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Delay-dependent Robust Stability for Uncertain

Stochastic Systems with Interval Time-varying Delay
ZHANG Yan1 HE Yong1 WU Min1

Abstract This paper is concerned with the stability analysis for uncertain stochastic systems with interval time-varying delay.
Improved delay-dependent robust stability criteria of uncertain stochastic systems with interval time-varying delay are proposed
without ignoring any terms by considering the relationship among the time-varying delay, its upper bound, and their difference, and
using both Itô′s differential formula and Lyapunov stability theory. A numerical example is given to illustrate the effectiveness and
the benefit of the proposed method.
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During the past decades, considerable attention has
been devoted to the study of time delay systems due to
the fact that time delay is often the main cause for in-
stability and poor performance of a control system[1−22].
It is noted that stability criteria for delay systems can
be classified into two categories according to their de-
pendence on the information of delays, namely, delay-
independent stability criteria and delay-dependent stabil-
ity criteria. Since delay-dependent criteria make use of
information on the length of delays, they are less con-
servative than delay-independent ones, particularly when
the time delays are small. Therefore, increasing atten-
tion has recently been focused on delay-dependent stabil-
ity analysis of delay systems[1, 4−8]. For example, delay-
dependent stability criterion for systems with uncertain
time-invariant delays was discussed in [1], delay-dependent
robust stabilization of uncertain stochastic systems with
time-varying delays was studied in [4], and delay-dependent
stability criteria of time-varying delay system was obtained
in [5].

Recently, a special type of time delay in practical en-
gineering systems, i.e., interval time-varying delay, was
identified and investigated[9−10, 12, 14, 17−18]. Interval time-
varying delay is a time delay that varies in an interval,
in which the lower bound is not restricted to 0. It is
well known that there are systems that are stable with
some nonzero delay, but are unstable without delay[2].
For such case, if there is a time-varying perturbation
on the nonzero delay, it is of great significance to con-
sider the stability of systems with interval time-varying
delay. One typical example of dynamical system with
interval time-varying delay is networked control systems
(NCSs)[17].

On the other hand, stochastic systems have received
much attention since stochastic modeling came to play an
important role in many branches of science and engineer-
ing applications. In the past years, along with the de-
velopment of science and technology, the bounding tech-
nology and the model transformation technique became
more and more obviously conservative. To further im-
prove the performance of delay-dependent stability crite-
ria, much effort has been devoted recently to the develop-
ment of the free weighting matrices method[5−7], in which

Received April 22, 2008; in revised form December 12, 2008
Supported by National Natural Science Foundation of China

(60425310, 60574014), the Doctor Subject Foundation of China
(20050533015, 200805330004), the Program for New Century Excel-
lent Talents in University (NCET-06-0679), and the Natural Science
Foundation of Hunan Province (08JJ1010)
1. School of Information Science and Engineering, Central South

University, Changsha 410083, P.R. China
DOI: 10.3724/SP.J.1004.2009.00577

neither the bounding technology nor model transforma-
tion is employed. However, when estimating the weak
infinitesimal operator of Lyapunov-Krasovskii functional
for systems with time-varying delay, some useful terms
were ignored. For examples in [5, 8, 16], the derivative

of
∫ 0

−h

∫ t

t+θ
ẋxxT(s)Zẋxx(s)dsdθ with, positive matrix Z was

estimated as hẋxxT(t)Zẋxx(t) − ∫ t

t−d(t)
ẋxxT(s)Zẋxx(s)ds, where

0 ≤ d(t) ≤ h, and the term − ∫ t−d(t)

t−h
ẋxxT(s)Zẋxx(s)ds was ig-

nored, it may lead to conservativeness. Although [13−14]
retained these terms and proposed an improved delay-
dependent stability criterion for systems with time-varying
delay, there is room for further investigation. For in-
stance, in [14], both terms d(t) and h − d(t) were en-
larged as h. It is observed that d(t) and h − d(t) have
an important relationship that their sum is h. So, the
above may lead to conservativeness. The similar problem
also existed in [22].

In this paper, the stochastic system is considered and
an improved delay-dependent robust stability criterion is
proposed without ignoring any terms by considering the
relationship among the time-varying delay and its lower and
upper bounds[15], and using both Itô′s differential formula
and the Lyapunov stability theory. A numerical example is
given to illustrate the effectiveness and the benefits of the
proposed method.

Notations. Throughout this paper, Rn and Rn×m

denote, respectively, the n-dimensional Euclidean space
and the set of all n × m real matrices. ‖ · ‖ stands for
the usual LLL2[0,∞) norm. The notation P > 0 (≥ 0)
means that P is a real symmetric and positive (semi-
positive) definite matrix. (Ω,F, {Ft}t≥0,P) is a com-
plete probability space with a filtration {Ft}t≥0 satisfy-
ing the conditions that it is right continuous and F0 con-
tains all P-null sets. L2

F0([−τ ′, 0],Rn) denotes the fam-
ily of all bounded F0-measurable C([−τ ′, 0],Rn)-valued
random variables ξξξ = {ξξξ(θ) : −τ ′ ≤ θ ≤ 0} such
that sup−τ ′≤θ≤0 E{|ξξξ(θ)|2} < ∞. E{·} stands for the
mathematical expectation. The symbol “∗” within a ma-
trix represents the symmetric terms of the matrix, e.g.[

X Y
∗ Z

]
=

[
X Y
Y T Z

]
. Matrices, if their dimensions are

not explicitly stated, are assumed to be compatible with
algebraic operations.

1 Preliminaries and problem formula-
tion

Consider the following uncertain linear stochastic system
Σ with interval time-varying delay
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dxxx(t) = [(A +4A(t))xxx(t) + (Ad +4Ad(t))×
xxx(t− τ(t))]dt + [(E +4E(t))xxx(t)+

(Ed +4Ed(t))xxx(t− τ(t))]dw(t) (1)

xxx(t) =φφφ(t), t ∈ [−h2, 0] (2)

where xxx(t) ∈ Rn is the state vector, w(t) is a scalar
Brownian motion defined on a complete probability space
(Ω,F,P) with a filtration {Ft}t≥0, and φφφ(t) is any given
initial condition in L2

F0([−τ, 0];Rn). A, Ad, E, and Ed

are known real constant matrices with appropriate dimen-
sions, 4A(t), 4Ad(t) and 4E(t), 4Ed(t) are all unknown
time-varying matrices with appropriate dimensions which
represent the system uncertainty and stochastic perturba-
tion uncertainty, respectively, and are assumed to be of the
following form

[4A(t) 4Ad(t) 4E(t) 4Ed(t)] =

DF (t) [G1 G2 G3 G4] (3)

where D, G1, G2, G3, and G4 are known real constant ma-
trices with appropriate dimensions. F (t) is unknown real
time-varying matrix with Lebesgue measurable elements
bounded by

FT(t)F (t) ≤ I, ∀t (4)

The time delay, τ(t), is a time-varying differentiable func-
tion that satisfies

0 ≤ h1 ≤ τ(t) ≤ h2, τ̇(t) ≤ dτ (5)

where h1, h2, and dτ are constants. Here, h1 may not be
equal to 0, and when dτ = 0 it is clear that h2 = h1.

Throughout this paper, we use the following definition
for the system Σ.

Definition 1. The uncertain stochastic time-delay sys-
tem Σ is said to be robustly stochastically stable if there
exists a scalar α > 0 such that for all admissible uncertain-
ties,

E

{∫ ∞

0

xxxT(t)xxx(t)dt

}
≤ αE

{
sup

s∈[−τ,0]

‖φφφ(s)‖2
}

(6)

where xxx(t) denotes the solution of system (1) at time t un-
der initial condition in (2).

Lemma 1[3]. For any vectors xxx,yyy ∈ Rn, matrices A, D,
E, P , and F are real matrices of appropriate dimensions
with P > 0 and FTF ≤ I, the following inequalities hold:

1) 2xxxTDFEyyy ≤ ε−1xxxTDDTxxx + εyyyTETEyyy;
2) For any scalar ε > 0 such that P − εDDT > 0, then

(A+DFE)TP−1(A+DFE)≤ε−1ETE+AT(P−εDDT)−1A

3) 2xxxTyyy ≤ xxxTP−1xxx + yyyTPyyy.

2 Robust stability analysis

In this section, a robustly stochastically stable criterion
for the uncertain linear time-delay stochastic system Σ will
be established by applying the Lyapunov-Krasovskii the-
ory.

For convenience, define a new state variable

yyy(t) = (A +4A(t))xxx(t) + (Ad +4Ad(t))xxx(t− τ(t)) (7)

and a new perturbation variable

ggg(t) = (E +4E(t))xxx(t) + (Ed +4Ed(t))xxx(t− τ(t)) (8)

Then, system (1) becomes

dxxx(t) = yyy(t)dt + ggg(t)dw(t) (9)

First, we introduce the following zero equations which
will be used in our main result

2ξξξT(t)N

[
xxx(t)− xxx(t− τ(t))−

∫ t

t−τ(t)

dxxx(s)

]
= 0 (10)

2ξξξT(t)H

[
xxx(t− h1)− xxx(t− τ(t))−

∫ t−h1

t−τ(t)

dxxx(s)

]
= 0

(11)

2ξξξT(t)M

[
xxx(t− τ(t))− xxx(t− h2)−

∫ t−τ(t)

t−h2

dxxx(s)

]
= 0

(12)
where N , H, and M are any matrices with appropriate
dimensions, and

ξξξ(t) = [xxxT(t) xxxT(t− τ(t)) xxxT(t− h1) xxxT(t− h2)]
T

On the other hand, for any semi-positive matrices X ≥ 0
and Y ≥ 0, the following equations hold

h2ξξξ
T(t)Xξξξ(t)−

∫ t

t−τ(t)

ξξξT(t)Xξξξ(t)ds−
∫ t−τ(t)

t−h2

ξξξT(t)Xξξξ(t)ds = 0 (13)

(h2 − h1)ξξξ
T(t)Y ξξξ(t)−

∫ t−h1

t−τ(t)

ξξξT(t)Y ξξξ(t)ds−
∫ t−τ(t)

t−h2

ξξξT(t)Y ξξξ(t)ds = 0 (14)

It is easy to see that (10) ∼ (14) are always satisfied. By
using them, we have the following theorem.

Theorem 1. For given scalars 0 ≤ h1 ≤ h2 and dτ , sys-
tem Σ is robustly stochastically stable for all time-varying
delays satisfying (5) and for all admissible uncertainties
satisfying (3) and (4) if there exist symmetric positive def-
inite matrices P > 0, Qi > 0, i = 1, 2, 3, Zj > 0, Sj > 0,
j = 1, 2, semi-positive definite matrices X ≥ 0, Y ≥ 0,
scalars εl > 0, l = 1, 2, 3 and any appropriately dimen-
sioned matrices N , H, M , such that the LMIs (15) ∼ (18)
hold [

X N
∗ Z1

]
≥ 0 (16)

[
Y H
∗ Z2

]
≥ 0 (17)

[
X + Y M
∗ Z1 + Z2

]
≥ 0 (18)

where

Θ =Φ + Ψ + ΨT + h2X + (h2 − h1)Y

P̂ = [P 0 0 0]T

W1 = [A Ad 0 0]

W2 = [E Ed 0 0]

Ẑ = h2Z1 + (h2 − h1)Z2

Ŝ = P + h2S1 + (h2 − h1)S2



No. 5 ZHANG Yan et al.: Delay-dependent Robust Stability for Uncertain Stochastic Systems with · · · 579




Θ P̂D WT
1 Ẑ 0 WT

2 Ŝ 0 N H M

∗ −ε1I 0 0 0 0 0 0 0

∗ ∗ −Ẑ ẐD 0 0 0 0 0
∗ ∗ ∗ −ε2I 0 0 0 0 0

∗ ∗ ∗ ∗ −Ŝ ŜD 0 0 0
∗ ∗ ∗ ∗ ∗ −ε3I 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ −S1 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ −S2 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −S1 − S2




< 0 (15)

with

Φ =




Φ11 Φ12 0 0
∗ Φ22 0 0
∗ ∗ −Q1 0
∗ ∗ ∗ −Q2




Ψ = [N M −N −H H −M ]

and

Φ11 =

3∑
i=1

Qi + PA + ATP + (ε1 + ε2)G
T
1 G1 + ε3G

T
3 G3

Φ12 = PAd + (ε1 + ε2)G
T
1 G2 + ε3G

T
3 G4

Φ22 = − (1− dτ )Q3 + (ε1 + ε2)G
T
2 G2 + ε3G

T
4 G4

Proof. Define xxxt by xxxt(s) = xxx(t + s), −h2 ≤ s ≤ 0,
and a stochastic Lyapunov-Krasovskii functional candidate
as

V (xxxt, t) =

6∑
i=1

Vi(xxxt, t) (19)

where

V1(xxxt, t) =xxxT(t)Pxxx(t)

V2(xxxt, t) =

2∑
i=1

∫ t

t−hi

xxxT(s)Qixxx(s)ds+

∫ t

t−τ(t)

xxxT(s)Q3xxx(s)ds

V3(xxxt, t) =

∫ 0

−h2

∫ t

t+θ

yyyT(s)Z1yyy(s)dsdθ

V4(xxxt, t) =

∫ −h1

−h2

∫ t

t+θ

yyyT(s)Z2yyy(s)dsdθ

V5(xxxt, t) =

∫ 0

−h2

∫ t

t+θ

tr
(
gggT(s)S1ggg(s)

)
dsdθ

V6(xxxt, t) =

∫ −h1

−h2

∫ t

t+θ

tr
(
gggT(s)S2ggg(s)

)
dsdθ

in which P , Qi, i = 1, 2, 3, Zj , Sj , j = 1, 2, are all symmet-
ric positive definite matrices with appropriate dimensions
and to be determined.

Then, the weak infinitesimal operator L of the stochastic
process {xxxt, t ≥ h2} along the evolution of V (xxxt, t) is given
as

LV (xxxt, t) = 2xxxT(t)Pyyy(t) + tr
(
gggT(t)Pggg(t)

)
+

3∑
i=1

xxxT(t)Qixxx(t)− xxxT(t− h1)Q1xxx(t− h1)−

xxxT(t− h2)Q2xxx(t− h2)−

(1− τ̇(t))xxxT(t− τ(t))Q3xxx(t− τ(t))+

h2yyy
T(t)Z1yyy(t)−

∫ t

t−h2

yyyT(s)Z1yyy(s)ds+

(h2 − h1)yyy
T(t)Z2yyy(t)−

∫ t−h1

t−h2

yyyT(s)Z2yyy(s)ds+

h2tr(ggg
T(s)S1ggg(s))−

∫ t

t−h2

tr(gggT(s)S1ggg(s))ds+

(h2 − h1)tr(ggg
T(s)S2ggg(s))−

∫ t−h1

t−h2

tr(gggT(s)S2ggg(s))ds (20)

Adding the left sides of (10)∼ (14) to (20), we have the
weak infinitesimal operator of V (xxxt, t) along the trajectory
of system Σ as

LV (xxxt, t)= 2xxxT(t)Pyyy(t) + tr(gggT(t)Pggg(t))+

3∑
i=1

xxxT(t)Qixxx(t)− xxxT(t− h1)Q1xxx(t− h1)−

xxxT(t− h2)Q2xxx(t− h2)−
(1− τ̇(t))xxxT(t− τ(t))Q3xxx(t− τ(t))+

h2yyy
T(t)Z1yyy(t)−

∫ t

t−h2

yyyT(s)Z1yyy(s)ds+

(h2−h1)yyy
T(t)Z2yyy(t)−

∫ t−h1

t−h2

yyyT(s)Z2yyy(s)ds+

h2tr(ggg
T(s)S1ggg(s))−

∫ t

t−h2

tr(gggT(s)S1ggg(s))ds+

(h2 − h1)tr(ggg
T(s)S2ggg(s))−

∫ t−h1

t−h2

tr(gggT(s)S2ggg(s))ds+

2ξξξT(t)N

[
xxx(t)−xxx(t−τ(t))−

∫ t

t−τ(t)

dxxx(s)

]
+

2ξξξT(t)H

[
xxx(t−h1)−xxx(t−τ(t))−

∫ t−h1

t−τ(t)

dxxx(s)

]
+

2ξξξT(t)M

[
xxx(t−τ(t))−xxx(t−h2)−

∫ t−τ(t)

t−h2

dxxx(s)

]
+

h2ξξξ
T(t)Xξξξ(t)−

∫ t

t−τ(t)

ξξξT(t)Xξξξ(t)ds−
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∫ t−τ(t)

t−h2

ξξξT(t)Xξξξ(t)ds+

(h2 − h1)ξξξ
T(t)Y ξξξ(t)−

∫ t−h1

t−τ(t)

ξξξT(t)Y ξξξ(t)ds−
∫ t−τ(t)

t−h2

ξξξT(t)Y ξξξ(t)ds (21)

By 1) of Lemma 1, for any scalar ε1 > 0, we have

2xxxT(t)Pyyy(t) = 2xxxT(t)P [A Ad 0 0]ξξξ(t)+

2xxxT(t)PDF (t)[G1 G2 0 0]ξξξ(t) ≤
2xxxT(t)P [A Ad 0 0]ξξξ(t)+

ξξξT(t)P̂Dε−1
1 (P̂D)Tξξξ(t)+

ξξξT(t)ε1[G1 G2 0 0]T[G1 G2 0 0]ξξξ(t)
(22)

and by 2) of Lemma 1, for any scalar ε2 > 0 satisfying
[h2Z1 + (h2 − h1)Z2]

−1 − ε−1
2 DDT > 0, we have

yyyT(t)[h2Z1 + (h2 − h1)Z2]yyy(t) =

ξξξT(t)([A Ad 0 0] + DF (t)[G1 G2 0 0])T×
Ẑ([A Ad 0 0] + DF (t)[G1 G2 0 0])ξξξ(t) ≤
ξξξT(t)WT

1 [Ẑ−1 − ε−1
2 DDT]−1W1ξξξ(t)+

ξξξT(t)ε2[G1 G2 0 0]T[G1 G2 0 0]ξξξ(t) (23)

For any scalar ε3 > 0 satisfying [h2S1 + (h2 − h1)S2]
−1 −

ε−1
3 DDT > 0, the following inequality holds

tr(gggT(t)[P + h2S1 + (h2 − h1)S2]ggg(t)) =

gggT(t)[P + h2S1 + (h2 − h1)S2]ggg(t) =

ξξξT(t)([E Ed 0 0] + DF (t)[G3 G4 0 0])T×
Ŝ([E Ed 0 0] + DF (t)[G3 G4 0 0])ξξξ(t) ≤
ξξξT(t)WT

2 [Ŝ−1 − ε−1
3 DDT]−1W2ξξξ(t)+

ξξξT(t)ε3[G3 G4 0 0]T[G3 G4 0 0]ξξξ(t) (24)

where

P̂ = [P 0 0 0]T

W1 = [A Ad 0 0]

W2 = [E Ed 0 0]

Ẑ = h2Z1 + (h2 − h1)Z2

Ŝ = P + h2S1 + (h2 − h1)S2

In addition, by 3) of lemma 1, the following inequalities
hold

− 2ξξξT(t)N

∫ t

t−τ(t)

ggg(s)dw(s) ≤ ξξξT(t)NS−1
1 NTξξξ(t)+

(∫ t

t−τ(t)

ggg(s)dw(s)

)T

S1

(∫ t

t−τ(t)

ggg(s)dw(s)

)
(25)

− 2ξξξT(t)H

∫ t−h1

t−τ(t)

ggg(s)dw(s) ≤ ξξξT(t)HS−1
2 HTξξξ(t)+

(∫ t−h1

t−τ(t)

ggg(s)dw(s)

)T

S2

(∫ t−h1

t−τ(t)

ggg(s)dw(s)

)
(26)

−2ξξξT(t)M

∫ t−τ(t)

t−h2

g(s)dw(s)≤ξξξT(t)M(S1+S2)
−1MTξξξ(t)+

(∫ t−τ(t)

t−h2

ggg(s)dw(s)

)T

(S1 + S2)

(∫ t−τ(t)

t−h2

ggg(s)dw(s)

)

(27)

Note that

E





(∫ t

t−τ(t)

ggg(s)dw(s)

)T

S1

(∫ t

t−τ(t)

ggg(s)dw(s)

)

 =

∫ t

t−τ(t)

tr
(
gggT(s)S1ggg(s)

)
ds (28)

E





(∫ t−h1

t−τ(t)

ggg(s)dw(s)

)T

S2

(∫ t−h1

t−τ(t)

ggg(s)dw(s)

)

 =

∫ t−h1

t−τ(t)

tr
(
gggT(s)S2ggg(s)

)
ds (29)

and

E





(∫ t−τ(t)

t−h2

ggg(s)dw(s)

)T

(S1+S2)

(∫ t−τ(t)

t−h2

ggg(s)dw(s)

)

=

∫ t−τ(t)

t−h2

tr(gggT(s)(S1 + S2)ggg(s))ds (30)

Then, applying inequalities (22)∼ (27) to (21) yields

LV (xxxt, t) ≤ξξξT(t) Ξξξξ(t)−
∫ t

t−d(t)

ηηηT(t, s)

[
X N
∗ Z1

]
ηηη(t, s)ds−

∫ t−h1

t−d(t)

ηηηT(t, s)

[
Y H
∗ Z2

]
ηηη(t, s)ds−

∫ t−d(t)

t−h2

ηηηT(t, s)

[
X+Y M
∗ Z1 + Z2

]
ηηη(t, s)ds

where Ξ = Θ + P̂Dε1(P̂D)T + WT
1 [P̂−1 − ε−1

2 DDT]−1W1

+WT
2 [Ẑ−1 − ε−1

3 DDT]−1W2 + NS−1
1 NT + HS−1

2 HT +
M(S1 + S2)

−1MT with Θ being defined in Theorem 1 and

ηηη(t, s) = [ξξξT(t) yyyT(s)]T.
By applying the Schur complement to (15) results in

Ξ < 0. Therefore, if (15) ∼ (18) are satisfied, then (21)
implies that

LV (xxxt, t) ≤ −λ‖xxx(t)‖2 (31)

where λ = λmin(Ξ). Now, by Dynkin′s formula, it is true
that for all t ≥ h2,

E{V (t)} − E{V (h2)} ≤ −λE{
∫ t

h2

‖xxx(s)‖2ds} (32)

It follows that

E

{∫ t

h2

‖xxx(s)‖2ds

}
≤ 1

λ
E {V (h2)} (33)
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For system (1), the proof follows a similar line to that
of [16]. It is clear that there exists a positive scalar α > 0
such that

E

{∫ h2

0

‖xxx(s)‖2ds

}
≤ α sup

s∈[−h2,0]

{‖φφφ(s)‖2} (34)

Therefore, by the definitions of V (xxxt, t) and xxx(t), there
always exists a scalar α̃ > 0 such that

lim
T→∞

E

{∫ T

0

‖xxx(t)‖2dt

}
≤ α̃E

{
sup

s∈[−τ,0]

‖φφφ(s)‖2
}

(35)

which means that system Σ is robustly stochastically stable
by Definition 1. ¤

Remark 1. It is seen that τ(t), h2− τ(t), and τ(t)−h1

are not simply enlarged as h2, h2−h1, and h2−h1, respec-
tively. Instead, the relationship that τ(t) + h2 − τ(t) = h2

and τ(t) − h1 + h2 − τ(t) = h2 − h1 are considered in the
process of the proof.

Remark 2. If the perturbation terms are not con-
sidered, then system Σ becomes uncertain linear system
with interval time-varying delay. Using the similar method,
the stability criterion for uncertain linear system with in-
terval time-varying delay can be obtained. In fact, if
we choose some weighting matrices that are relative with
stochastic perturbation to zero matrices in Theorem 1, then
a stability criterion without stochastic perturbation can
be obtained.

3 Numerical example

In this section, we shall present a numerical example to
demonstrate the effectiveness of the proposed method.

Consider the uncertain linear stochastic system (3) with

A =

[ −2 0
0 −0.9

]
, Ad =

[ −1 0
−1 −1

]

and E = 0, Ed = 0, the uncertainties are described by (3)
and with

‖4A(t)‖ ≤ 0.2, ‖4Ad(t)‖ ≤ 0.2

‖4E(t)‖ ≤ 0.2, ‖4Ed(t)‖ ≤ 0.2

D =

[
0.2 0
0 0.2

]
, G1 = G2 = G3 = G4 =

[
1 0
0 1

]

According to Theorem 1, for h1 = 0, the upper bounds
on the time delay to guarantee the system is robustly
stochastically stable are listed in Table 1. At the same
time, Table 1 also lists the upper bounds obtained from
the criterion in [22].

Table 1 Allowable upper bounds of h2 for different dτ

dτ 0.3 0.5 0.9 1

Reference [22] 0.7288 0.5252 0.1489 —

Theorem 1 1.2950 1.1006 0.9434 0.9424

Remark 3. In [22], the maximum allowable time de-
lay was given by 0.6822 for dτ = 0.9. However, after our
computation by the method in [22], the true maximum
allowable time delay should be 0.1489. In addition, “–”
means that the result is not applicable to the corresponding
case.

In the sequel, for given h1, Table 2 lists the upper bounds
on the time delay to guarantee the system is robustly
stochastically stable.

Table 2 Allowable upper bounds of h2 with given h1 and dτ

h1 0.3 0.8 1 1.5

dτ = 0.3 1.2895 1.2824 1.2822 1.5515

dτ = 0.5 1.0935 1.1204 1.2179 1.5508

dτ = 0.9 0.9388 1.1042 1.2145 1.5508

4 Conclusions

In this paper, the delay-dependent robust stability prob-
lem has been investigated for a class of linear stochastic
systems with interval time-varying delay. Sufficient con-
ditions have been established without ignoring any terms
in the weak infinitesimal operator of Lyapunov-Krasovskii
functional by considering the relationship among the time-
varying delay, its upper bound, and their difference. A
numerical example has verified its low level of conserva-
tiveness.
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