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Time-delay Positive Feedback

Control for Nonlinear

Time-delay Systems with Neural
Network Compensation

NA Jing1 REN Xue-Mei1 HUANG Hong1

Abstract A new adaptive time-delay positive feedback con-
troller (ATPFC) is presented for a class of nonlinear time-delay
systems. The proposed control scheme consists of a neural
networks-based identification and a time-delay positive feedback
controller. Two high-order neural networks (HONN) incorpo-
rated with a special dynamic identification model are employed
to identify the nonlinear system. Based on the identified model,
local linearization compensation is used to deal with the un-
known nonlinearity of the system. A time-delay-free inverse
model of the linearized system and a desired reference model
are utilized to constitute the feedback controller, which can lead
the system output to track the trajectory of a reference model.
Rigorous stability analysis for both the identification and the
tracking error of the closed-loop control system is provided by
means of Lyapunov stability criterion. Simulation results are in-
cluded to demonstrate the effectiveness of the proposed scheme.

Key words Time-delay system, neural networks, system
identification, adaptive control, linearization compensation

Time-delay is unavoidable in many control systems due
to the transmission delay of control information between
different parts of the system (e.g., telerobot control sys-
tems, networked control systems, or process control sys-
tems). The presence of time-delay may lead to a sluggish
response, limit the achievable performance of controller,
and even trigger instability of the closed-loop systems.

The research on on-line identification and control for
linear time-delay systems has been around for several
decades[1−4]. However, only a few time-delay compensa-
tion strategies and control structures are currently available
for nonlinear time-delay systems, such as nonlinear Smith
predictor[5], nonlinear internal model control with feedback
compensation (IMC-FC)[6], and input-output linearization

compensation algorithm[7]. Mainly, these methods focus
on the regulation problem and are only valid for partially
known processes. If the system model does not match
the time-delay plant exactly (i.e., system dynamics are un-
known or with remarkable disturbance), the control system
would become unstable. In this paper, an adaptive time-
delay positive feedback control (ATPFC) scheme is inves-
tigated for a class of unknown nonlinear affine time-delay
systems. First, a special dynamic identification model in-
cluding two high-order neural networks (HONN) is con-
structed to estimate the unknown nonlinear time-delay sys-
tems. Based on the identified model, local NN-based lin-
earization compensation technology is then employed to
deal with the unknown nonlinearity of the system. For
the local linearized system, an adaptive time-delay positive
feedback controller is directly designed to guarantee the
tracking performance.
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The roots of our ATPFC can go back to the adaptive
time-delay controller (ATDC)[8], which is only suitable for
linear time-delay systems. However, the application of
ATDC is limited because such a scheme cannot deal with
the nonlinear time-delay system, and there are no theo-
retic results on the stability analysis of the control system.
The main contribution of this paper is that NN-based lo-
cal linearization compensation is investigated originally in
order to extend the principle of ATDC to nonlinear time-
delay systems and to improve the robust performance of the
closed-loop control system. Furthermore, the stability anal-
ysis of ATDC strategy incorporating with HONNs identi-
fication and linearization compensation is also given based
on Lyapunov theory. The notion of combining adaptive
technology[9] with neural identification[10−12] is utilized to
deduce the adaptive weights updating-law of HONNs, and
thus, no off-line learning phase[13] is required. A salient
characteristic of the resulting method is that it is a time-
delay independent strategy, which can deprive the time-
delay from the overall closed-loop system.

The remainder of paper is organized as follows. Back-
ground and problem statement are given in Section 1. In
Section 2, the special dynamic identification model is em-
ployed to identify the unknown nonlinear time-delay sys-
tem. Section 3 describes the implementation of adaptive
time-delay positive feedback controller with HONNs-based
linearization compensation. Section 4 evaluates the pro-
posed algorithms with simulation. Conclusions are pre-
sented in Section 5.

1 Background and problem statement
Consider a class of single-input single-output (SISO)

nonlinear affine systems with input time-delay described
by state-space representation

ẋ1(t) = x2(t)

· · · · · · (1)

ẋn(t) = f(x̄xx(t)) + g(x̄xx(t))u(t− τ) + d(t)

y(t) = x1(t)

or equivalent differential equation as below

y(n)(t) = f(x̄xx(t)) + g(x̄xx(t))u(t− τ) + d(t) (2)

where x̄xx(t) = [x1(t), x2(t), · · · , xn(t)]T = [y(t), ẏ(t), · · · ,

y(n−1)(t)]T ∈ Rn, u(t) ∈ R, and y(t) ∈ R are the state
variables, input, and output of the system, respectively;
f(x̄xx), g(x̄xx) : Rn → R ∈ C(s) are unknown nonlinear
smooth functions; τ is a known constant time delay; d(t) is
an unknown disturbance bounded by |d(t)| ≤ D with the
positive constant D.

The control objective can be described as: given a de-
sired trajectory ym(t), which is the output of a reference
model (3), to find a control u(t), such that the system out-
put y(t) tracks the delayed trajectory ym(t − τ) with an
acceptable accuracy, while all signals of the control system
remain bounded.

y(n)
m (t) = −

n−1∑
i=0

aiy
(i)
m (t) + R(t) (3)

where A(s) = sn + an−1s
n−1 · · · + a0 is a Hurwitz poly-

nomial, which will be used as a part of our controller. R(t)
is a bounded input to the model (3) and the whole control
system.

Assumption 1. The sign of g(x̄xx) is positive, and there
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exists a known constant g0 > 0, such that g(x̄xx) > g0 > 0,
∀ x̄xx ∈ Rn.

Remark 1. The desired reference model (3) can be
rewritten as a transfer function

1

A(s)
=

1

sn + an−1sn−1 + · · ·+ a0

A(s) can be selected by designers to satisfy the required
system response with the given input R(t).

From now on, without special description, R,Rn, and
Rm×n denote the real number set, the real n-vector set,
and the real m× n matrix set, respectively. The ‖•‖ de-
notes any suitable norm, where ‖Axxx‖2 ≤ ‖A‖F ‖xxx‖2 with

xxx ∈ Rn, and A ∈ Rm×n. To avoid cluttering the notation,
the argument of all time signals will be omitted except for
the case when it appears delayed or it is necessary

2 Neural network identification for non-
linear time-delay system

The design of the adaptive control scheme for the time-
delay nonlinear system (1) proceeds in two steps. First,
we employ a special dynamic identification with two neural
networks to identify the unknown nonlinear time-delay sys-
tem in this section. Then, an adaptive time-delay positive
feedback controller incorporating with linearization com-
pensation is presented in Section 3.

As a typical kind of linearly parameterized neural net-
work that is widely used in the identification and control of
nonlinear systems[14−17], the high-order neural network can
emulate a nonlinear function up to a small error tolerance
over a compact set.

For system (2), the identification model can be described
by the following differential equation with HONNs

ŷ(n)
p = −

n−1∑
i=0

aiŷ
(i)
p + ŴWW

T

1 ΦΦΦ1(x̄xx) + ŴWW
T

2 ΦΦΦ2(x̄xx)u(t− τ) + ξ(t)

(4)
where ξ(t) is a robust modification term provided by
(12), which can guarantee the convergence of the iden-

tification error; x̄xx(t) = [y(t), ẏ(t), · · · , y(n−1)(t)]T ∈ Rn

is the input to the neural networks and x̄xxp(t) = [ŷp(t),
˙̂yp(t), · · · , ŷ

(n−1)
p (t)]T ∈ Rn is the output of identification;

ŴWW i = [ŵi1, ŵi2, · · · , ŵiLi ]
T ∈ RLi(i = 1, 2) are the esti-

mated weight vectors; Li(i = 1, 2) are the numbers of the
neurons, and ΦΦΦi(x̄xx) ∈ RLi(i = 1, 2) are Li-vectors with the
element Φik(x̄xx), k = 1, · · · , Li(i = 1, 2) of the form

Φik(x) =
∏

j∈Jik

[σ(y(j))]dk(i) (5)

where Jik(k = 1, · · · , Li; i = 1, 2) are collections of Li un-
ordered subsets of {0, 1, · · · , n−1}; dk(i)(k = 1, · · · , Li; i =
1, 2) are nonnegative integers.

The function σ(·) is a monotonically increasing, differ-
entiable function, which is usually represented by sigmoid
form

σ(x) =
a

1 + e−bx
− c (6)

where parameters a and b are positive real numbers that
represent the bound and slope of the sigmoidal curvature,
and c is a real number that denotes a bias constant, respec-
tively.

Due to the approximation error of the neural networks,
there exist ideal weights WWW ∗

i = [w∗i1, w
∗
i2, · · · , w∗iLi

]T ∈

RLi(i = 1, 2) and reconstruction errors εi(i = 1, 2), such
that system (2) can be described as

y(n) =−
n−1∑
i=0

aiy
(i) + WWW ∗T

1 ΦΦΦ1(x̄xx) + ε1+

[WWW ∗T
2 ΦΦΦ2(x̄xx) + ε2]u(t− τ) + d

(7)

The following standard assumptions are stated:
Assumption 2. The approximation errors εi are

bounded by |εi| ≤ εiN , i = 1, 2, with εiN ≥ 0.
Assumption 3. The optimal weight vectors WWW ∗

i are
bounded by ||WWW ∗

i || ≤ WiN , i = 1, 2, with WiN ≥ 0.

Remark 2. The term −∑n−1
i=0 aiy

(i) is added into sys-

tem (7), and the function f(x̄xx) +
∑n−1

i=0 aiy
(i) is estimated

by a HONN:

n−1∑
i=0

aiy
(i) + f(x̄xx) =WWW ∗T

1 ΦΦΦ1(x̄xx) + ε1 =

ŴWW
T

1 ΦΦΦ1(x̄xx) + W̃WW
T

1 ΦΦΦ1(x̄xx) + ε1

(8)

where W̃WW i = WWW ∗
i − ŴWW i, i = 1, 2, are the estimated weight

error vectors.

Then, in the next section, ŴWW
T

1 ΦΦΦ1(x̄xx) , ŴWW
T

2 ΦΦΦ2(x̄xx) will be
used as linearization compensation terms, which can cancel
the unknown nonlinear dynamic f(x̄xx) and g(x̄xx) of system
(2). Thus, system (2) will become a local linear time-delay
plant.

Define the identification error vector as

ēee(t) = x̄xx(t)− x̄xxp(t) = [y − ŷp, ẏ − ˙̂yp, · · ·, y(n−1) − ŷ(n−1)
p ]T

(9)
and the filtered identification error as

r(t) = [ λ̄λλ
T

1 ]ēee(t) (10)

where λ̄λλ = [λ1, λ2, · · · , λn−1]
T is an appropriately chosen

vector (i.e., sn−1 +λn−1s
n−2 + · · ·+λ1 is Hurwitz), so that

ēee(t) → 0 as r(t) → 0. Subtracting (4) into (7), we obtain
the error equation

y(n) − ŷ(n)
p =−

n−1∑
i=0

ai(y
(i) − ŷ(i)

p ) + W̃WW
T

1 ΦΦΦ1(x̄xx) + ε1+

(W̃WW
T

2 ΦΦΦ2(x̄xx) + ε2)u(t− τ)− ξ(t) + d
(11)

A choice of the robust modification term ξ(t) is

ξ(t) =kvr(t) + [ 0 λ̄λλ
T ]ēee(t)− [a0, · · · , an−1]ēee(t) =

kvr(t) + [−a0, λ1 − a1, · · · , λn−1 − an−1]ēee(t)
(12)

where kv is a positive parameter. Then, from (9)∼ (11),
the time derivative of the filtered error can be written as

ṙ(t) =− kvr(t) + W̃WW
T

1 ΦΦΦ1(x̄xx) + ε1+

W̃WW
T

2 ΦΦΦ2(x̄xx)u(t− τ) + ε2u(t− τ) + d
(13)

Remark 3. In this section, the control input u(t) of
system (2) is assumed to be bounded for all t > 0. This
assumption is required for system identification. The con-
vergence of identification (4) is ensured only if the input
u(t) is bounded.

Generally, the nonlinear separation principle is not valid,
thus this assumption is quite restrictive for a control sys-
tem. However, it will be guaranteed when the identification
is combined with a time-delay positive feedback controller
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in the closed-loop system in Section 3. We will provide the
stability proof of the overall system there, including identi-
fication and controller simultaneously, and the assumption
will be eliminated then. But now, we consider u(t) < U
with U ≥ 0, in order to show the completeness of the iden-
tification design.

Define Ω2 = {ŴWW 2 ∈ RL2 |g(ŴWW 2) = g0 − ŴWW 2ΦΦΦ2(x̄xx) ≤ 0}
as the compact set of ŴWW 2. In order to ensure that the As-
sumption 1 is satisfied, the adaptive weight updating laws
of HONNs are provided by

{
˙̂

WWW 1 = F1ΦΦΦ1(x̄xx)r −KeF1 |r|ŴWW 1

˙̂
WWW 2 = Pr oj(F2ΦΦΦ2(x̄xx)ru(t− τ)−KeF2 |r|ŴWW 2)

(14)

with the design parameters Fi > 0, Ke > 0, i = 1, 2. The
projection algorithm Proj(·) is defined as in [9]

Proj(θθθ) =





θθθ, if ŴWW 2 ∈ Ω2 or ŴWW 2 ∈ δΩ2 and θθθT∇g ≤ 0

θθθ − (∇g∇gT)

∇gT∇g
θθθ, otherwise

where θθθ = F2ΦΦΦ2(x̄xx)ru(t− τ)−KeF2 |r|ŴWW 2.
Theorem 1. Given Assumptions 1∼ 3 and Remark 3,

consider system (2) with the identification model described
in (4), and the HONN weight updating laws (14). Then, the
filtered identification error r(t) and estimated weight errors

W̃WW i, i = 1, 2 are uniformly ultimately bounded (UUB).
Proof. Select the Lyapunov function

V =
1

2
r2 +

1

2
W̃WW

T

1 F−1
1 W̃WW 1 +

1

2
W̃WW

T

2 F−1
2 W̃WW 2 (15)

Differentiating V along the trajectory (13) and (14) yields

V̇ = rṙ + W̃WW
T

1 F−1
1

˙̃
WWW 1 + W̃WW

T

2 F−1
2

˙̃
WWW 2 =

−kvr2 + W̃WW
T

1 ΦΦΦ1(x̄xx)r + W̃WW
T

2 ΦΦΦ2(x̄xx)ru + ε1r + ε2ur +

rd + W̃WW
T

1 F−1
1 (−F1ΦΦΦ

T
1 (x̄xx)r + KeF1 |r|ŴWW 1) +

W̃WW
T

2 F−1
2 (−F2ΦΦΦ

T
2 (x̄xx)ru + KeF2 |r|ŴWW 2) =

−kvr2 + Ke |r|W̃WWT

1 ŴWW 1 + Ke |r|W̃WWT

2 ŴWW 2 + r∆δ (16)

where ∆δ = ε1 + ε2u + d < ε1N + ε2NU + D is a bounded
error.

Since W̃WW
T

i ŴWW i = W̃WW
T

i (WWW ∗
i−W̃WW i) = 〈W̃WW i,WWW

∗
i 〉−‖W̃WW i‖2F , i =

1, 2 , where 〈W̃WW,WWW ∗〉 = tr(W̃WW
T
WWW ∗) and ‖W̃WW‖2F = tr(W̃WW

T
W̃WW )

denote the inner product and the Frobenius norm, respec-
tively, then

V̇ ≤ −kv |r|2 + Ke |r|
(

W1N

∥∥∥W̃WW 1

∥∥∥
F
−

∥∥∥W̃WW 1

∥∥∥
2

F

)
+

Ke |r|
(

W2N

∥∥∥W̃WW 2

∥∥∥
F
−

∥∥∥W̃WW 2

∥∥∥
2

F

)
+ |r|∆δ ≤

− |r|
{

kv |r|+ Ke

(∥∥∥W̃WW 1

∥∥∥
F
− 1

2
W1N

)2

+

Ke

(∥∥∥W̃WW 2

∥∥∥
F
− 1

2
W2N

)2

−
(

Ke

4
W 2

1N +
Ke

4
W 2

2N + ∆δ

)}

(17)

From (17), it can be shown that V̇ is negative if

|r| ≥ Ke(W
2
1N + W 2

2N ) + 4∆δ

4kv

(18)

∥∥∥W̃WW 1

∥∥∥
F
≥ 1

2
W1N +

√
Ke(W 2

1N + W 2
2N ) + 4∆δ

4Ke

(19)

∥∥∥W̃WW 2

∥∥∥
F
≥ 1

2
W2N +

√
Ke(W 2

1N + W 2
2N ) + 4∆δ

4Ke

(20)

Therefore, inequalities (18)∼ (20) give the attractive com-

pact sets for ‖W̃WW i‖F and |r|, which means ‖W̃WW i‖F and |r|
are uniformly ultimately bounded (UUB) based on the ex-
tended Lyapunov theorem. Then, from (10), the identifi-
cation error vector ēee(t) is also bounded. Furthermore, the
boundedness of the filtered identification error r(t) can be
kept arbitrarily small if the gain kv in the robust term is
large enough. ¤

3 Adaptive time-delay positive feedback
control

In this section, we investigate a NN-based local feedback
linearization compensation technology to cancel unknown
nonlinear terms of system (2), and then present an adaptive
time-delay positive feedback control configuration to deal
with the nonlinear affine time-delay system (2). The over-
all adaptive time-delay positive feedback control system is
depicted in Fig. 1 (see next page).

Subtracting the compensation term ŴWW
T

1 ΦΦΦ1(x̄xx) from (2)
and using (8), we get

y(n) =−
n−1∑
i=0

aiy
(i) + W̃WW

T

1 ΦΦΦ1(x̄xx) + ε1+

(WWW ∗T
2 ΦΦΦ2(x̄xx) + ε2)u(t− τ) + d

(21)

The projection algorithm given by (14) guarantees

ŴWW
T

2 ΦΦΦ2(x̄xx) 6= 0, then from Fig. 1, we can obtain

u(t− τ) =
1

ŴWW
T

2 ΦΦΦ2(x̄xx)
u1(t− τ) (22)

where u1(t) is the control signal from time-delay controller.
Substituting (22) into (21) yields

y(n) = −
n−1∑
i=0

aiy
(i) + W̃WW

T

1 ΦΦΦ1(x̄xx) + ε1 +

WWW ∗T
2 ΦΦΦ2(x̄xx) + ε2

ŴWW
T

2 ΦΦΦ2(x̄xx)
u1(t− τ) + d =

−
n−1∑
i=0

aiy
(i) + u1(t− τ) + ∆L (23)

where ∆L = W̃WW
T

1 ΦΦΦ1(x̄xx) + ε1 +
W̃WW

T

2 ΦΦΦ2(x̄xx) + ε2

ŴWW
T

2 ΦΦΦ2(x̄xx)
u1(t− τ) + d

is modeling error.
According to the above local linearization compensation

process, it is easy to note that system (2) is translated into
a known local linear time-delay plant (23) with an external
disturbance ∆L. The inverse of time-delay deprived part of
the plant (23) can be obtained by filter technology. Then,
we utilize the desired reference model (3) with a positive
time-delay feedback term e−sτ to constitute the time-delay
positive feedback controller.

From Fig. 1, define the control error E(t) as

E(t) = R(t)− [y(t)− yd(t− τ)] = R(t)− ec(t) (24)

where R(t) is the given bounded input of the whole system
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Fig. 1 Overall adaptive time-delay positive feedback control structure

and the reference model (3), y(t) is the output of system
(2), and yd(t− τ) is the control feedback signal in the pre-
sented strategy, given by

y
(n)
d (t) = −

n−1∑
i=0

aiy
(i)
d (t) + E(t) (25)

Selecting a Hurwitz filter polynomial M(s) = sm +∑m−1
i=0 mis

i, where m (m ≥ n) is the order of the filter poly-
nomial, we can obtain that the filter inverse of time-delay
deprived part of system (23) is A(s)/M(s). Therefore, the
control signal of (23) is

u1(s) =
A(s)

M(s)
yd(s) =

sn + an−1s
n−1 + · · ·+ a0

sm + mm−1sm−1 + · · ·+ m0
yd(s)

(26)

Denote the feedback error vector as

ēeec(t) = ȳyy(t)− ȳyyd(t− τ) = [y(t)− yd(t− τ), ẏ(t)−
ẏd(t− τ), · · · , y(n−1)(t)− y

(n−1)
d (t− τ)]T

(27)

where ȳyyd(t− τ) = [yd(t− τ), ẏd(t− τ), · · · , y
(n−1)
d (t− τ)]T

and ȳyy(t) = [y(t), ẏ(t), · · · , y(n−1)(t)]T are control feedback
vector and output vector, respectively.

Considering (23), (25), and (27), we rewrite them into
state space forms described by

˙̄yyy(t) = Aȳyy(t) + DDDy (28)

˙̄yyyd(t− τ) = Aȳyyd(t− τ) + DDDd (29)

˙̄eeec = Aēeec + DDDc (30)

where

A =




0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

−a0 −a1 −a2 · · · −an−1




DDDy =




0
...
0

u1(t− τ) + ∆L


 , DDDd =




0
...
0

E(t− τ)




DDDc =




0
...
0

u1(t− τ) + ∆L− E(t− τ)


 (31)

Considering the definitions of feedback control error vec-
tor and (25), there exist constants C1, C2 ≥ 0, such that

|E(t)| ≤ C1 ‖ȳyyd(t)‖+ C2 (32)

Recalling the modeling error ∆δ in (16) and ∆L in (23),
and using that M(s) and A(s) are all stable polynomials,
then from (26)∼ (32), it is easy to prove that

‖DDDc‖ ≤ k1 ‖ȳyyd(t− τ)‖+ k2 (33)

|∆δ| ≤ k3 ‖ȳyyd(t− τ)‖+ k4 (34)

where k1, k2, k3, and k4 ≥ 0 are positive constants.
Theorem 2. Consider system (2) with HONN identifi-

cation model (4) and NN-based linearization compensation
(21) and (22), whose weight updating laws are given by
(14), and the control law is chosen as (26). Then, for a
properly chosen design parameter kv, the following proper-
ties hold:

1) For any bounded input R(t), the filtered identifica-
tion error r(t), the control feedback vector ȳyyd(t − τ), and
feedback error vector ēeec(t) are UUB;

2) All the signals in the closed-loop system are bounded;
3) The tracking error between system (2) and desired

reference model (3) et(t) = y(t)− ym(t− τ) is bounded.
Proof. Since A is a stable matrix, for any symmet-

ric positive definite matrices Qd, Qc , there exist symmet-
ric positive definite matrices Pd, Pc satisfying the following
equations

ATPd + PdA = −Qd

ATPc + PcA = −Qc
(35)

1) Select the Lyapunov function candidate

V (t) =
1

2
{W̃WWT

1 (t)F−1
1 W̃WW 1(t) + W̃WW

T

2 (t)F−1
2 W̃WW 2(t)+

r2(t) + ēeeT
c (t)Pcēeec(t) + ȳyyT

d (t− τ)Pdȳyy
T
d (t− τ)}

(36)

Taking the time derivative of (36) along (13)∼ (14),
(29)∼ (30), and using (32)∼ (34), we can get1

V̇ = rṙ + W̃WW
T

1 F−1
1

˙̃
WWW 1 + W̃WW

T

2 F−1
2

˙̃
WWW 2 +

1

2
˙̄eeeT
c Pcēeec +

1

2
ēeeT

c Pc ˙̄eeec +
1

2
˙̄yyyT
d Pdȳyyd +

1

2
ȳyyT

d Pd ˙̄yyyd =

−kvr2 + Ke |r|W̃WWT

1 ŴWW 1 + ke |r|W̃WWT

2 ŴWW 2 + r∆δ −
1

2
ēeeT

c Qcēeec + ēeeT
c PcDDDc − 1

2
ȳyyT

d Qdȳyyd + ȳyyT
d PdDDDd (37)

1For convenience of notation, the argument of time-delay in ȳyyd(t− τ)is also omitted during the proof of the Theorem 2.
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Similar to (17), we can prove that

W̃WW
T

i ŴWW i ≤ −
(∥∥∥W̃WW i

∥∥∥
F
− 1

2
WiN

)2

+
1

4
W 2

iN (38)

Applying ab ≤ (a2 + k2b2)/2k, k = 1 , we can get the fol-
lowing result from (37)

V̇ (t) ≤− kv |r|2 +
Ke

4
|r| (W 2

1N + W 2
2N ) + |r| k3 ‖ȳyyd‖+

|r| k4 − 1

2
λm(Qc) ‖ēeec‖2 + λM (Pc) ‖ēeec‖ k1 ‖ȳyyd‖+

λM (Pc) ‖ēeec‖ k2 − 1

2
λm(Qd) ‖ȳyyd‖2 +

λM (Pd) ‖ȳyyd‖ (C1 ‖ȳyyd‖+ C2) ≤
|r| {−(kv − k3

2
) |r|+ Ke

4
(W 2

1N + W 2
2N ) + k4}+

‖ēeec‖ {−(
1

2
λm(Qc)− k1

2
λM (Pc)) ‖ēeec‖+

λM (Pc)k2}+ ‖ȳyyd‖ {−(
1

2
λm(Qd)− λM (Pd)C1−

k3

2
− k1

2
λM (Pc)) ‖ȳyyd‖+ λM (Pd)C2}

(39)

where λm(·) and λM (·) denote the minimum and maximum
eigenvalues of the corresponding matrix, respestinely.

From inequity (39), V̇ (t) is negative if the following con-
ditions hold

|r(t)| ≥ Ke(W
2
1N + W 2

2N ) + 4k4

4kv − 2k3

(40)

‖ēeec(t)‖ ≥ 2λM (Pc)k2

λm(Qc)− λM (Pc)k1
(41)

‖ȳyyd(t− τ)‖ ≥ 2λM (Pd)C2

λm(Qd)− 2λM (Pd)C1 − k3 − k1λM (Pc)
(42)

Since the Lyapunov function V (t) is nonnegative, we con-
clude from (40)∼ (42) that the filtered identification error
r(t), the control feedback vector ȳyyd(t−τ), and the feedback
error vector ēeec(t) are UUB simultaneously.

2) The given reference input R(t), the control feedback
vector ȳyyd(t− τ), and the feedback error ēeec(t) are bounded,
then according to (24) and (27), we can draw the conclusion
that the system output y(t) and the control error E(t) are
all bounded, and then yd(t) is also bounded based on (25).
Furthermore, since M(s) and A(s) are all stable polyno-
mials, the control signal u1(t) is bounded from (26). This
indicates that the boundedness of u1(t) can be guaranteed
when we close the feedback loop.

3) According to (24)∼ (34) and the fact that feedback
error ēc(t) is bounded, the reference model (3) and system
(23) can be rewritten as

y
(n)
m (t− τ) = −

n−1∑
i=0

aiy
(i)
m (t− τ) + R(t− τ) =

−
n−1∑
i=0

aiy
(i)
m (t− τ) + E(t− τ) + εm (43)

y(n)(t) = −
n−1∑
i=0

aiy
(i)(t) + u1(t− τ) + ∆L =

−
n−1∑
i=0

aiy
(i)(t) + E(t− τ) + εy (44)

where εm and εy also denote bounded errors.
Considering the tracking error et(t) = y(t) − ym(t − τ),

then

e
(n)
t (t) +

n−1∑
i=0

aie
(i)
t (t− τ) = Dt (45)

where Dt = εy − εm is also bounded. Since A(s) is a sta-
ble polynomial, et(t) will converge to a small residual set
around the origin. The filter M(s) is selected carefully by
designers to make the inverse of time-delay deprived plant
A(s)/M(s) proper in (26) and to reduce the tracking error
et(t) in (45). ¤

Remark 4. For the stability proof of the identification
(4), we assume that the control signal u(t) is bounded for
all t > 0 in Remark 3. However, in Theorem 2 that guar-
antees the stability of the whole closed-loop system, we
proved that the identification error and control error are
all bounded simultaneously without this assumption. The
filtered identification error r(t) is combined with the con-
trol feedback ȳyyd(t−τ) and feedback error ēeec(t) in Lyapunov
function (36), such that the requirement of the bounded-
ness on the control signal u(t) is replaced by the bounded-
ness on yd(t) from (26), which is reasonable base on Theo-
rem 2. This means that the assumption of the control u(t)
in Section 2 can be eliminated.

Remark 5. Since the local linearized system (23) can
be divided into a rational linear part and a pure time delay
after local linearization compensation, the proposed control
strategy for the nonlinear time-delay system is a time-delay
independent method. When we choose any time delay, e.g.
τ = 1 s or 4 s, the proposed scheme is valid too.

4 Simulation
In this section, two simulation examples are included to

illustrate the effectiveness of the proposed adaptive time-
delay positive feedback controller with neural identification
and compensation.

Example 1. Consider the Vander Poloscillator system
with input-time delay

ÿ(t) = (1− y2(t))ẏ(t)− y(t) + (1 + y2(t) + ẏ2(t))u(t− τ)
(46)

The desired reference model is selected as

ÿm(t) = −4ẏm(t)− 4ym(t) + 4R(t) (47)

This means A(s) = s2+4s+4. We choose the filter poly-
nomial M(s) = 0.64 s2 +1.6s+1. The time delay is τ = 1 s
and the sampling interval is 0.01 s. The reference input of
the system is R(t) = sin(πt/3). The parameters of HONNs
are L1 = L2 = 8, and a = 2, b = 0.5, and c = 0.5 are the
parameters of the sigmoid function. The initial simulation
conditions and other control parameters are given by

y(0) = ẏ(0) = 0.1, ym(0) = ẏm(0) = 0

yd(0) = ẏd(0) = 0, ŴWW 1(0) = ŴWW 2(0) = [0, · · · , 0]T

F1 = F2 = 100, Ke = 1, kv = 100, λ1 = 10

(48)
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The proposed identification and adaptive time-delay pos-
itive feedback control are utilized. Fig. 2 shows the corre-
sponding performance. The actual output y(t) and the
delayed desired trajectory ym(t−τ) are shown in Fig. 2 (a).
The history of the bounded control input u1(t) is indicated
in Fig. 2 (b). The boundedness of the identification error
e (t) = y (t)− yp (t) is given in Fig. 2 (c), and the Fig. 2 (d)
depicts the HONNs estimated weights norm. The simu-
lation results depicted in Fig. 2 show that the satisfying
tracking performance is obtained.

Example 2. To evaluate the robust performance of the
ATPFC, the simulation is done again for a practical ce-
ment mill system (CMS), which is a linear system with
large time-delay given by

y(s) =
2.5e−15s

(20s + 1)(60s + 1)
u(s) (49)

Since g(x̄xx) in system (49) is known, only one HONN

ŴWW
T

1 ΦΦΦ1(xxx(t)) is needed for identification. The sampling in-
terval is 0.1 s. The reference input is a square-wave with
the amplitude of 1 and the period of 120. The desired ref-
erence model is selected as (47), which means the desired
trajectory ym(t − τ) in ATPFC is a square-wave with the
same amplitude and period. The control parameters are
appropriately chosen as F1 = Ke = kv = 1, λ1 = 2; and

the filter polynomial is M(s) = 0.1s2 + 2s + 2. The perfor-

mance of the nonlinear IMC with feedback compensation[6]

(IMC-FC) for CMS (49) with the controller parameters
α1 = α2 = β = 10 is discussed for comparison.

It should be noted that for the IMC-FC structure pro-
posed in [6], the internal model of (49) must be known.
However, in ATPFC, the dynamics of CMS is not required
beforehand. In this simulation, the hybrid sinusoidal dis-
turbance d(t) is added to both control schemes, which aims
to evaluate their robust performance.

The disturbance is set at d(t) = 0.01(sin 0.2πt+cos 10πt)
firstly. Fig. 3 (a) shows the corresponding performance. It
can be seen that tracking performances of the two control
schemes are all satisfactory due to their disturbance rejec-
tion capabilities. However, since the ATPFC can identify
and compensate unknown nonlinear dynamics of the sys-
tem on-line, smaller tracking error is obtained than that of
IMC-FC. In practice, if the modeling error is large (i.e. the
amplitude of unmeasured disturbance increases), the per-
formance of IMC-FC will deteriorate due to the inappro-
priate internal model. As shown in Fig. 3 (b), with the dis-
turbance d(t) = 0.1(sin 0.2πt + cos 10πt), the performance
of ATPFC is maintained and satisfactory, while IMC-FC
provides an oscillatory or even unstable response. The rea-
son is that the unmeasured disturbance d(t) can be con-
sidered as a modeling error, and thus, there exists large
modeling uncertainty in the control systems. For ATPFC,
the NN-based linearization compensation can deal with the
unknown system modeling error. The results in Fig. 3 in-
dicate that the ATPFC possesses an excellent robust and
adaptive characteristic, even though the system dynamics
is unknown.

From the above simulation results, one may conclude
that the proposed adaptive time-delay positive feedback
control scheme can achieve fairly good control perfor-
mance and has strong robust capability for unknown non-
linear affine time-delay system. The good transient track-
ing performance can be guaranteed while the tracking er-
ror, the identification error, and the control signal are all
bounded.

(a) ym(t− τ) and y(t)

(b) Control signal u1(t)

(c) Identification error e(t) = y(t)− yp(t)

(d) ‖ŴWW 1‖ and ‖ŴWW 2‖
Fig. 2 Identification and control performance for (46)
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(a) Output tracking with d(t) = 0.01(sin 2πt + cos 10πt)

(b) Output tracking with d(t) = 0.1(sin 2πt + cos 10πt)

Fig. 3 Control performance for (49)

5 Conclusion
In this paper, a novel time-delay positive feedback con-

troller with adaptive identification and compensation is in-
vestigated for a class of unknown affine nonlinear systems
with input time-delay. The high-order neural networks
with adaptive updating laws are used to identify the un-
known time-delay system. The time-delay positive feed-
back controller is developed based on the neural network
linearization compensation. The system can track the de-
layed trajectory of a desired reference model with a small
residual error around the origin. The stability of the closed-
loop system, boundedness of the identification error and
tracking error are all proved based on Lyaponuv theorem.
Simulation results verify the validity of our theoretical anal-
ysis through the practical implementations of the proposed
scheme for unknown time-delay systems.
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