
Brief Paper ACTA AUTOMATICA SINICA Vol. 34, No. 6 June, 2008

A Coupled Transiently Chaotic
Neural Network Approach for

Identical Parallel Machine
Scheduling

YU Ai-Qing1 GU Xing-Sheng1

Abstract Scheduling jobs on identical machines is a situa-
tion frequently encountered in various manufacturing systems.
In this paper, a new coupled transiently chaotic neural net-
work (CTCNN) is put forward to solve identical parallel ma-
chine scheduling. A mixed integer programming model of this
problem is transformed into a CTCNN computation architecture
by introducing a permutation matrix expression. A new com-
putational energy function is proposed to express the objective
besides all the constraints. In particular, the tradeoff problem
existing among the penalty terms in the energy function is over-
come by using time-varying penalty parameters. Finally, results
tested on 3 different scale problems with 100 random initial con-
ditions show that the network converges and can solve these
problems in the reasonable time.

Key words Scheduling, identical parallel machines, coupled
transiently chaotic neural network, time-varying penalty coeffi-
cients

Identical parallel machine scheduling problem (IPMSP)
is one of the typical NP-hard combinatorial optimization
problems, which is described as follows: scheduling n jobs
on m identical machines in parallel to optimize the objec-
tives such as makespan and sum of weighted tardiness. This
paper considers the problem of scheduling jobs on iden-
tical parallel machines, without preemption, to minimize
makespan, which was shown to be NP-hard by a reduction
to a bipartitioning problem[1].

Over the last decade, neural networks (NNs) have been
proposed as an approach to solve a wide variety of combi-
natorial optimization problems. Successful applications of
NNs to various classification problems have caused a grow-
ing research interest in neural networks. In particular, Hop-
field neural networks have provided acceptable solutions to
optimization problems such as A/D conversion, linear pro-

gramming, and the traveling salesman problem (TSP)[2−3].
However, little progress has been made for the exploration
of the use of NNs in solving multimachine scheduling prob-
lems, especially the parallel machine scheduling. One of
the difficulties is that the objective function cannot be ex-
pressed in neural network energy function. Another impor-
tant one is that there is no theoretically established method
for choosing the values of the penalty coefficients. Attempts
to resolve these difficulties have been made by researchers.
To the best of our knowledge, Akyol and Bayhan[4] were
the first to propose a Hopfield type dynamical gradient
neural network for solving the identical parallel machine
scheduling problem. The majority of the existing studies
are based on Hopfield network or its extensions. The dif-
ficulty encountered with optimizing networks based on the
Hopfield-Tank model is their tendency to settle into local
minima. Chen and Aihara[5] propose a transiently chaotic

Received April 27, 2007; in revised form December 28, 2007
Supported by National Natural Science Foundation of China

(60674075, 60774078)
1. Research Institute of Automation, East China University of

Science and Technology, Shanghai 200237, P.R.China
DOI: 10.3724/SP.J.1004.2008.00697

neural network (TCNN) by introducing transiently chaotic
dynamics into neural networks. Unlike conventional neu-
ral networks only with point attractors, TCNN has richer
and more flexible dynamics, so that it can be expected
to have higher ability of searching for globally optimal or
near-optimal solutions. In this paper, a coupled transiently
chaotic neural network is proposed as an innovative, alter-
native approach to solve identical parallel machine schedul-
ing problem to minimize the makespan.

The remainder of this paper is organized as follows. In
the next section, a mixed-integer programming model for
identical parallel machine scheduling problem is given. In
Section 2, a new coupled transiently chaotic neural network
is put forward and is applied to IPMSP. Coupled transiently
chaotic neural network (CTCNN) consists of two coupled
sub-networks, which are real valued neural network and bi-
nary valued neural network. A computation architecture
based on CTCNN is introduced and a penalty function ap-
proach is used to construct a new energy function of the
network. An improved approach for adjusting the penalty
parameters is proposed to overcome the tradeoff problem.
The computational results tested on 3 different scale prob-
lems of 100 different initial conditions are analyzed to verify
efficiency of the proposed approach in Section 3. Finally,
we give some conclusions and the future research directions
in Section 4.

1 Problem formulation
A mixed-integer programming model for this problem

(P ||Cmax) is presented in this section. First, we will de-
scribe assumptions and notations for IPMSP and then
present the formulation with a discussion of the constraints.

1.1 Assumptions

1) Each job is available at time zero and can be processed
on any machine;

2) Identical machines in parallel are continuously avail-
able and are never kept idle while work is waiting;

3) Each machine can process at most one job at a time;
4) Once processing begins on a job, it continues to com-

pletion without interruption.

1.2 Notations

i = 1, 2, · · · , m : the machines;
j = 1, 2, · · · , n : the jobs to be scheduled;
pj : processing time of job j;
xij = 1 if job j is scheduled on machine i, else xij = 0;
Cmax: makespan, the maximum completion time of all

jobs.

1.3 Mixed-integer programming model for
IPMSP

The basic IPMSP (denoted by Π) can be formulated as
a mixed-integer program as follows:

Π : min(Cmax)

s.t. Cmax −
n∑

j=1

pjxij ≥ 0 i = 1, · · · , m (1)

m∑
i=1

xij = 1 j = 1, · · · , n (2)

n∑
j=1

xij ≥ 1 i = 1, · · · , m (3)

698 ACTA AUTOMATICA SINICA Vol. 34

xij ∈ {0, 1} i = 1, · · · , m j = 1, · · · , n (4)

Constraint (1) defines the maximum completion time of
all jobs. Constraint (2) ensures that each job is scheduled
on one and only one machine. Constraint (3) ensures that
exactly m machines can be scheduled. Constraint sets (4)
provide limits on the decision variables xij . This model has
nm zero-one variables and one real-valued variable.

2 Coupled transiently chaotic neural net-
work and its application in IPMSP

A coupled transiently chaotic neural network is put for-
ward and is applied to IPMSP in this section. A new en-
ergy function is proposed for IPMSP, which includes the
objective and all the constraints. An improved approach
for adjusting the penalty parameters is presented to over-
come the tradeoff problems encountered in using penalty
function approach to construct the energy function.

2.1 CTCNN model for IPMSP

Solving an optimization problem with constraints satis-
faction requires selecting an appropriate representation of
the problem, and choosing the appropriate weights for the
connections and input biases. In our approach, the famil-
iar matrix representation of neurons for solving the TSP is
used. A solution of IPMSP is represented by a matrix of
neurons with m rows and n columns, where n and m are
the number of jobs and the number of identical machines
in parallel, respectively. Table 1 shows a feasible solution
to an example of identical parallel machine scheduling with
2 machines and 5 jobs. The permutation matrix in Table 1
represents that jobs 1 and 4 are assigned to machine 1 and
jobs 2, 3, and 5 are assigned to machine 2.

Table 1 The permutation matrix

xij Job 1 Job 2 Job 3 Job 4 Job 5

Machine 1 1 0 0 1 0

Machine 2 0 1 1 0 1

In the presented CTCNN, we use two types of neurons:
a continuous type neuron to represent real valued variables
Cmax and discrete type of neurons to represent binary val-
ued variables xij . The input and output to these two type
neurons are denoted by UCmax, Uxij , and V Cmax, V xij ,
respectively. According to constraint (1), we can figure out
that the objective Cmax is relevant to xij , which means
neurons V Cmax are coupled with neuron V xij . Therefore,
a coupled transiently chaotic neural network is proposed by
updating two types of neurons in different ways.

All the neurons are updated by the following equations
(5) ∼ (9), which are partly based on TCNN presented in [5].
Neuron outputs are calculated by V = f(U), where f(·) is
the activation function. In this paper, there are two types
of neurons and each type has its own activation function.

UCmax(t + 1) = kUCmax(t) + α(− ∂E

∂V Cmax
)−

z(t)(V Cmax(t)− I0)
(5)

Uxij (t + 1) = kUxij (t) + α

(
− ∂E

∂V xij

)
−

z (t) (V xij (t)− I0)
(6)

z (t + 1) = (1− β) z (t) (7)

V Cmax =

{
UCmax, UCmax ≥ 0
0, otherwise

(8)

V xij (t) =
1

1 + e−Uxij(t)/ε
(9)

where
E =energy function defined in Section 2.2;
α =positive scaling parameter for inputs;
k =damping factor of nerve membrane (0 ≤ k ≤ 1);
ε =steepness parameter of the output function (ε > 0);
z(t) = self-feedback connection weight or refractory

strength z(t) ≥ 0;
β =damping factor of the time-dependent zi(t) (0 ≤ β ≤

1);
I0 =positive parameter.

2.2 Energy function and the dynamics of CTCNN
for IPMSP

To design an analog neural network for IPMSP, we con-
struct a suitable computational energy function whose min-
imization leads to a system of differential equations, some-
times called equations of motion. The formulation of the
equations of motion is the central issue in the design of an
optimizing neural network.

A neural network energy function for combinatorial op-
timization is usually of the form:

E = A · (cos t) +
∑

Bi · (violation of constraint i) (10)

where penalty weights A and Bi > 0, cost is the objective
function value that is to be optimized and is independent of
constraint violations. By minimizing the energy function
E, we attempt to minimize the cost, whereas simultane-
ously maximizing the satisfaction of the constraints. The
successful use of such an energy function requires an ap-
propriate selection of values for parameters A and Bi.

According to the mixed-integer programming model pre-
sented in Section 1, there are three constraints to be en-
coded in CTCNN architecture.

Here, the first term E1 adds a positive penalty if the
solution does not satisfy constraint (1).

E1 =

m∑
i=1

v(

n∑
j=1

pjV xij − V Cmax) (11)

In accordance with constraints (2) and (3), E2 and E3

will take the following forms.

E2 =

n∑
j=1

m∑
i=1

m∑

k=1,k 6=i

V xijV xkj (12)

E3 = (

m∑
i=1

n∑
j=1

V xij − n)2 (13)

where v represents the penalty function[6].

v(ξ) =

{
ξ2, ξ > 0
0, ξ ≤ 0

(14)

Equation (11) is zero if and only if constraint (1) is sat-
isfied, which ensures that the objective Cmax is at least the

No. 6 YU Ai-Qing and GU Xing-Sheng: A Coupled Transiently Chaotic Neural Network Approach for · · · 699

completion time of each machine. Equation (12) is zero if
and only if each column in the matrix of neurons does not
contain more than one neuron turned on (V xij = 1), the
rest of the neurons in that particular column being turned
off (V xij = 0). (13) is zero if and only if there are n neurons
being turned on in the whole matrix of neurons.

The global energy function for this network consisting of
the objective function Cmax and these constraints of IPMSP
can be defined as

E = A · V Cmax + B1 · E1 + B2 · E2 + B3 · E3 (15)

where A, B1, B2, and B3 are positive penalty parameters.
By setting each connection weight the same as the Hop-

field neural network, the differential equations describing
the network dynamics of CTCNN for the IPMSP are ob-
tained as follows.

∂E

∂V Cmax
= A+B1·(−1)·

m∑
i=1

v′(
n∑

j=1

pjV xij − V Cmax) (16)

∂E

∂V xij
= B1 · pj · v′(

n∑
l=1

plV xil − V Cmax)+

B2 · 2 ·
m∑

k=1,k 6=i

V xkj+

B3 · 2 · (
m∑

k=1

n∑
l=1

V xkl − n)

(17)

where v′ is the derivative of the penalty function v.

v′(ξ) =

{
2ξ, ξ > 0
0, ξ ≤ 0

(18)

2.3 Time-varying penalty coefficients

Because there is no theoretically established method for
choosing the values of the penalty coefficients for an ar-
bitrary optimization problem, the appropriate values for
these coefficients can be determined by empirically running
simulations and observing the optimality and/or feasibility

of the resulting equilibrium points of the system[6]. Re-
cently, time based penalty parameters are proposed to over-
come the tradeoff. In order to determine the appropriate
values of the penalty parameters, Wang[7] used monoton-
ically time-varying penalty parameters for solving convex
programming problems. Akyol and Bayhan[4] used time
varying penalty parameters increased in a linear fashion in
a stepwise manner to reduce the feasible region.

In this paper, penalty parameters A, B1, B2, and B3

are time variables, starting with small values and continu-
ously increasing when their corresponding constraints are
not satisfied during the optimization process. First, we
try to satisfy the inequality constraints by penalizing them
and run the simulations without considering any other con-
strains. Second, the column constraint is taken into con-
sideration and the corresponding penalty parameter will be
adjusted when both of the constraints are satisfied. Third,
the penalty parameter of the objective function is set to 1
and the corresponding penalty parameter will be adjusted
when all the constraints are satisfied.

2.4 Pseudocode of CTCNN based scheduling al-
gorithm

In this subsection, the pseudocode of CTCNN based
scheduling algorithm will be described in detail.

Step 1. Set parameters pj , m, and n for IPMSP.
Step 2. Determine CTCNN parameters α, β, k, ε, I0,

and z(0).
Step 3. Generate the initial neuron states randomly.
Step 4. Set penalty parameters A = B2 = B3 = 0 and

B1 = 1 (B1 is the coefficient of the inequality constraint).
If the constraint associated with parameter B1 is satisfied,
go to Step 5, otherwise increase the value of B1 and then
go to Step 7.

Step 5. Select parameter B2 (a higher value than B1

to increase the effect of the column constraint) and use the
predetermined value of B1 to check whether both of the
constraints associated with these parameters are satisfied.
If yes, go to Step 6, otherwise increase the value of param-
eter whose associated constraint is not satisfied and then
go to Step 7.

Step 6. Set A = 1, select parameter B3 (a higher value
than B2 to increase the effect of the global constraint),
and use the predetermined values of B1 and B2 to check
whether all the constraints associated with these parame-
ters are satisfied. If yes, go to Step 7, otherwise increase
the value of parameter whose associated constraint is not
satisfied and then go to Step 7.

Step 7. Update all the neurons using (5) ∼ (9), (16) ∼
(18) and repeat a number of times. If A = B2 = B3 = 0, go
to Step 4. If A = B3 = 0, go to Step 5. If A = 1, increase
the value of parameter whose associated constraint is not
satisfied.

Step 8. If the end condition is not satisfied, go to Step
7, otherwise stop the evolution and check the feasibility and
optimality of the final solution.

3 Simulation analysis
To evaluate performance of the proposed CTCNN, com-

putational experiments were performed on randomly gen-
erated test problems. For the experiments, 3 different size
problems were generated. The processing time pj of job j
was generated from the uniform distribution over the inter-
val [1.00, 5.00]. Considering the solution quality depending
highly on initial conditions, all the solutions were obtained
by simulations with 100 random initial conditions.

CTCNN parameters for 3 different size problems were de-
termined by trial and error as shown in Table 2. Parameter
α affects the energy function to generate transient chaos.
Parameter β governs the bifurcation speed of the transient
chaos. In Table 3, the results are compared with those of
Hopfield-like dynamic neural network (HDNN) proposed in
[4] in terms of best Cmax, average Cmax, worst Cmax and
percent feasibility of the solutions (PFS). The results show
that along with the increase of the test problem size, the
percent feasibility of solutions decreased and the networks
were trapped into local minima more easily. Compared to
HDNN, the proposed CTCNN might find a better solution
to Cmax.

Table 2 CTCNN parameters for 3 different size problems

Problem size (m× n) k α β I0 ε z(0)

3× 10 0.997 0.008 0.001 0.65 0.008 0.08

3× 20 0.997 0.010 0.002 0.65 0.008 0.08

3× 50 0.998 0.015 0.0008 0.5 0.008 0.1

We had to rely upon time varying penalty parameters, as
there was no systematic guidance available as to what the
values of the parameters ought to be. However, in the ex-

700 ACTA AUTOMATICA SINICA Vol. 34

Table 3 Results of 100 different initial conditions for 3 problems

CTCNN HDNN

Problem size (m× n) Best Cmax Average Cmax Worst Cmax PFS Best Cmax Average Cmax Worst Cmax PFS

3× 10 9.74 10.91 11.49 100% 10.35 11.71 12.42 92%

3× 20 20.00 20.52 22.18 96% 21.08 22.29 23.36 88%

3× 50 47.61 48.52 49.10 89% 48.84 50.18 51.41 73%

periments, an appropriate parameter set leading to a good
solution could be obtained within a few runs, each of which
used random initial state. It was noticed that when values
were too large, the network could not achieve the steady
state. Fig. 1 shows the time varying penalty parameters of
the best solutions for the 3 different size problems. The co-
efficient B1 of the inequality constraint and coefficient B3

of the global constraint were higher than parameter B2 of
the column constraint during the evolution process. Along
with the increase of the test problem size, evolution itera-
tions aggrandized correspondingly. Fig. 2 is the Gantt chart
of the best solution for test problem 3 (3×50). The com-
putation results show that CTCNN proposed for IPMSP
can provide efficient solutions for medium even large sized
problems.

(a)

(b)

(c)

Fig. 1 Time varying penalty parameters of the best solutions
for the 3 test problems

Fig. 2 Gantt chart of the best solution for test problem 3
(3×50)

4 Conclusion
In this paper, a coupled transiently chaotic neural

network is presented to solve identical parallel machine
scheduling problems. A new computational energy func-
tion for IPMSP is proposed to obtain the near-optimal and
optimal solutions, including the objective and all the con-
straints. Moreover, the tradeoff problem existing among
the penalty terms included in the energy function is over-
come by using time-varying penalty parameters. Simula-
tion experiments show that the proposed network can gen-
erate feasible solutions. After running simulations with

No. 6 YU Ai-Qing and GU Xing-Sheng: A Coupled Transiently Chaotic Neural Network Approach for · · · 701

time evolving penalty coefficients, near optimal and opti-
mal solutions can be found in a reasonable and finite time.
Because parallel machine scheduling problems are NP-hard,
it is apparent that an optimum solution to a large problem
is difficult to find. However, in most cases, what is truly
desired is a very good solution.

CTCNN model for the basic identical parallel machine
scheduling problem is constructed in this paper. Further re-
search directions can topics hotspots such as construction
of models with setup times, job splitting, and ready time for
IPMSP or uniform parallel machine scheduling problems.
In addition, more effective architecture of NNs, permuta-
tion matrix expression, and construction of more suitable
energy function might also serve as future research topics.

References

1 Thatcher J W. Complexity of Computer Computations. New
York: Plenum Press, 1972

2 Hopfield J J, Tank D W. Neural computation of decisions in
optimization problems. Biological Cybernetics, 1985, 52(3):
141−152

3 Tank D W, Hopfield J J. Simple neural optimization net-
works: an A/D converter, signal decision circuit, and a lin-
ear programming circuit. IEEE Transactions on Circuits and
Systems, 1986, 33(5): 533−541

4 Akyol D E, Bayhan G M. Minimizing makespan on identical
parallel machines using neural networks. In: Proceedings of
International Conference on Neural Information Processing.
Heidelberg, Germany: Springer Berlin, 2006. 553−562

5 Chen L, Aihara K. Chaotic simulated annealing by a neural
network model with transient chaos. Neural Networks, 1995,
8(6): 915−930

6 Watta P B, Hassoun M H. A coupled gradient network
approach for static and temporal mixed-integer optimiza-
tion. IEEE Transactions on Neural Networks, 1996, 7(3):
578−593

7 Wang J. A time-varying recurrent neural system for con-
vex programming. In: Proceedings of International Joint
Conference on Neural Networks. Seattle, USA: IEEE, 1991.
147−152

YU Ai-Qing Ph.D. candidate in Research Institute of Au-
tomation at East China University of Science and Technology.
Her research interest covers intelligent optimization for produc-
tion scheduling. E-mail: yuaiqing@mail.ecust.edu.cn

GU Xing-Sheng Professor in Research Institute of Automa-
tion at East University of Science and Technology. His research
interest covers control theory and control engineering. Corre-
sponding author of this paper. E-mail: xsgu@ecust.edu.cn

