(k), B(k)) ∈ Ω =

{
(A(k), B(k))|(A(k), B(k)) =

np∑
i=1

λi(Ai, Bi), λi ≥ 0,

np∑
i=1

λi = 1

}
(2)

The constraints on the system inputs and measurable states
are given by

|uuui(k)| ≤ ūi, i = 1, · · · , m (3)

|FFF jxxx(k)| ≤ x̄j , j = 1, · · · , n (4)



434 ACTA AUTOMATICA SINICA Vol. 35

The cost function of the MPC controller can be commonly
chosen as

min
UUU(k)

max
[A(k+i)|B(k+i)]∈Ω, i≥0

J(k)

J(k) =

∞∑
i=0

[||xxx(k + i|k)||Q + ||uuu(k + i|k)||R] (5)

with notation UUU(k) = [uuu(k|k)T,uuu(k + 1|k)T, · · · ]T, Q and
R are the weighted matrices of cost objective function, re-
spectively.

For the uncertain system (1)∼ (4), Kothare[1] adopted
the following control invariant set in their design, which will
be called as the classical invariant set to distinguish from
the concepts in this paper: the set S = {xxx|xxxTQ−1xxx ≤ 1}
is a classical invariant set if there exist matrices X, Y , and
L, satisfying the following conditions:

[
Q (AjQ + BjY )T

AjQ + BjY Q

]
> 0, j = 1, · · · , np

[
X Y
Y T Q

]
> 0, Xii ≤ ū2

i , i = 1, · · · , m

[
L FQ

QFT Q

]
> 0, Lii ≤ x̄2

i , i = 1, · · · , n (6)

where matrices X, Y , and L are matrix variables, F =
[FFFT

1 , · · · ,FFFT
n ]T, X > 0, L > 0, and Xii and Lii represent

the i-th diagonal elements of X and L.
Based on the classical invariant set, [8−9] proposed the

controllers using free control moves followed by a termi-
nal classical invariant set. In order to guarantee the fea-
sibility, [11] suggested to adopt the feedback MPC frame-
work to design robust MPC controllers, i.e., using a policy
π = {uuu(0), K1, · · · , KN−1, KN} instead of the control series
UUU(k), where Ki is the feedback control gain at the i-th step
and after the N -th step the feedback control gain is always
KN . From the feedback MPC framework, the works of
[1, 5−7] can be thought as the case of N = 0 and the works
of [8−9, 12] as N > 2. As mentioned above, these design
methods have some weaknesses and conservativeness. So
in the following part, we will give a new method to de-
sign the robust MPC controller for constrained polyhedral
uncertain systems.

2 Multi-step control set

In order to release the conservativeness of the above
MPC controllers, we adopt a sequence of feedback control
laws to design MPC controller. Considering the input and
state constraints, we assume that the system states will
stay in a sequence of ellipsoidal sets and the feedback con-
trol laws will steer the states to transfer among these sets
and finally into a classical invariant set. Thus, we give the
following concept of multi-step control set.

Definition 1 (Multi-step control set and sss-step
control set). If the system states in set S0 can be steered
into a classical invariant set by some constrained feedback
control laws, the set S0 is called a multi-step control set. If
the system states in set S0 can be steered into a classical
invariant set by s−1 constrained feedback control laws, the
set S0 is called an s-step control set.

Obviously, from Definition 1, if we can find s sets Si (i =
0, · · · , s − 1), where Si is an (s − i)-step control set, such
that the system states will be steered from S0 → S1 →
· · · → Ss−1, we can find a way to design the multi-step
control set. Referring to the periodically-invariant set in

[12], the following theorem gives the synthesis method of
the s-step control set.

Theorem 1. Consider the uncertain system (1)∼ (4).
For an ellipsoidal set S0 = {xxx|xxxTQ−1

0 xxx ≤ 1}, if there are
s − 1 ellipsoidal sets Si = {xxx|xxxTQ−1

i xxx ≤ 1}(i = 1, · · · ,
s−1) with corresponding matrices Yi, Xi (i = 0, · · · , s−1),
satisfying the following conditions:
[

Qi−1 (AjQi−1 + BjYi−1)
T

AjQi−1 + BjYi−1 Qi

]
> 0

i = 1, · · · , s− 1; j = 1, · · · , np (7)




Qs−1 ΦT
(j,s−1) Qs−1Q

1/2 Y T
s−1R

1
2

Φ(j,s−1) Qs−1 0 0

Q
1
2 Qs−1 0 γI 0

R
1
2 Ys−1 0 0 γI




> 0

Φ(j,s−1) = AjQs−1 + BjYs−1, j = 1, · · · , np (8)

[
Xi Yi

Y T
i Qi

]
> 0, Xi,jj ≤ ū2

j ,

i = 0, · · · , s− 1; j = 1, · · · , m (9)

[
Li FQi

QiF
T Qi

]
> 0, Li,jj ≤ x̄2

j ,

i = 0, · · · , s− 1; j = 1, · · · , n (10)

then, the set S0 is an s-step control set, the feedback control
gain in Si is Ki = YiQ

−1
i and we call γ as the index of the

s-step control set.
Proof. For i < s, from (7), we can get

Q−1
i−1 − (Aj + BjYi−1Q

−1
i−1)

TQ−1
i (Aj + BjYi−1Q

−1
i−1) > 0

(11)
That is, all the system states in set Si−1 will be steered into
set Si by the feedback control law with gain Ki−1. So the
system states in set S0 will be steered into set Ss−1 by the
control sequence with state feedback gains K0, · · · , Ks−2.

For i ≥ s, from (8), it is clear that it is a classical invari-
ant set, so the system states in set Ss−1 will stay in it by
the feedback control law with gain Ks−1. In addition, ac-
cording to [1], we can get γ as the cost upper bound of the
classical invariant set Ss−1, which is named as the index of
the multi-step control set.

With respect to the input and state constraints, for a set
Si and its corresponding feedback control gain Ki, we can
get

|uuul|2 = |αααlYiQ
−1
i xxx|2 = |αααlYiQ

− 1
2

i Q
− 1

2
i xxx|2 ≤ ||αααlYiQ

−1/2
i ||,

l = 1, · · · , m

where uuul is the l-th element of the control input correspond-
ing to the feedback control gain Ki and αααl is the l-th row
of m-dimensional identity matrix. Thus, condition (9) can
be obtained.

Similarly handling constraint (4),

|FFF lxxx|2 = |FFF lQ
1
2
i Q

− 1
2

i xxx|2 ≤ ||FFF lQ
1
2
i || ≤ x̄2

l , l = 1, · · · , n

then, we can get the condition (10). ¤
By Theorem 1 and Definition 1, the multi-step control

set has the following properties.
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Corollary 1. For the uncertain system (1)∼ (4), a clas-
sical invariant set is a multi-step control set whose number
of steps is any positive integer, and an s-step control set
is also an (s + i)-step control set, where i is any positive
integer. Meanwhile, for an s-step control set with the series
of ellipsoidal sets S0, · · · , Ss−1, each set in the series is also
an s-step control set.

It is easy to get Corollary 1 from the definition of multi-
step control set.

Corollary 2. For the uncertain system (1)∼ (4), sets
S(0,0), · · · , S(h,0) are its h + 1 multi-step control sets and
their indexes are γi(i = 0, · · · , h), respectively. Then, the

set Ŝ0 = {xxx|xxxTQ̂−1
0 xxx ≤ 1}, where Q̂0 = λ0Q(0,0) + · · · +

λhQ(h,0) and λ0 + · · · + λh ≤ 1, λi ≥ 0 (i = 0, · · · , h), is
also a multi-step control set and its index equals λ0γ0 +
· · ·+ λhγh.

Proof. Assume S(0,0), · · · , S(h,0) are s-step control sets
each with the series of ellipsoidal sets S(i,0), · · · , S(i,s−1)

(i = 0, · · · , h), respectively, where S(i,j) = {xxx|xxxTQ−1
(i,j)xxx ≤

1}. And the step numbers of all the sets are the same, which
is reasonable according to Corollary 1. From Theorem 1,
all the sets satisfy conditions (7)∼ (10). Then, multiplying
(7)∼ (8) by the coefficients λ0, · · · , λh, respectively, and
summing up, we get

[
Q̂i−1 (AjQ̂i−1 + Bj Ŷi−1)

T

AjQ̂i−1 + Bj Ŷi−1 Q̂i

]
> 0,

i = 1, · · · , s− 1; j = 1, · · · , np


Q̂s−1 Φ̂T
(j,s−1) Q̂s−1Q

1
2 Ŷ T

s−1R
1
2

Φ̂(j,s−1) Q̂s−1 0 0

Q
1
2 Q̂s−1 0 γ̂I 0

R
1
2 Ŷs−1 0 0 γ̂I




> 0

Φ̂(j,s−1) = AjQ̂s−1 + Bj Ŷs−1, j = 1, · · · , np

where Q̂i = λ0Q(0,i) + · · ·+ λhQ(h,i), Ŷi = λ0Y(0,i) + · · ·+
λiY(h,i) (i = 0, · · · , s− 1), and γ̂ = λ0γ0 + · · ·+ λhγh.

That is to say, the set Ŝ0 = {xxx|xxxT(λ0Q(0,0) + · · · +

λhQ(h,0))
−1xxx ≤ 1} and the series of ellipsoidal sets Ŝi =

{xxx|xxxT(λ0Q(0,i) + · · ·+ λhQ(h,i))
−1xxx ≤ 1} (i = 1, · · · , s− 1)

satisfy conditions (7) and (8) of Theorem 1 and the index

of Ŝ is equal to λ0γ0 + · · ·+ λhγh.
Similarly, dealing with conditions (9) and (10), since

λ0 + · · · + λh ≤ 1, λi ≥ 0 (i = 0, · · · , h), we can get that

the sets Ŝ0, · · · , Ŝs−1 satisfy conditions (9) and (10), too.

Therefore, the set Ŝ0 is also a multi-step control set and its
index equals λ0γ0 + · · ·+ λhγh. ¤

From the proof of Corollary 2, it is obvious that the i-th

step ellipsoidal set Ŝi of the new multi-step control set is
also constructed by convex combination of the correspond-
ing i-th step sets S(0,i), · · · , S(h,i).

3 The robust MPC controller based on
the multi-step control set

Based on the multi-step control set presented in Sec-
tion 2, we can design a robust MPC controller, which
adopts the current constrained input to steer the system
state into a multi-step control set, and then the feedback
control laws in the multi-step invariant set will steer the
system state to the origin.

3.1 The robust MPC controller with online de-
signing multi-step control set

For the uncertain system (1)∼ (4), similar to the method
to approximate the infinite horizon min-max cost function
in [1], we choose the cost function to make xxx(k+1|k) as close
as possible to the origin as well as to make the index of the
multi-step control set as small as possible. Since the index
of the multi-step control set is the cost upper bound of
its final classical invariant set, optimizing the index means
approximately optimizing the control performance. Thus,
the robust MPC controller can be designed as follows.

Algorithm 1.

P1 : min
Qi,Yi,uuu(k),Xi,Li,r,γ

r + γ

s.t. |uuuj(k)| ≤ ūj , j = 1, · · · , m[
r (Ajxxx(k) +Bjuuu(k))T

Ajxxx(k) + Bjuuu(k) Q0

]
>0

r ≤ 1, j = 1, · · · , np

(7) ∼ (10), i = 0, · · · , s− 1 (12)

where uuu(k) is the control input at time k.
For the stability of controller P1, we can get the follow-

ing theorem.
Theorem 2. Consider the uncertain system (1)∼ (4).

If controller P1 is feasible at time k for the current system
state xxx(k), the closed loop system is asymptotically stable.

Proof. For the uncertain system (1)∼ (4), controller
P1 is feasible at time k for the current state xxx(k). Let
the optimal solution at time k as (uuu∗(k), Q∗0, · · · , Q∗s−1,
Y ∗

0 , · · · , Y ∗
s−1, X∗

0 , · · · , X∗
s−1, L∗0, · · · , L∗s−1, r∗(k), γ∗(k))

and J∗(k) = r∗(k) + γ∗(k). That is, the system in-
put uuu∗(k) will steer the system state xxx(k) into the set
S0 = {xxx|xxxTQ∗−1

0 xxx ≤ 1} and then the feedback control laws
will steer it into the classical invariant set Ss−1 along the
sequence S0 → S1 → · · · → Ss−1.

For the uncertain system model (1), we can get

xxx(k + 1) = A(k)xxx(k) + B(k)uuu∗(k)

xxx(k + 1)TQ∗−1
0 xxx(k + 1) ≤ r∗(k)

where xxx(k + 1) is within the set S0. Since the set S0 is
an s-step control set with the series of sets S1, · · · , Ss−1,
the feedback control laws in these sets all satisfy the con-
straints on system states and inputs. Then, at time k + 1,
we can construct a solution by moving the optimal solu-
tion at time k one time instant ahead (Y ∗

0 Q∗−1
0 xxx(k +

1), Q∗1, · · · , Q∗s−1, Q∗s−1, Y
∗
1 , · · · , Y ∗

s−1, Y ∗
s−1, X

∗
1 , · · · , X∗

s−1,
X∗

s−1, L
∗
1, · · · , L∗s−1, L∗s−1, r(k+1), γ∗(k)), where r(k+1) =

xxx(k + 2)TQ∗−1
1 xxx(k + 2). Since the optimal solution at

time k is a feasible solution of controller P1, uuu(k + 1) =
Y ∗

0 Q∗−1
0 xxx(k + 1) must satisfy the input constraints and by

(7) we can get r(k + 1) < xxx(k + 1)TQ∗−1
0 xxx(k + 1) ≤ r∗(k).

In addition, from Corollary 1, the set S1 is also an s-step
control set with the series of sets S2, · · · , Ss−1, Ss−1 and
all the sets at time k are feasible. So the above solution at
time k + 1 is also feasible.

Since r(k + 1) < xxx(k + 1)TQ∗−1
0 xxx(k + 1) < r∗(k) and

J(k + 1) = r(k + 1) + γ∗(k) < r∗(k) + γ∗(k), according to
the optimization theorem, the optimal solution J∗(k+1) ≤
J(k +1), i.e., J∗(k +1) ≤ J∗(k). We can conclude that the
closed-loop system is asymptotically stable. ¤

The controller P1 can achieve a larger initial feasible
region and better control performance. But its online com-
putation burden is still heavy. So in the following part,

renyanqing
附注
s是按照发音的,所以应该是an.
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we will give an algorithm to reduce the online computa-
tion burden so as to balance the initial feasible region, the
control performance, and the computation burden.

3.2 The robust MPC controller with low online
computation burden

From Corollary 2, several multi-step control sets can con-
struct a new multi-step control set. Thus, we can design
offline some multi-step control sets and online construct a
new multi-step control set to reduce online computation
burden of the above controller. This is a common idea in
MPC design[2, 5−8, 12]. Usually, most of the previous works
emphasized the covered region of the sets designed offline.
However, in order to improve the control performance at
the same time, i.e., to decrease the index of the terminal
multi-step control set of the robust MPC controller, we also
need a multi-step invariant set with lower index according
to Corollary 2. So, we give the following design algorithm.

Algorithm 2 (Offline design).
Step 1. Choose γ1, and s1 and solve the following opti-

mization problem

min
Q(1,i),Y(1,i),X(1,i),L(1,i)

−log (det(Q(1,0)))

s.t. (7) ∼ (10)

with Qi = Q(1,i); Yi = Y(1,i); γ = γ1;

Xi = X(1,i); Li = L(1,i), i = 0, · · · , s1 − 1 (13)

Step 2. Choose γ2 and solve the following optimization
problem

min
Q2,Y2,X2,L2

−log (det(Q2))

s.t. (8), (9), and (10)

with Qs−1 = Q2; Ys−1 = Y2; γ = γ2;

Xs−1 = X2; Ls−1 = L2 (14)

Remark 1. In the above algorithm, det (Q(1,0)) is the
value of determinant of Q(1,0), then log (det (Q(1,0))) is pro-
portional to the size of covered region of the ellipsoidal set
{xxx|xxxTQ−1

(1,0)xxx ≤ 1}. It is a convex optimization problem and

can be solved by efficient solvers. The same is for Step 2.
γ1 and γ2 with γ1 > γ2 > 0 are chosen in advance, and
γ2 is much smaller than γ1. In Step 1, which is commonly
used in the previous works, we get an s1-step control set
with its corresponding sets and index γ1. In Step 2, we
design a classical invariant set, which is also a multi-step
control set from Corollary 1. By Corollary 2, we know that
the index of the multi-step control set constructed by the
sets obtained in Steps 1 and 2 can be combined by the in-
dexes of these multi-step control sets. So the set obtained
in Step 2, whose index is very small, can improve the index
of the constructed multi-step control set.

Based on the sets obtained in Algorithm 2, we can get a
robust MPC controller as follows.

Algorithm 3 (Online robust MPC controller).

P2 : min
uuu(k),r,λ0,··· ,λs1

r + (λ0 + · · ·+ λs1−1)γ1 + λs1γ2

s.t. |uuuj(k)| ≤ ūj , j = 1, · · · , m
[

r (Ajxxx(k) + Bjuuu(k))T

Ajxxx(k) + Bjuuu(k) Q̂

]
> 0

r ≤ 1, j = 1, · · · , np

λ0 + · · ·+ λs1 ≤ 1; λi ≥ 0, i = 0, · · · , s1 (15)

where Q̂ = λ0Q(1,0) + · · ·+ λs1−1Q(1,s1−1) + λs1Q2.

Since the multi-step control sets have been designed off-
line, the online optimization variables are only the combi-
nation coefficients and the current control input. So, the
online computation burden of controller P2 is much lower
than that of controller P1.

For the controller P2, we can get the following theorem.
Theorem 3. Consider the uncertain system (1)∼ (4).

If controller P2 is feasible at time k for the current system
state xxx(k), the closed loop system is asymptotically stable.

We can prove Theorem 3 by taking the similar way as in
Theorem 2.

Remark 2. Algorithms 2 and 3 provide a method to
transfer part of online computation burden of robust MPC
controller to offline design and furthermore reduce the on-
line computation burden. With respect to the control per-
formance, according to Corollary 2, we can repeat Step 1
or Step 2 in Algorithm 2 several times to design several
sets with different indexes to further improve the control
performance.

4 Numerical examples

In this section, we give an example to illustrate the ini-
tial feasible region and the control performance of the con-
trollers developed above. In order to simplify the presenta-
tion, here we denote the controllers presented in [12] with
v = 2 as A1, [1] as A2, [4] as A3.

Consider the following uncertain system

xxx(k + 1) =

[
1.15 + 0.35 sin (k) 2 + 0.5sin(k)

0 1.15 + 0.35sin(k)

]
xxx(k) +

[
0
1

]
uuu(k)

with ū = 1, Q =

[
1 0
0 1

]
, and R = 1. The system can

be transferred to the formation with polytopic description
with

A1 =

[
1.5 2.5
0 1.5

]
, A2 =

[
0.8 1.5
0 0.8

]
, BBB =

[
0
1

]

The initial feasible regions of controller P1 with s = 2
and controller P2 with s = 5 are shown in Fig. 1, along
with A1 and A2. It is obvious that controllers P1 and
P2 can get a larger feasible region than other controllers.
The online computation burden is proportional to n3

1n2 for
an LMI optimization problem, where n1 is the number of
the optimization variables and n2 is the number of rows in
LMIs. Table 1 gives a comparison of n1 and n2 for these
controllers.

Table 1 Comparison of n1 and n2 for several RMPC
controllers

P1 P2 A1 A2 A3

n1 13 7 12 6 14

n2 37 15 31 20 34

Choose the initial system state xxx(0) = [8,−1.5]T and
xxx(0) = [1.5, 0.3]T. Respectively, adopting controller P1

with s = 2, controller P2 with s1 = 3, γ1 = 2000, γ2 = 50,
and controllers A1, A2, A3, the control costs are listed in
Table 2 and the trajectories of controllers P1 and P2 are
shown in Fig. 2 with xxx(0) = [8,−1.5]T.
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Table 2 Comparison of closed-loop costs for several RMPC
controllers

xxx(0) P1 P2 A1 A2 A3

[8,−1.5]T 229.91 243.6 258.42 261.66 261.66

[1.5, 0.3]T 24.04 26.09 32.72 37.73 37.73

Fig. 2 shows the closed loop system is stable. From Ta-
ble 2, the cost values of the controllers presented in this pa-
per are obviously smaller than those of others. That is, the
controllers in this paper can get high control performance
and large feasible region with low online computation, es-
pecially the controller P2.

Fig. 1 Comparison of initial feasible regions for several RMPC
controllers

Fig. 2 System state trajectories of controllers P1 and P2

with xxx0 = [8,−1.5]T

5 Conclusions

In this paper, a design method of robust MPC controller
for the constrained systems with polyhedral uncertainty is
proposed based on the multi-step control set. By adopting
a series of feedback control laws and optimizing the index
of the multi-step control set, the robust MPC controller can
get high control performance and large feasible region. By

making use of some useful properties of the multi-step con-
trol set, a robust MPC controller with low online compu-
tation burden is developed, which can balance the control
performance, initial feasible region, and online computation

burden reasonably.
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