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Delay-dependent Robust Stabilization for Uncertain
Singular Systems with Multiple Input Delays

DU Zhao-Ping1 ZHANG Qing-Ling1, 2 LIU Li-Li1

Abstract In this paper, the problem of delay-dependent robust stabilization is investigated for singular systems with multiple
input delays and admissible uncertainties. First, an improved delay-dependent stabilization criterion for the nominal system is
established in terms of linear matrix inequalities (LMIs). Then, based on this criterion, the problem is solved via state feedback
controller, which guarantees that the resultant closed-loop system is regular, impulse free, and stable for all admissible uncertainties.
Numerical examples are provided to illustrate the effectiveness of the proposed method.
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Time-delays are often encountered in various dynamic
systems, such as manufacturing systems, economic sys-
tems, biological systems, networked control systems, etc.
They are generally regarded as a main source of insta-
bility and poor performance in such systems. In the
past decades, the problems of robust stability and robust
stabilization for linear time-delay systems have been in-
vestigated. Commonly, the existing results can be clas-
sified into two types: delay-independent conditions[1−2]

and delay-dependent conditions[3−7]. Generally, the delay-
independent case is more conservative than the delay-
dependent case.

In recent years, much attention has been focused on the
problems of robust stability and stabilization analysis for
singular time-delay systems. Singular systems are also re-
ferred to as descriptor systems, implicit systems, general-
ized state-space systems, differential-algebraic systems, or
semi-state systems[8]. Many fundamental results based on
standard state-space systems have been extended to sin-
gular systems. However, it is known that the problem for
singular systems is much more complicated than that for
standard state-space systems.

Over the last few years, the delay-independent case has
been extensively studied[9−10]. Recently, the problem of
delay-dependent robust stability for uncertain discrete sin-
gular time-delay systems has been considered. Ji[11] solved
the problem based on the assumption that the system was
regular and causal. Ma[12] and Wang[13] discussed the prob-
lem for uncertain discrete singular time-varying delay sys-
tems. In [12], the delay-dependent robust stabilization re-
sult was proposed by transforming the system into a stan-
dard state-space system. In [13], Wang investigated the
problem of delay-dependent robust H∞ control for the sys-
tem based on a finite sum inequality.

For continuous singular time-delay systems, Wu[14],
Zhu[15], and Bounkas[16] gave some results on delay-
dependent stability and stabilization for single state-delay
singular systems. References [17−20] discussed the prob-
lem of delay-dependent H∞ control for single time-delay
singular systems. However, to the best of our knowledge,
the stability and stabilization problems for continuous sin-
gular systems with multiple time-delays have not yet been
fully investigated. Particularly, delay-dependent sufficient
conditions are few even non-existing in the published works.
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In this paper, we consider the problem of delay-
dependent robust stabilization for uncertain singular sys-
tems with multiple input delays. First, a delay-dependent
stabilization criterion for the resultant nominal system is
established in terms of LMIs. Then, based on this crite-
rion, the delay-dependent robust stabilization criterion is
proposed. Finally, two examples are given to show the ef-
fectiveness of the presented results.

The rest of this paper is organized as follows. In
Section 2, the problem is formulated. In Section 3, the
main results including results on stabilization and robust
stabilization are given. In Section 4, numerical examples
are presented to illustrate the proposed results effectively.
Finally, the conclusion is given in Section 5.

Notations. Throughout this paper, for real symmetric
matrices X and Y , the notation X ≥ Y (respectively, X >
Y ) means that the matrix X − Y is semi-positive definite
(respectively, positive definite).

1 Problem statement

Consider the following uncertain singular system with
multiple input delays:

Eẋ̇ẋx(t) = (A + ∆A)xxx(t) +

n∑
i=1

(Bi + ∆Bi)uuu(t− τi)

xxx(t) = φφφ(t), t ∈ [−τ̄ , 0] (1)

where xxx(t) ∈ Rñ is the state, uuu(t) ∈ Rm is the control
input, τi are constant time-delays satisfying 0 < τi ≤ τ̄ ,
i = 1, 2, · · · , n, τ̄ is the upper bound of τi, and φφφ(t) is
a compatible vector valued initial function. The matrix
E ∈ Rñ×ñ may be singular and rank (E) = r ≤ ñ is as-
sumed. A, Bi, i = 1, 2, · · · , n are real constant matrices,
and ∆A, ∆Bi, i = 1, 2, · · · , n are norm-bounded uncertain
parameter matrices, and are assumed to be of the following
forms:

∆A = DF (t)H, ∆Bi = DiFi(t)Hi (2)

where D, H, Di, and Hi are known real constant matrices
with appropriate dimensions, and F (t) ∈ Rk×g, Fi(t) ∈
Rki×gi are unknown parameter matrices satisfying

FT(t)F (t) ≤ I, FT
i (t)Fi(t) ≤ I (3)

The parametric uncertainties ∆A and ∆Bi are said to be
admissible if both (2) and (3) hold.

Without loss of generality, we can assume that the ma-
trices E and A in (1) have the following forms:

E =

[
Ir 0
0 0

]
, A =

[
A11 A12

A21 A22

]
(4)
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The purpose of this paper is to develop a delay-
dependent robust stabilization condition for uncertain sin-
gular time-delay system (1). Then, we can design the state
feedback controller

uuu(t) = Kxxx(t)

for system (1) such that the following closed-loop system
is regular, impulse free, and stable for all time-delays τi

satisfying 0 < τi ≤ τ̄ , i = 1, 2, · · · , n.

Eẋ̇ẋx(t) = (A + ∆A)xxx(t) +

n∑
i=1

(Bi + ∆Bi)Kxxx(t− τi)

xxx(t) = φφφ(t), t ∈ [−τ̄ , 0] (5)

where K is a constant matrix to be determined.
The nominal singular time-delay system of (5) can be

described as

Eẋ̇ẋx(t) = Axxx(t) +

n∑
i=1

BiKxxx(t− τi)

xxx(t) = φφφ(t), t ∈ [−τ̄ , 0] (6)

Definition 1[8, 15, 21].
1) The pair (E, A) is said to be regular if det(sE−A) is

not identically zero.
2) The pair (E, A) is said to be impulse free if

deg (det(sE −A)) = rank (E).
Definition 2. For a given scalar τ̄ > 0, the singular

time-delay system (6) is said to be regular and impulse
free for all constant time-delays τi satisfying 0 < τi ≤ τ̄ ,
i = 1, 2, · · · , n, if the pair (E, A) is regular and impulse
free.

Definition 3. The uncertain singular time-delay sys-
tem (1) is said to be robustly stabilizable, if the resultant
closed-loop system (5) is regular, impulse free, and sta-
ble for all constant time-delays τi satisfying 0 < τi ≤ τ̄ ,
i = 1, 2, · · · , n and all admissible uncertainties ∆A and
∆Bi.

The following lemmas are used in the proof of the main
results.

Lemma 1[22]. Assume that aaa(·) ∈ Rna , bbb(·) ∈ Rnb , and
Ň(·) ∈ Rna×nb are defined on the interval Ω. Then, for
any matrices X ∈ Rna×na , Y ∈ Rna×nb , and Z ∈ Rnb×nb ,
the following holds:

−2

∫

Ω

aaaT(α)Ňbbb(α)dα ≤
∫

Ω

[
aaa(α)
bbb(α)

]T [
X Y − Ň

Y T − ŇT Z

] [
aaa(α)
bbb(α)

]
dα

where

[
X Y
Y T Z

]
≥ 0.

Lemma 2[23]. Given a symmetric matrix Ω and matrices
Γ, Ξ with appropriate dimensions, we have

Ω + Γ∆Ξ + ΞT∆TΓT < 0

for all ∆ satisfying ∆T∆ ≤ I, if and only if there exists a
scalar ε > 0 such that

Ω + εΓΓT + ε−1ΞTΞ < 0

Lemma 3[24]. For symmetric positive-definite matrix Q
and matrices P and R with appropriate dimensions, matrix
inequality PTR + RTP ≤ RTQR + PTQ−1P holds.

2 Main results

In this section, we discuss the condition of robust stabi-
lization for uncertain singular time-delay system (1). First,
we present a delay-dependent criterion guaranteeing system
(6) to be regular, impulse free, and stable, which plays an
important role in obtaining the delay-dependent condition
for system (1).

Theorem 1. For a given state feedback gain K, the
nominal singular time-delay system (6) is regular, impulse
free, and stable for all time-delays τi satisfying 0 < τi ≤ τ̄ ,
i = 1, 2, · · · , n if there exist matrices Zi > 0, Qi > 0, Xi,
Yi, i = 1, 2, · · · , n and a nonsingular matrix P , such that
the following LMIs hold:

ETP = PTE ≥ 0 (7)

[
Xi Yi

Y T
i ETZiE

]
≥ 0 (8)

[
Ω11 Ω12

ΩT
12 Ω22

]
< 0, i = 1, 2, · · · , n (9)

where

Ω11 =

[
Γ11 Γ12

ΓT
12 Γ22

]

Γ11 = PTA + ATP +

n∑
i=1

(τ̄Xi + Yi + Y T
i + Qi)

Γ12 = [PTB1K − Y1, P
TB2K − Y2, · · · , PTBnK − Yn]

Γ22 = −diag{Q1, Q2, · · · , Qn}
Ω12 = τ̄ [A, B1K, B2K, · · · , BnK]T[Z1, Z2, · · · , Zn]

Ω22 = −τ̄diag{Z1, Z2, · · · , Zn}
Proof. The proof of this theorem is divided into two

parts. First, we will show that system (6) is regular and
impulse free, which is equivalent to say that (E, A) is reg-
ular and impulse free. From (4), (7), and (8), it is easy to
see that

Yi =

[
Yi1 0
Yi2 0

]
, Zi =

[
Zi11 Zi12

ZT
i12 Zi22

]
, P =

[
P1 0
P2 P3

]

(10)
From (8) and (9), we get

PTA + ATP +

n∑
i=1

(Yi + Y T
i ) < 0

Then, we can obtain AT
22P3 + PT

3 A22 < 0, which implies
that A22 is nonsingular, and thus the pair (E, A) is regu-
lar and impulse free. Therefore, system (6) is regular and
impulse free.

Next, we will show that system (6) is stable. Choose the
following Lyapunov functional candidate:

V (t) = V1(t) + V2(t) + V3(t)

where

V1(t) = xxxT(t)ETPxxx(t)

V2(t) =

n∑
i=1

∫ 0

−τi

∫ t

t+β

ẋ̇ẋxT(α)ETZiEẋ̇ẋx(α)dαdβ

V3(t) =

n∑
i=1

∫ t

t−τi

xxxT(α)Qixxx(α)dα
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where matrixes P, Zi > 0, Qi > 0 are given in Theorem 1
and satisfy (7)∼ (9).

Using the Leibniz-Newton formula, we have xxx(t − τi) =

xxx(t)− ∫ t

t−τi
ẋ̇ẋx(α)dα. Then, system (6) can be written as

Eẋ̇ẋx(t) = Axxx(t) +

n∑
i=1

BiK
[
xxx(t)−

∫ t

t−τi

ẋ̇ẋx(α)dα
]

=

(
A +

n∑
i=1

BiK

)
xxx(t)−

n∑
i=1

BiK

∫ t

t−τi

ẋ̇ẋx(α)dα

Thus, the time derivative of V1(t) is given by

V̇1(t) = ẋ̇ẋxT(t)ETPxxx(t) + xxxT(t)PTEẋ̇ẋx(t) =

2xxxT(t)PT

(
A +

n∑
i=1

BiK

)
xxx(t)−

2

n∑
i=1

xxxT(t)PTBiK

∫ t

t−τi

ẋ̇ẋx(α)dα

Defining aaa(·), bbb(·), and Ň as aaa(α) = xxx(t), bbb(α) = ẋ̇ẋx(α), and
Ň = PTBiK for all α ∈ [t− τi, t], and applying Lemma 1,
we can get

V̇1(t) ≤ 2xxxT(t)PT

(
A +

n∑
i=1

BiK

)
xxx(t) +

n∑
i=1

τixxx
T(t)Xixxx(t) +

n∑
i=1

∫ t

t−τi

ẋ̇ẋxT(α)ETZiEẋ̇ẋx(α)dα +

2

n∑
i=1

xxxT(t)(Yi − PTBiK)

∫ t

t−τi

ẋ̇ẋx(α)dα ≤

xxxT(t)
[
PTA + ATP +

n∑
i=1

(τiXi + Yi + Y T
i )

]
xxx(t) +

n∑
i=1

∫ t

t−τi

ẋ̇ẋxT(α)ETZiEẋ̇ẋx(α)dα +

2

n∑
i=1

xxxT(t)(PTBiK − Yi)xxx(t− τi)

where matrixes Xi, Yi, and Zi satisfy (8).

Since V̇2(t) and V̇3(t) yield the relation

V̇2(t) =

n∑
i=1

∫ 0

−τi

[ẋ̇ẋxT(t)ETZiEẋ̇ẋx(t)−

ẋ̇ẋxT(t + β)ETZiEẋ̇ẋx(t + β)]dβ =
n∑

i=1

τi

[
Axxx(t) +

n∑
i=1

BiKxxx(t− τi)
]T

Zi

[
Axxx(t) +

n∑
i=1

BiKxxx(t− τi)
]−

n∑
i=1

∫ t

t−τi

ẋ̇ẋxT(α)ETZiEẋ̇ẋx(α)dα

(11)

V̇3(t) =

n∑
i=1

{xxxT(t)Qixxx(t)− xxxT(t− τi)Qixxx(t− τi)} (12)

we have the time derivative of V (t) along the trajectory of
system (6) as

V̇ (t) = V̇1(t) + V̇2(t) + V̇3(t) ≤ ξξξT(t)Ω̃ ξξξ(t) (13)

where

ξξξ(t) = [xxxT(t),xxxT(t− τ1),xxx
T(t− τ2), · · · ,xxxT(t− τn)]T

Ω̃ =

[
Ω̃11 Ω̃12

Ω̃T
12 Ω̃22

]

Ω̃11 = PTA+ATP +

n∑
i=1

(τ̄Xi+Yi+Y T
i +Qi+τ̄ATZiA)

Ω̃12 =

[
PTB1K − Y1 +

n∑
i=1

τ̄ATZiB1K, · · · , PTBnK−

Yn +

n∑
i=1

τ̄ATZiBnK

]

Ω̃22 = −diag{Q1, Q2, · · · , Qn}+

n∑
i=1




τ̄KTBT
1 ZiB1K · · · τ̄KTBT

1 ZiBnK
...

. . .
...

τ̄KTBT
n ZiB1K · · · τ̄KTBT

n ZiBnK




It follows that the inequality Ω̃ < 0 guarantees V̇ (t) < 0

for all non-zero ξξξ(t). Hence, Ω̃ < 0 guarantees that system
(6) is stable for all time-delays τi satisfying 0 < τi ≤ τ̄ ,

i = 1, 2, · · · , n. By Schur complement, Ω̃ < 0 is equivalent
to LMI (9). Then, we have the desired result immediately.
¤

Theorem 1 presents a stabilization result for the nominal
system of (1). Now, we are in a position to present the re-
sult on the problem of delay-dependent robust stabilization
for system (1).

Theorem 2. For a given state feedback gain K, the
uncertain singular time-delay system (1) is robustly sta-
bilizable for all time-delays τi satisfying 0 < τi ≤ τ̄ ,
i = 1, 2, · · · , n and all admissible uncertainties if there exist
matrices Zi > 0, Qi > 0, Xi, Yi, a nonsingular matrix P ,
and scalars ε, εi, i = 1, 2, · · · , n, such that (7), (8), and the
following LMI hold:




Ω̂11 Ω̂12 Ω̂13

Ω̂T
12 Ω̂22 Ω̂23

Ω̂T
13 Ω̂T

23 Ω̂33


 < 0, i = 1, 2, · · · , n (14)

where

Ω̂11 =

[
Γ̂11 Γ̂12

Γ̂T
12 Γ̂22

]

Γ̂11 = Γ11 + εHTH

Γ̂12 = Γ12

Γ̂22 = diag{−Q1 + ε1K
THT

1 H1K,−Q2 +

ε2K
THT

2 H2K, · · · ,−Qn + εnKTHT
n HnK}

Ω̂12 = Ω12

Ω̂13 = [P, 0, · · · , 0︸ ︷︷ ︸
n

]T[D, D1, D2, · · · , Dn]

Ω̂22 = Ω22

Ω̂23 = τ̄ [Z1, Z2, · · · , Zn]T[D, D1, D2, · · · , Dn]

Ω̂33 = −diag{εI, ε1I, ε2I, · · · , εnI}
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and Γ11, Γ12, Ω12, Ω22 are defined in (9).
Proof. Replace A and Bi, i = 1, 2, · · · , n in (9) with A+

DF (t)H and Ai + DiFi(t)Hi, i = 1, 2, · · · , n, respectively.
Then, we have

Ω + UTFT(t)V + V TF (t)U +

n∑
i=1

UT
i FT

i (t)Vi +

n∑
i=1

V T
i Fi(t)Ui < 0 (15)

where

U = [H, 0, · · · , 0︸ ︷︷ ︸
2n

]

V = [DTP, 0, · · · , 0︸ ︷︷ ︸
n

, τ̄DTZ1, · · · , τ̄DTZn︸ ︷︷ ︸
n

]

Ui = [0, · · · , 0︸ ︷︷ ︸
i

, HiK, 0, · · · , 0︸ ︷︷ ︸
2n−i

]

Vi = [DT
i P, 0, · · · , 0︸ ︷︷ ︸

n

, τ̄DT
i Z1, · · · , τ̄DT

i Zn︸ ︷︷ ︸
n

]

and Ω =

[
Ω11 Ω12

ΩT
12 Ω22

]
is defined in (9). According to

Lemma 2, (15) is equivalent to

Ω + εUTU + ε−1V TV +

n∑
i=1

εiU
T
i Ui +

n∑
i=1

ε−1
i V T

i Vi < 0

From Schur complement and Theorem 1, we can get The-
orem 2 easily. ¤

Remark 1. As shown in Theorems 1 and 2, when BiK
and ∆BiK are set to be Ai and ∆Ai, respectively, Ai and
∆Ai are matrices with appropriate dimensions, and ∆Ai

is an admissible uncertainty, then system (5) is a singular
system with multiple state delays and admissible uncertain-
ties. That is to say, our results are valid to some singular
systems with multiple state delays and admissible uncer-
tainties.

In the following, we are in a position to present the result
on the controller design for uncertain singular time-delay
system (1). First, a controller design method for system
(6) is given.

Theorem 3. The nominal singular time-delay system
(6) is regular, impulse free, and stable for all time-delays τi

satisfying 0 < τi ≤ τ̄ , i = 1, 2, · · · , n if there exist matrices
Z̃i > 0, Q̃i > 0, N, X̃i, Ỹi, i = 1, 2, · · · , n and a nonsingular
matrix X, such that the following LMIs hold:

XTET = EX ≥ 0 (16)
[

X̃i Ỹi

Ỹ T
i XTET + EX − ETZ̃iE

]
≥ 0 (17)

[
Θ11 Θ12

ΘT
12 Θ22

]
< 0, i = 1, 2, · · · , n (18)

In this case, a desired state feedback gain is given by

K = NX−1

where

Θ11 =

[
Γ̌11 Γ̌12

Γ̌T
12 Γ̌22

]

Γ̌11 = AX + XTAT +

n∑
i=1

(τ̄ X̃i + Ỹi + Ỹ T
i + Q̃i)

Γ̌12 = [B1N − Ỹ1, B1N − Ỹ2, · · · , BnN − Ỹn]

Γ̌22 = −diag{Q̃1, Q̃2, · · · , Q̃n}
Θ12 = τ̄ [AX, B1N, B2N, · · · , BnN ]T[I, I, · · · , I︸ ︷︷ ︸

n

]

Θ22 = −τ̄diag{Z̃1, Z̃2, · · · , Z̃n}
Proof. Using Schur complement, (9) is shown to be

equivalent to

[
Θ̃11 Θ̃12

Θ̃T
12 Θ̃22

]
< 0 (19)

where

Θ̃11 =

[
Γ̃11 Γ̃12

Γ̃T
12 Γ̃22

]

Γ̃11 = PTA + ATP +

n∑
i=1

(τ̄Xi + Yi + Y T
i + Qi)

Γ̃12 = [PTB1K − Y1, P
TB2K − Y2, · · · , PTBnK − Yn]

Γ̃22 = −diag{Q1, Q2, · · · , Qn}
Θ̃12 = τ̄ [A, B1K, B2K, · · · , BnK]T[I, I, · · · , I︸ ︷︷ ︸

n

]

Θ̃22 = −τ̄diag{Z−1
1 , Z−1

2 , · · · , Z−1
n }

Then, pre- and post-multiplying both sides of inequality
(19) by diag{P−T, · · · , P−T

︸ ︷︷ ︸
n+1

, I, · · · , I︸ ︷︷ ︸
n

} and its transpose,

and defining X = P−1, X̃i = XTXiX, Ỹi = XTYiX, Q̃i =
XTQiX, Z̃i = Z−1

i , N = KX, we can obtain inequality
(18).

Pre- and post-multiplying (7) by XT and X, respectively,
we can get (16) easily.

Pre- and post-multiplying both sides of inequality (8) by
diag{XT, XT} and its transpose, we have

[
X̃i Ỹi

Ỹ T
i XTETZ̃−1

i EX

]
≥ 0, i = 1, 2, · · · , n (20)

From (4), (10), and (20), we have

XTETZ̃−1
i EX =

[
P−T

1 Zi11P
−1
1 0

0 0

]
≥ 0 (21)

Using Lemma 3, we can get

XTET + EX − ETZ̃iE =[
P−T

1 + P−1
1 − (Zi11 − Zi12Z

−1
i22Z

T
i12)

−1 0
0 0

]
≤

[
P−T

1 (Zi11 − Zi12Z
−1
i22Z

T
i12)P

−1
1 0

0 0

]
≤

XTETZ̃−1
i EX

Then, if

[
X̃i Ỹi

Ỹ T
i XTET + EX − ETZ̃iE

]
≥ 0

we can get inequality (20).
It is easy to see that (16)∼ (18) imply (7)∼ (9), respec-

tively. Therefore, according to Theorem 1, we can see for
all time-delays τi satisfying 0 < τi ≤ τ̄ , i = 1, 2, · · · , n



166 ACTA AUTOMATICA SINICA Vol. 35

that system (6) is regular, impulse free, and stable, and
the corresponding state feedback gain is K = NX−1. ¤

Next, based on Theorem 3, we give the following theo-
rem.

Theorem 4. The uncertain singular time-delay system
(1) is robustly stabilizable for all time-delays τi satisfying
0 < τi ≤ τ̄ , i = 1, 2, · · · , n and all admissible uncertainties
if there exist matrices Z̃i > 0, Q̃i > 0, N, X̃i, Ỹi, a nonsin-
gular matrix X, and scalars ε, εi, i = 1, 2, · · · , n, such that
(16), (17) and the following LMI hold:




Θ̂11 Θ̂12 Θ̂13

Θ̂T
12 Θ̂22 Θ̂23

Θ̂T
13 Θ̂T

23 Θ̂33


 < 0, i = 1, 2, · · · , n (22)

In this case, a desired state feedback controller is given by

uuu(t) = NX−1xxx(t)

where

Θ̂11 =

[
Γ̄11 Γ̄12

Γ̄T
12 Γ̄22

]

Γ̄11 = AX + XTAT +

n∑
i=1

(τ̄ X̃i + Ỹi + Ỹ T
i + Q̃i) +

εDDT +

n∑
i=1

εiDiD
T
i

Γ̄12 = [B1N − Ỹ1, B2N − Ỹ2, · · · , BnN − Ỹn]

Γ̄22 = −diag{Q̃1, Q̃2, · · · , Q̃n}
Θ̂12 = τ̄ [AX, B1N, B2N, · · · , BnN ]T[I, · · · , I︸ ︷︷ ︸

n

] +

ε[DT, 0, · · · , 0︸ ︷︷ ︸
n

]T[τ̄DT, · · · , τ̄DT

︸ ︷︷ ︸
n

] +

n∑
i=1

εi[D
T
i , 0, · · · , 0︸ ︷︷ ︸

n

]T[τ̄DT
i , · · · , τ̄DT

i︸ ︷︷ ︸
n

]

Θ̂22 = −τ̄diag{Z̃1, Z̃2, · · · , Z̃n}+

ε[τ̄DT, · · · , τ̄DT

︸ ︷︷ ︸
n

]T[τ̄DT, · · · , τ̄DT

︸ ︷︷ ︸
n

] +

n∑
i=1

εi[τ̄DT
i , · · · , τ̄DT

i︸ ︷︷ ︸
n

]T[τ̄DT
i , · · · , τ̄DT

i︸ ︷︷ ︸
n

]

Θ̂13 = diag{XTHT, NTHT
1 , NTHT

2 , · · · , NTHT
n }

Θ̂23 = 0

Θ̂33 = −diag{εI, ε1I, ε2I, · · · , εnI}

Proof. Replace A and Bi, i = 1, 2, · · · , n in (18) with
A + DF (t)H and Bi + DiFi(t)Hi, i = 1, 2, · · · , n, respec-
tively. Similarly to the proof of Theorem 2, we can get this
theorem easily. ¤

Remark 2. From the proof of these theorems, we can
see that all the obtained results are expressed in terms of
LMIs involving no decomposition of system matrices, which
makes the design method relatively simple and reliable.

3 Examples

To demonstrate the effectiveness of our method, we
briefly consider the following two examples.

Example 1 demonstrates the effectiveness of the obtained
criterion in Theorem 1 in that it may readily be used to find
a solution to the problem proposed.

Example 1. Consider the following singular system
with multiple input delays:

Eẋ̇ẋx(t) = Axxx(t) + B1Kxxx(t− τ1) + B2Kxxx(t− τ2)

where

E =

[
1 0
0 0

]
, A =

[
0.5 0
0 −1

]

B1 =

[ −1.1 1
−0.2 0.5

]
, B2 =

[ −0.1 0.3
0.04 0.2

]

K = diag{1, 1}
According to Theorem 1 and using Matlab LMI toolbox,

it is found that this system is regular, impulse free, and sta-
ble for all time-delays τi satisfying 0 < τi ≤ 0.6432, i = 1, 2.
However, the methods in [14−16] fall short of obtaining this
delay-dependent condition.

Example 2. Consider the following uncertain singular
system with input delay:

Eẋ̇ẋx(t) = (A + ∆A)xxx(t) + (B1 + ∆B1)Kxxx(t− τ1) (23)

where

E =

[
1 0
0 0

]
, A =

[
0 0.46

−1.0 −2.0

]
, B1 =

[
1.0
1.5

]

and the uncertain matrices can be described by ∆A =
DF (t)H, ∆B1 = D1F1(t)H1, and with ‖4A‖ ≤ 0.2,
‖4B‖ ≤ 0.2.

D = D1 =

[
0.2 0
0 0.2

]

F (t) = F1(t) =

[
cos t 0

0 sin t

]

H =

[
1 0
0 1

]
, H1 =

[
1
1

]

In this case, according to Theorem 4 and using Matlab
LMI toolbox, it is found τ̄ = 8.6569. For example, when
τ̄ = 1.5, the solutions to system (23) are shown below

X =

[
0.6268 0
−0.3904 0.4097

]
, X̃1 =

[
0.0656 −0.0126
−0.0126 0.2388

]

Ỹ1 =

[−0.1405 0
−0.0797 0

]
, Z̃1 =

[
0.6637 −0.1546
−0.1546 1.9092

]

Q̃1 =

[
0.1260 −0.0435
−0.0435 0.3083

]
, N =

[−0.0830 0.0006
]

ε = 2.7945, ε1 = 0.9400

and the corresponding state feedback controller is

uuu(t) =
[ −0.1315 0.0014

]
xxx(t)

However, the methods in [14−16] are not feasible to this
example.

Remark 3. Theorems in this paper extend the results
in [14−16], which deal with the problem of stability for
single time-delay systems, to multiple time-delay systems.
That is to say, our results are more general and are an
improvement over the previous ones.
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4 Conclusion

The problem of delay-dependent robust stabilization for
singular systems with multiple input delays and admissi-
ble uncertainties has been investigated. First, a delay-
dependent stabilization criterion for the nominal system
is presented. Then, based on this criterion, the problem is
solved via state feedback controller, thus guaranteeing the
singular system with multiple input delays and admissible
uncertainties to be robustly stabilizable, and an explicit
expression of the desired state feedback controller is also
given. The obtained results are expressed in terms of LMIs
involving no decomposition of system matrices, making the
design method relatively simple and reliable. Two exam-
ples are given to show the effectiveness of the proposed
method and the improvement over some existing methods.
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