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A PFM-based Global Convergence Visual Servo
Path Planner

ZHANG Xue-Bo1 FANG Yong-Chun1 MA Bo-Jun1

Abstract As a classical local path planning method, potential field method (PFM) is used widely in the robotics field because of
its simplicity and elegance. However, a main drawback of this method is the existence of local minima when generating a path for
a robot to follow. In this paper, we present a path planning approach for visual servo by using PFM method to keep the features
within the camera field of view (FOV). A rigorous analysis is then presented to prove the global stability of the constructed path
planning method. Moreover, the problem of how to obtain a better three-dimensional (3D) camera path is also studied extensively.
Simulation results are provided to verify the performance of the proposed path planner.
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During the past few years, the path planning problem
has received considerable attention in the robotics field. It
takes account of driving a robot from an initial configu-
ration to the desired one by generating a path to follow.
Currently, there are two main path planning approaches:
global and local planning method. Global planning gener-
ally involves the construction and maintenance of a global
map, and thus, heavy computing burden cannot be avoided.
On the other hand, local planning methods such as poten-
tial field method (PFM) are much easier to implement and
therefore, have gained increased popularity recently. Be-
sides, PFM is an efficient way to enforce various external
constraints for path planning of the robot because of its
simplicity and elegance. Thus, it has been widely used for
obstacle avoidance[1], mobile robot navigation[1−2], avoid-
ance of joint limits[3−4], and so on. However, one main
drawback of the local path planners is that the robot can
be possibly trapped in local minima.

Recently, Mezouar and Chaumette extended PFM to
generate a path in image space for visual servo[4−5]. Specif-
ically, the potential field method was used to construct
a two-dimensional (2D) image path, based on which the
image-based visual servo algorithm was then used to enable
a 6 degree-of-freedom (DOF) robot to track the generated
path in image plane. This method is insensitive to the cam-
era modeling errors because of the robustness of the image-
based visual servo tracking algorithm. Moreover, features
can be kept in the camera field of view (FOV) and other
constraints such as joint limits and obstacle avoidance can
be taken into account simultaneously. However, as a local
path planner, the local minima problem is often met when
generating the path using potential field method.

For visual servo purposes, a kernel problem is to ensure
the FOV constraint during servo process. Many results
have recently been reported on this issue. Unfortunately,
most of the existing techniques usually lead to a long 3D
trajectory of camera, which implies that the servo task
might fail because of the limited workspace of the robot
with joint limits, and that the servo efficiency is rather
low, especially when the initial position of the camera is far
away from its desired location. To solve this problem, some
researchers tried to construct rotational and translational
trajectories[6] similar to a circular motion to obtain a short
3D path for visual servo with large camera displacements by
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using adaptive control gains. However, to achieve high effi-
ciency visual servo, it is preferred to obtain a straight line
path instead of deriving a circular-like path in the presence
of moderate camera displacements between the initial and
desired locations. Motivated by that, [7] proposed a discon-
tinuous method by switching among position-based control
strategies and backward motion, so as a better 3D transla-
tional path is obtained and keep the features in FOV simul-
taneously. Unfortunately, position-based control strategies
are often corrupted by image noise and camera modeling
errors; moreover, this method requires 3D object model to
be exactly known as a prior.

In this paper, an improved path planning approach for
visual servo is proposed by using PFM method. By switch-
ing between attractive potential force and translational
parts of the repulsive force, features can be kept in FOV and
global stability can be achieved simultaneously. Besides,
the problem of how to obtain a better 3D translational path
is also studied extensively by allocating the weight of the six
degrees of freedom in the repulsive potential force properly.
First, some lemmas about the specific repulsive potential
force are presented and then, used to prove the fact, that
while planning the trajectory in 3D Cartesian space, local
minima can be avoided by enforcing only translational parts
of the repulsive force. By combining the idea of PFM with
the inspiration to avoid local minima, a robust switching
method for path planner is proposed to obtain the 3D&2D
paths while ensuring the features in the camera field of
view. Finally, to obtain a more efficient servo trajectory,
the path planning approach is modified by introducing gain
functions to adjust the weights for both translational and
rotational part of the repulsive potential force. It should
be noted that, by allocating gains properly, a better 3D
camera path can be derived. This is important in practical
view, because robots are mainly operated in limited work
spaces. Besides, it should be pointed out that although
3D model is required to generate the path for the sake of
concision, the planning method can be easily extended to
unknown objects by combining it with the well-known ho-
mography decomposition technique[4−5].

The remaining part of this paper is organized as follows.
Section 1 presents a robust switching path planner which
ensures FOV constraint and global stability. To prove its
performance, some lemmas and corresponding proofs are
also included. Section 2 designs the gains allocation mech-
anism to obtain a better 3D camera path. Extensive sim-
ulation results are provided in Section 3 to verify the su-
perior performance of the proposed approach. Finally, the
conclusion is given in the last section.
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1 A switching path planner with global
convergence

In the first part of this section, basic notation is pro-
vided and then, PFM for path planning in image space is
reviewed briefly. In the second part, a switching path plan-
ner is proposed to guarantee global convergence and FOV
constraint. In the third part, the performance of the path
planner is analyzed with rigorous mathematical proofs.

1.1 Basic notation and PFM for visual path plan-
ning

Let Oc and Od be the current and desired camera frame,
and Ow be the world coordinate system. Then, consider
a 3D stationary point lying in a reference plane π, and let
mmmc, mmmd, and mmmw denote its corresponding 3D coordinates
expressed in Oc, Od, and Ow, respectively. From simple
geometry analysis, it is easy to obtain

mmmσ = σRκmmmκ + σtttκ (1)

where σRκ ∈ R3×3 and σtttκ ∈ R3(σ, κ ∈ {w, c, d}) are the
rotation matrix and translation vector between the frame
Oκ and Oσ expressed in frame Oσ, respectively. Given the
current and desired images, σRκ and σtttκ can be easily calcu-
lated using 3D pose estimation algorithm and the geometry
constraint[4].

While planning the path, the configuration ψψψ = [dtttTc ,
(uuuθ)T]T ∈ R6 is chosen to represent the 3D current pose

of the camera, where uuu = [u1, u2, u3]
T ∈ R3 and θ ∈ R

are the rotational axis and angle, respectively, that can
be derived from the rotation matrix dRc using Rodrigue′s
formula[8−9]. Thus, when the camera is at the desired pose,
the corresponding configuration ψψψd ∈ R6 is ψψψd = 000. Then,
a discrete-time 3D trajectory is constructed from the cur-
rent configuration ψψψ to the desired configuration ψψψd by the
following transition equation[4−5]:

ψψψ(k + 1) = ψψψ(k) +
ε · fff(k)

‖fff(k)‖ (2)

where ε ∈ R is a scalar representing the step size and k ∈
R denotes the current number of step, fff ∈ R6 is usually
chosen as the linear combination of the potential forces with
the following form:

fff = fffa(ψψψ) + γfffr(ψψψ) (3)

where γ ∈ R is a positive constant, and fffa(ψψψ) and fffr(ψψψ) ∈
R6 denote the attractive and repulsive force, respectively,
which are defined as the negative gradient of the corre-
sponding potential field.

1.2 A switching path planner design for visual
servo

As illustrated by the subsequent simulation results, the
path planning strategy of (3) often meets the local mini-
mum problem, which means that robot might get trapped
in a position other than the desired one. To solve this
challenging problem, the following switching path planning
method is designed by introducing gain functions:

fff = Pfffa + Qfffr (4)

where P , Q ∈ R6×6 are positive diagonal matrices, chosen
as

P = g(·)I6 (5)

Q =

[
ϑ1(·)I3 0

0 ϑ2(·)I3

]
(6)

where g(·), ϑ1(·), and ϑ2(·) ∈ R are all positive scalar func-
tions, with g(·) used to represent the weight of the attrac-
tive force, whereas ϑ1(·) and ϑ2(·) are used to allocate the
weights of the translational and rotational elements in the
repulsive force, respectively.

Inspired by the idea of ensuring the FOV constraint
and increasing servo efficiency, we use different path plan-
ning strategies for the cases of features lying in or outside
the central area, and subsequently design a switching path
planner as

fff =

{
Pfffa, when all features belong to area C
Qfffr, otherwise

(7)

That is, when all the feature points lie in the central area,
attractive force will take effect to steer the robot to its de-
sired location; otherwise, when at least one feature point
escapes out of the central area, repulsive force will be en-
forced to guarantee the visibility constraint. In (7), as is
seen in Fig. 1, C is the central area of the image defined as1

C =
{
(ui, vi)|ui ∈ (um+α, uM−α)∩vi ∈ (vm+α, vM−α)

}
(8)

with um and uM denoting the lower and upper bounds
of the pixel coordinates along u axis, vm and vM are the
corresponding bounds along the v axis. Inspired by the fact
that local minimum can be avoided using only translational
part of the repulsive force (refer to Section 1.3 for details),
the gain functions are chosen as

g(·) = η1, ϑ1(·) = η2, ϑ2(·) = 0 (9)

in which η1 and η2 ∈ R are positive constants.

Fig. 1 The image boundary

In order to generate a straight line path while only the
attractive force takes effect, the attractive potential force
is generally defined as

fffa(ψψψ) = −ψψψ (10)

When the features are near the image boundary, we need
to construct a virtual barrier to ensure the FOV constraint.
In the existing techniques, all feature points should be con-
sidered in the repulsive field to make all the points move
toward the center of the image[5]. However, it is actually
not necessary to take into account the feature points in the
central area C since they are practically not prone to escape
from the image boundary. Based on this observation, a
modified form of the repulsive potential field is constructed
as

Vr(sss) =

n∑
i=1

Vr(sssi) (11)

1Other notations in Fig. 1 will be introduced in Section 1.4 for
concision.
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where

Vr(sssi) =



0, if si ∈ C
1

2
ln

(
1

(uM− ui)(um− ui)(vM− vi)(vm− vi)

)
, otherwise

(12)

In (11) and (12), sss = [sss1, sss2, · · · , sssn] ∈ R1×2n consists
of all the n feature points, and sssi = [ui, vi] ∈ R1×2(i =
1, 2, · · · , n) is the 2D image coordinates of the i-th feature
point. It should be noted that for every configuration of the
feature points, different repulsive field is established, which
is continuous both in and outside the central area C, and
we further assume that the derivative of the repulsive field
is zero on the boundary. Therefore, the repulsive potential
force derived from Vr(sss) can be expressed as

fffr(ψψψ) = −
(

∂Vr(sss)

∂ψψψ

)T

= −MTLT(sss,ZZZ)

(
∂Vr(sss)

∂sss

)T

(13)
where M ∈ R6×6 is a coordinate transformation matrix
that can be calculated as

M =

[
dRT

c 0
0 L−1

w
dRT

c

]
(14)

L−1
w = I3 +

θ

2
sinc

(
θ

2

)
U× + (1− sinc(θ)) U2

× (15)

where sinc(θ) = sin(θ)/θ, and U× ∈ R3×3 is referred to as
the skew symmetric matrix derived from the vector uuu. For n
feature points, P1, P2, · · · , Pn, L(sss,ZZZ) ∈ R2n×6 represents
the image Jaccobian matrix (interaction matrix) derived

as[8, 10]

L(sss,ZZZ) =
[
L(ppp1, Z1)

T L(ppp2, Z2)
T · · · L(pppn, Zn)T

]T

(16)
where

L(pppi, Zi) =

− 1

Zi
0

xi

Zi
xiyi −(1 + x2

i ) yi

0 − 1

Zi

yi

Zi
1 + y2

i −xiyi −xi


 (17)

with mmmci = [Xi, Yi, Zi]
T denoting the 3D coordinates of

the i-th point Pi expressed in Oc and pppi = [xi, yi]
T =

[Xi/Zi, Yi/Zi]
T being the normalized 2D image coordi-

nates.

1.3 Performance analysis of the path planner

In this section, based on some reasonable assumptions,
we introduce two lemmas and then, use them to prove the
global convergence of the proposed switching path planner
of (2), (7), and (9).

Assumption 1. The camera is always before the feature
points, that is, Z > 0 for every 3D feature point mmm =
[X, Y, Z]T expressed in the current camera frame Oc.

Assumption 2. The principal point of the camera in-
trinsic parameters is in the central area C defined in (8).

Assumption 3. All the feature points lie in the central
area C in the desired image.

It should be noted that the above assumptions do not
impose any requirements on the visual servo system. As-
sumption 1 is a standard one used frequently in visual servo

control strategies[9, 11]. And Assumption 2 holds for almost
all CCD cameras with feasible lens. Assumption 3 is gen-
erally a basic condition on the desired image to implement
a robust visual servo task.

Let fri ∈ R be the i-th element of the repulsive force fffr

derived in (13). Then fr3 is the repulsive force along the
optical axis and it can be expressed as cfr3 in the current
camera frame Oc.

Lemma 1. If at least one feature point lies outside
area C, then, the repulsive potential force always drives
the camera to move backward along the optical axis, that
is,

cfr3 < 0 (18)

Proof. Based on the repulsive potential field defined in
(11) and (12), ∂Vr(sss)/∂sss can be computed as

∂Vr(sss)

∂sss
=

[
∂Vr(sss)

∂sss1

∂Vr(sss)

∂sss2
· · · ∂Vr(sss)

∂sssn

]
(19)

∂Vr(sss)

∂sssi
=





(0 0) , if si ∈ C


ui − (uM + um)

2
(uM − ui)(ui − um)

vi − (vM + vm)

2
(vM − vi)(vi − vm)


 , otherwise

(20)

where n denotes the number of the feature points, i =
1, 2, · · · n.

After some mathematical manipulation by using (13),
(16), (17), (19), and (20), we can obtain

cfr3 = −
m∑

i=1

(xi

(
ui − (uM + um)

2

)

Zi(uM − ui)(ui − um)
+

yi

(
vi − (vM + vm)

2

)

Zi(vM − vi)(vi − vm)

)
(21)

where m ∈ R is the number of the feature points out of the
central area C, and [xi, yi] denote the normalized coordi-
nates of the feature point expressed in the current camera
frame Oc.

From Assumption 1, we know

Zi > 0 (22)

Using Assumption 2, we can derive the following inequality
by the camera projection model

xi

(
ui − (uM + um)

2

)
> 0, yi

(
vi − (vM + vm)

2

)
> 0

(23)
Moreover, the following inequality holds for any feature
points in the image

(uM − ui)(ui − um) > 0, (vM − vi)(vi − vm) > 0 (24)

By using (21)∼(24), it is pretty straightforward to show

cfr3 < 0 (25)

Therefore, the repulsive potential force always drives the
camera to move backward along the optical axis. ¤
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According to Lemma 1, the repulsive force will always
drive the features back into the camera field of view. This
is easy to understand in practice since all the feature points
will move into the central area when the camera moves
backward and far away from the feature points.

Lemma 2. If only translation dtttc = [tx, ty, tz]
T ex-

ists between the current and the desired camera frame and
tz < 0 , then at least one of the following two inequalities
holds:

xctx < 0 or ycty < 0 (26)

where [xc, yc] is referred to as the normalized 2D image
coordinates of any feature point outside the central area C
in the current image.

Proof. Let mmmd = [Xd, Yd, Zd]T denote the 3D coordi-
nates of any feature point outside the central area C ex-
pressed in the desired camera frame. Then, its normalized
2D image coordinates can be written as

[
xd

yd

]
=




Xd

Zd

Yd

Zd


 (27)

Because only translation dtttc = [tx, ty, tz]
T exists between

the current and the desired camera frame, the 3D coordi-
nate of this point mmmc = [Xc, Yc, Zc]

T in current camera
frame Oc can be obtained




Xc

Yc

Zc


 =




Xd

Yd

Zd


−




tx

ty

tz


 (28)

Therefore, the corresponding normalized 2D coordinates in
the current image frame can be easily obtained

[
xc

yc

]
=




(Xd − tx)

(Zd − tz)

(Yd − ty)

(Zd − tz)


 (29)

Since this feature point is currently outside central area C,
while it lies in the area C in the desired image based on
Assumption 3, the following facts can be proven

|xc| > |xd| or |yc| > |yd| (30)

which then implies the following inequalities under As-
sumption 1 and the condition that tz < 0

|xc| > |xd| ⇒
∣∣∣∣
(Xd − tx)

(Zd − tz)

∣∣∣∣ >

∣∣∣∣
Xd

Zd

∣∣∣∣ ⇒

|(Xd − tx)| > |Xd| ⇒ tx(Xd − tx) < 0 ⇒
xctx < 0

or

|yc| > |yd| ⇒ ycty < 0

¤
Based on the above two lemmas, now, we are ready to

show the performance of the designed path planner.
Theorem 1. Local minima can be avoided using the

switching path planner proposed in Section 1.2. That is,
the switching path planner of (2), (7), and (9) drives a robot
to the desired pose without any local minima problem.

Proof. For the proposed switching path planner of (7),
local minimum arises if and only if the following condition

is satisfied near the boundary of central area C

Pfffa(k)

‖Pfffa(k)‖ = − Qfffr(k + 1)

‖Qfffr(k + 1)‖ (31)

Case 1. If the rotation matrix between the current
camera and the desired camera position dRc 6= I3, obvi-
ously (31) cannot hold since the gains in (9) are chosen as
ϑ2(·) = 0.

Case 2. If dRc = I3, then, (uuuθ) = 000 that is, only
translation exists between the current and desired camera
position. Thus, (31) is equivalent to the following equation
by using (9), (10), (13), (14), (16), and (17):




tx(k)
ty(k)
tz(k)


 = − η1‖Pfffa(k)‖

η2‖Qfffr(k + 1)‖




fr1(k + 1)
fr2(k + 1)
fr3(k + 1)


 (32)

where




fr1(k + 1)
fr2(k + 1)
fr3(k + 1)


 =




m∑
i=1




ui − (uM + um)

2
Zi(uM − ui)(ui − um)




m∑
i=1




vi − (vM + vm)

2
Zi(vM − vi)(vi − vm)




−
m∑

i=1




xi

(
ui − (uM + um)

2

)

Zi(uM − ui)(ui − um)
+

yi

(
vi − (vM + vm)

2

)

Zi(vM − vi)(vi − vm)







(33)
Therefore, to prove the fact that (31) never holds, it suf-

fices to show that at least one element of the two sides of
(32) has a different sign.

1) If tz ≥ 0, then based on lemma 1, we know that
fr3 < 0, which obviously contradicts with the bottom equa-
tion of (32).

2) If tz < 0, among the m feature points out of the cen-
tral area C, define the sets N1 and N2 as

N1 =
{
(ui, vi)|ui < (um + α) ∪ ui > (uM − α)

}

N2 =
{
(ui, vi)|(um + α) ≤ ui ≤ (uM − α)

}

where i = 1, 2, · · · , m.
a) If more feature points lie in N1 than in N2. For each

point (ui, vi) in N1, by (21) and Lemma 2, we have

ui − (uM + um)

2
Zi(uM − ui)(ui − um)

· tx < 0 (34)

Besides, the repulsive force fr1 generated by a point (ui, vi)
in N1 is greater than that produced by a point (uj , vj) in
N2, since (ui, vi) is closer to the boundary along u axis,
that is,

∣∣∣∣∣∣∣

ui − (uM + um)

2
Zi(uM − ui)(ui − um)

∣∣∣∣∣∣∣
>

∣∣∣∣∣∣∣

uj − (uM + um)

2
Zj(uM − uj)(uj − um)

∣∣∣∣∣∣∣
(35)
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Therefore, because more feature points lie in N1 than in
N2, (34) and (35) can be used to show

m∑
i=1




ui − (uM + um)

2
Zi(uM − ui)(ui − um)


 · tx < 0 (36)

b) If more feature points lie in N2 than in N1, for a
similar analysis, we have

m∑
i=1




vi − (vM + vm)

2
Zi(vM − vi)(vi − vm)


 · ty < 0 (37)

It should be noted that when some features are out of the
central area C of the current image, the sign of the elements
in dtttc keeps unchanged at the next step since the step size
ε is rather small.

Therefore, with (36) and (37), we can prove that at least
one element of dtttc has a different sign with its correspond-
ing element on the right-hand side of (32), thus, (31) never
holds, which implies that local minima can be avoided and
global stability is then guaranteed. ¤
1.4 A refined form of the path planner

Although the switching path planner proposed in (2),
(7) and (9) ensures global convergence, a main drawback is
that only translational elements of the repulsive force are
used which implies a long 3D camera path when the initial
and desired location are far apart. Besides, the chatter-
ing problem arises for the discontinuity of the switching
path planner. Thus, suitable gain functions are introduced
to alleviate the chattering problem and then, improve the
performance of the path planner.

To facilitate later discussions, we split the image into
three parts with C being the central area, I the outer, and
II near the image edge (see Fig. 1 for details). The inspi-
ration is that area I can be used to alleviate the disconti-
nuity, and allocate the rotational and translational weights
of the repulsive potential force properly to achieve a bet-
ter 3D trajectory. Specifically, when the feature points are
all in C, only the attractive force takes effect and thus, all
the six elements of ψψψ decrease at the same rate; that is,
3D trajectory is the shortest — a straight line; otherwise,
when at least one feature point enters I or II, both the
attractive and repulsive force take effects. Moreover, the
attractive force should decrease to zero gradually while the
weight of repulsive force should increase when nearing II.
Besides, to generate a better 3D camera path, rotation el-
ements should take effect first to drive the features back
into the central area and if it seems inefficient, the weight
of the translational parts should be increased to ensure the
FOV constraint. Finally, if at least one feature point enters
II, then, only translational elements of the repulsive force
take effect to keep the features in FOV and avoid the local
minima simultaneously.

Based on the previous analysis, the path planner of (7)
and (9) is refined as

fff = Pfffa + Qfffr (38)

where P , Q have been defined in (5), (6), and the gains are
designed as

η(·) = max
{
∆u, ∆v

}
/α1, g(·) = max

{
c
(
1−η(·)), 0}

(39)

ϑ1(·) = η(·) exp
(
λ1η(·)), ϑ2(·) = η(·) exp

(− λ2η(·)) (40)

with α1 ∈ R being the width of I, and c, λ1, λ2 ∈ R de-
noting positive constant, and ∆u, ∆v ∈ R representing the
largest pixel distance of the feature points far away from
the inner edge of I along the two image axes, respectively,
that is,

∆u = max
{
∆u1, ∆u2, · · · , ∆un

}

∆v = max
{
∆v1, ∆v2, · · · , ∆vn

}

where ∆ui (i = 1, 2, · · · , n) is defined as

∆ui =





um + α− ui, if ui ≤ um + α
0, if (um + α) ≤ ui ≤ (uM − α)
ui − uM + α, if ui ≥ uM − α

and ∆vi (i = 1, 2, · · · , n) is defined in the same way by
substituting u by v.

2 Simulation results

In this section, extensive simulation results are provided
to demonstrate the performance of the proposed path plan-
ner. In the first part, the global convergence is verified by
the comparison with the common PFM method. The sec-
ond part aims to demonstrate that FOV constraint is guar-
anteed and rather short 3D camera path can be obtained
simultaneously.

2.1 Global convergence testing

When large pure rotation around the optical axis exists
between the initial and desired position/orientation, local
minimum arises for the common PFM-based path planner.
In the following simulation, feature points are chosen as
four vertices of a square, with its center being the origin
of the world frame, in which z axis is perpendicular to the
square. Besides, only translation along the optical axis ex-
ists between the camera and the world frame. In this case,
the camera will move along and rotate around the optical
axis driven by potential forces. The rotation and transla-
tion between the initial and desired pose are chosen as

uuu = [0, 0, 1]T , θ = 2.97 rad, dtttc = 000

For the common PFM-based path planner (2) and (3), the
gains are selected as

ε = 0.001, γ = 1

Fig. 2 (a) and (b) plot the translational and rotational er-
rors between the current and desired location, respectively,
from which we can see that both translation and rotation
errors do not go to zero, and the robot, thus, gets trapped
by a local minimum.

The corresponding results using the proposed path plan-
ner (2), (7), and (9) are shown in Fig. 3 (a), (b) with the
gains selected as

ε = 0.001, η1 = 1, η2 = 1

By using the proposed path planner, both translational and
rotational errors go to zero ultimately. The actual perfor-
mance consists of attractive force which drives the camera
to its desired position and repulsive force which enforces
the camera move backward to help decrease the rotational
error, respectively.
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2.2 FOV constraint and 3D camera path

To thoroughly testify the performance of the refined path
planner of (2) and (38)∼ (40), we provide the simulation
results in presence of large rotation and translation with
uuu, θ and dtttc chosen as

uuu = [0.730 3, −0.080 4, −0.678 4]T , θ = 2.08 rad
dtttc = [105.8, 72.8, 78.8]T mm

Wheaeas gain functions and constants of the refined path
planner are selected as

ε = 0.02, c = 10, λ1 = 4, λ2 = 4

The result of the 2D image paths are presented by the
solid lines in Fig. 4 (a), where the four points connected by
dot-dash lines represent 2D positions of the feature points

(a) Translation error along the optical axis (b) Rotation error around the optical axis

Fig. 2 Performance of the common path planner in presence of pure rotation

(a) Translation error along the optical axis (b) Rotation error around the optical axis

Fig. 3 Performance of the proposed path planner in presence of pure rotation

(a) 2D image paths of the feature points (b) The 3D camera path

Fig. 4 2D & 3D paths when rotation is large
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in the initial image while the points connected by dash lines
denote the ones in the desired image. From this figure, we
can see that during the planning process, features are kept
in the field of view consistently in the presence of large
rotation and translation. The planned 3D camera path
is depicted in Fig. 4 (b) with the pentahedrons representing
several positions of the simulated camera, in which a rather
short path (almost a straight line) is obtained. Therefore,
the path planner successfully solves the potential failure
problem for visual servo because of features out of FOV
and increases the servo efficiency in the presence of limited
operating space.

3 Conclusions

The paper constructs an elegant PFM-based visual servo
path planner which ensures global convergence and guaran-
tees the FOV constraint simultaneously. The performance
of the proposed path planner is demonstrated by both the-
oretical analysis and simulation results. The path planner
algorithm is further refined to obtain a better path so that
higher servo efficiency can be achieved. Future work will
focus on transforming the planned visual path into an ad-
missible trajectory for the robot manipulators to track by
using visual servo algorithms. Another interest is to extend
the visual path planning method for nonholonomic mobile
robots.
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