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Abstract The effectiveness of a cluster-based distributed sen-
sor network, to a large extent, depends on the coverage provided
by the sensor nodes. To activate only the necessary number of
sensor nodes at any particular moment is an efficient way to
save the overall energy. However, this is an NP-complete prob-
lem because of the high-density deployment of wireless sensor
networks. In this paper, a novel searching algorithm based on
improved NSGA-II (elitist nondominated sorting genetic algo-
rithm) is proposed to select an optimal cover set. In contrast to
the binary detection model used in the previous work, a proba-
bilistic detection model is adopted in combination with the de-
tection error range and coverage threshold. With the full net-
work coverage being guaranteed, a number of nodes are made
into dormancy mode to save energy. The circulated combination
and delete operators are proposed to enhance the search capabil-
ity. Extensive simulation results are presented to demonstrate
the effectiveness of our approach.

Key words Wireless sensor networks (WSN), cover set, de-
tection model, improved NSGA-II

Wireless sensor network (WSN) normally consists of a
large number of distributed nodes that organize themselves
into a multi-hop wireless network[1]. Due to their deploy-
ment in potentially harsh scenarios, nodes in sensor net-
works are usually powered by batteries with finite capacity.
It is always desirable to extend the lifetime of sensor net-
work nodes without sacrificing their functionality[2]. Thus,
the study of power management is particularly important.

In WSNs, all nodes share common sensing tasks. This
implies that not all sensors are required to perform the
sensing task during the whole system lifetime. The energy
consumption of radio frequency module is the highest in
the transmission mode. In the sleeping mode, it consumes
the least energy. If all the sensor nodes operate in the ac-
tive mode simultaneously, an excessive amount of energy
will be wasted and the data collected will be redundant.
Turning off some nodes does not affect the overall system
function as long as there are enough working nodes to as-
sure it. Therefore, if the sensors can be scheduled to work
alternatively, the network lifetime can be prolonged corre-
spondingly. Thus, it is of considerate significance to cover
the whole monitored area with the least working nodes such
that no blind point exists and the network connectivity is
kept. This becomes a serious problem in large-scale sen-
sor networks, where hundreds and thousands of nodes are
randomly deployed.

The key idea of this paper is to maintain the full cover-
age in large sensor networks by a small number of sensor
nodes. The scheduling algorithm should allow as many
nodes as possible to be turned off in most of the time, and
at the same time, it should preserve the expected cover-
age rate and guarantee the network connectivity. Increas-
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ing the coverage rate may cause more sensors in working
mode, while reducing the number of working sensors may
cause lower coverage rate. These two aspects need to be
considered simultaneously. Hence, our method is driven by
the requirements of these two interrelated aspects. Firstly,
both the binary and probabilistic sensor detection mod-
els are exploited to handle the problem of cover set selec-
tion in WSNs. Secondly, the problem is transformed into a
multi-objective optimization problem (MOP) as it involves
two simultaneous optimization objectives. Then, a novel
searching algorithm, named as efficient cover set selection
(ECSS), is proposed, as inspired by the multi-objective ge-
netic algorithms (MOGAs). Finally, a cluster-based ar-
chitecture is applied to implement ECSS. As a result, the
status of all the sensors is determined by one-time compu-
tation, and thus the energy consumed by computation and
communication is saved effectively.

1 Related work
In general, network coverage, which has direct effect on

the network performance, can be considered as the mea-
sure of quality of service (QoS) in WSN[3]. The problem of
finding the maximum number of disjoint covers in a sensor
network was addressed in [4], where a cover was defined
as a set of nodes that could completely cover the mon-
itored area. In addition, the problem was proved to be
NP-complete. The work reported in [5] attempted to solve
the complete coverage problem with centralized solution.
However, a large number of nodes were required to oper-
ate in the active mode. A distributed localized algorithm,
called optimal geographical density control (OGDC), was
proposed in [6] to maintain coverage and connectivity. It
was proved that if the communication range is at least twice
the sensing range, then complete coverage implies connec-
tivity. In particular, coverage and connectivity were stud-
ied jointly in [7] with sleep-awake scheduling for energy
conservation and surveillance quality provisioning.

Although it is not a new approach to achieve energy con-
servation in WSN by scheduling some nodes to sleep, none
of the existing algorithms satisfy the complete set of re-
quirements. Several algorithms were proposed aiming at
the close-to-optimal solution. Reference [8] used informa-
tion coverage based on parameter estimation to find the re-
lationship between the sensor density and the average field
vacancy in a randomly deployed WSN. The work reported
in [9] adopted linear programming techniques to minimize
the cost of sensors for complete coverage of the sensor field.
A distributed probing-based density control mechanism for
robust sensing coverage named probing environment and
adaptive sleeping (PEAS) was developed in [10], where a
set of nodes were made active to maintain coverage while
others were put into sleep to conserve energy. By adjust-
ing the probing range of sensor nodes, different coverage
redundancies could be achieved. Although PEAS guaran-
teed that the distance between any pair of the working
nodes was at most the probing range, it did not completely
preserve the original sensing coverage after turning off some
nodes.

The remainder of this paper is organized as follows. In
Section 2, preliminary assumptions and the coverage mod-
els for WSN are discussed. In Section 3, an efficient cover
set selection algorithm is proposed, namely ECSS, based
on an improved NSGA-II. In Section 4, simulation results
are presented in various situations to validate our analysis.
Finally, conclusions are given in Section 5.
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2 The coverage model for WSN
2.1 The preliminary assumptions

Clustering mechanism is especially effective in increas-
ing network scalability and reducing data latency, which is
investigated in this paper to distribute the management
responsibility from the base station (BS) to the cluster
heads. The election of cluster heads is similar to hybrid
energy-efficient distributed (HEED) clustering[11] that pe-
riodically selects cluster heads according to a hybrid of the
node residual energy and a secondary parameter, such as
node proximity to its neighbors or node degree. The fol-
lowing assumptions are made regarding WSN:

1) Each sensor has its own location determination capa-
bilities (e.g. GPS) and schedules itself for the active/sleep
intervals.

2) After the initial deployment, all sensor nodes are able
to communicate with the cluster head and send their loca-
tion information to the BS or the cluster head.

3) The cluster head is responsible for executing the ECSS
algorithm and broadcasting the status when each node is
activated.

As the node selection mechanism is our major concern,
the problem with data gathering protocol and node syn-
chronization are not addressed in this paper. To trans-
mit data from sensors to the BS efficiently, a mechanism
like low energy adaptive clustering hierarchy (LEACH)[12]

or power efficient gathering in sensor information systems
(PEGASIS)[13] can be used. For node synchronization, one
method is to make the BS send short beacons periodically.

2.2 The sensor network coverage model

Consider that N sensors are randomly deployed to cover
the target area T , which is digitized into m × n grid
points. The cover set in the deployment region is defined
as sov = {s1, s2, · · · , sN}, where each sensor has a sensing
range rs and a communication range rc. In order to ensure
coverage connectivity, we set rc ≥ 2rs. Assume that sensor
si is deployed at point (xi, yi). For any grid point P (x, y),
the Euclidean distance between si and P (x, y) is denoted
as d(si, P ).

d(si, P ) =
√

(xi − x)2 + (yi − y)2 (1)

Equation (2) shows the binary detection model[9] ex-
pressing the detection probability cxy(si) of a grid point
P (x, y) by sensor si.

Cxy(si) =

{
1, if d(si, P ) < rs

0, otherwise
(2)

While the binary detection model assumes that sensor read-
ings have no associated uncertainty, if d(si, P ) is not larger
than rs, P (x, y) is said to be covered by sensor si. In reality,
it has limitations due to the imprecise detection probability,
which plays a significant role in sensor detection. Hence,
a detection error range re (re < rs) is introduced to mea-
sure the uncertainty of sensor detection. A probabilistic
detection model[14] is expressed as

Cxy(si) =





0, if rs + re ≤ d(si, P )

e−λaβ

, if rs − re < d(si, P ) < rs + re

1, if rs − re ≥ d(si, P )

α = d(si, P )− (rs − re)

(3)

where α and β are parameters measuring the detection
probability when rs − re < d(si, P ) < rs + re. This model

reflects the behavior of the sensing devices, such as infrared
and ultrasonic sensors.

If re ≈ 0, the binary sensor detection model given by
(2) is used. We attempt to make the detection regions of
two sensors not overlapped, thereby minimizing the wasted
overlap area and covering more grid points with a small
number of sensors.

If re > 0, re is not negligible and the probabilistic sensor
detection model given by (3) is used. Due to the uncer-
tainty of the sensor detection responses, the grid points are
not covered uniformly with the same probability. Some grid
points will have a low detection probability if they are cov-
ered only by one sensor and far from other sensors. In this
case, it is necessary to make the detection area overlapped
to compensate for the low detection probability of the grid
points that are far from any sensor. Consider a grid point
P (x, y) lying in the overlap region of si and sj . Let cxy(si,
sj) be the interference probability of a target at P (x, y)
detected by these two sensors. The sensors within a clus-
ter are assumed to operate independently in their sensing
activities. Then, the interference probability is given by

cxy(si, sj) = 1− (1− cxy(si))(1− cxy(sj)) (4)

Let cth be the desired coverage threshold for all the grid
points. It is implied that

min
x,y
{cxy(si, sj)} ≥ cth (5)

When a detection area is overlapped by multiple sensors,
the closer are the sensors to each other, the higher is the
detection probability of the grid points. Note that (4) can
be extended to a region, which is overlapped by a set of
k sensors, denoted as sovk = {s1, s2, · · · , sk}, sovk ⊂ sov.
In this case, the detection probability for the cover set is
given by

cxy(sovk) = 1−
∏

si∈sovk

(1− cxy(si)) (6)

Furthermore, the coverage rate Pcov(sovk) for the cover
set can be calculated as the fraction of grid points exceeding
the threshold cth.

Pcov(sovk) =

m∑
x=1

n∑
y=1

cxy(sovk)

m× n
(7)

2.3 Mathematical description of the problem

Problem formulation (Cover set selection prob-
lem). Given a set of N sensors, sov = {s1, s2, · · · , sN},
find a subset sov′ ⊂ sov, such that the coverage rate is
maximized with the number of sensors minimized. The
subset sov′ is considered as the optimal cover set of the
target area.

It can be described as the following multi-objective op-
timization problem (MOP)





y1 = f1(sov
′) =

m∑
x=1

n∑
y=1

cxy(sov′)
m× n

y2 = f2(sov
′) =

|sov′|
|sov|

sov′ = arg max / min(HHH) =
arg max/min{f1(sov

′), f2(sov
′)}

HHH = {y1, y2} ∈ Y

(8)

where sov′ = {(x1, y1), (x2, y2), · · · , (xk, yk)}, sov′ is called
the decision space and Y is called the objective space. Let



No. 9 JIA Jie et al.: Efficient Cover Set Selection in Wireless Sensor Networks 1159

us consider the cover set selection problem. The coverage
rate f1(sov

′) needs to be maximized while the sensors us-
age rate f2(sov

′) needs to be minimized. It can be proved
that the cover set selection problem is NP-complete. For
the sake of brevity, the proof is omitted.

3 Optimal cover set selection based on im-
proved NSGA-II

3.1 An improved NSGA-II algorithm

As discussed above, the goal of ECSS is to find the so-
lutions giving the best trade-off between the two conflict
objectives, known as Pareto optimal. MOGAs[15−16] are
recognized to be well qualified to tackle multi-objective op-
timization problems. NSGA-II[15] is one of the most popu-
lar MOGAs. Some concepts of multi-objective optimization
problem are defined as follows.

Definition 1 (Multi-objective optimization prob-
lem). Given an n-dimensional decision vector xxx = {x1,
x2, · · · , xn} in the solution space X, find a vector xxx∗ that
maximizes a given set of k objective functions f(xxx∗) =
{f1(xxx

∗), f2(xxx
∗), · · · , fk(xxx∗)}. The solution space X is gen-

erally restricted by a series of constraints, such as gj(xxx
∗) =

bj for j = 1, 2, · · · , m.
Definition 2 (Dominance/Inferiority). A vector

uuu = {u1, u2, · · · , un} is said to dominate a vector vvv = {v1,
v2, · · · , vn} if and only if uuu is partially less than vvv, i.e., ∀
i = 1, 2, · · · , n, ui ≤ vi ∧ ∃ i = 1, 2, · · · , n, ui < vi.

Definition 3 (Pareto optimal solution). A solu-
tion xxxu ∈ X is said to be Pareto optimal if and only if
there is no xxxv ∈ X for which vvv = f(xxxv) = (v1, v2, · · · , vn)
dominates uuu = f(xxxu) = (u1, u2, · · · , un).

Definition 4 (Pareto optimal set and front). Let
A ⊆ X. The nondominated set regarding A, represented
by Xp, is defined as Xp = {zzz ∈ A |zzz is nondominated
regarding X }. The corresponding objective function val-
ues in the objective space are defined as Yp = F (Xp) =
{f(zzz) |zzz ∈ Xp }, where Xp is called the Pareto optimal set
and Yp is called the cohere Pareto optimal front.

However, the solutions found by original NSGA-II are
likely to be inferior or only comparable to that by classi-
cal heuristic search algorithms because of premature con-
vergence. To find perfect solutions, a delete operator for
NSGA-II is proposed to enhance the search capability.
When selecting the elitist, if neither of the two individu-
als in a population wins out and their genes are the same,
then delete one of them. Furthermore, a circulation selec-
tion is presented to preserve excellent genes of the parent
population. Suppose there are K individuals in a popula-
tion (ind1, ind2, · · · , indK) when the crossover operations
are carried out. The first time the operation is carried out
with (ind1, ind2) as parents, the second time (ind2, ind3)
are taken as parents, and so on. Similarly, the last child is
done by (indK , ind1). By this way, K offspring individuals
are generated. The genes of each parent are inherited by
two offspring individuals, thus avoiding the loss of excellent
solutions.

3.2 An efficient cover set selection algorithm

Now, we can construct the cover set using the optimal
Pareto solutions generated by the improved NSGA-II al-
gorithm. The chromosomes of a genetic algorithm contain
all the building blocks to a solution for the genetic opera-
tors and the fitness function. In our implementation, each
individual node is represented by a one-bit binary number
called gene. This one-bit gene defines the status of the

sensors as follows

ai =

{
1, if si is selected
0, otherwise

(9)

For example, in a 20-nodes system, the number of bits
required to represent the complete system will be 20 bits.
For the scenario shown in Fig. 1, the resulting chromosome
structure is 10101010101010101010. With this coding rep-
resentation, the initial population of the improved NSGA-II
algorithm is generated.

Fig. 1 Code representation

Assign each individual with two fitness functions, the
coverage rate and the sensors usage rate. By introduc-
ing the nondominated sorting approach, the crowded dis-
tance operator and the controlled elitism, our replace-
ment scheme is executed. First, a combined population
Rt = Pt ∪Qt is formed with the parent population Pt and
the child population Qt, where t is the generation number.
Then, the population Rt will be of size 2N . By adding
solutions from the first front till the size exceeds N , the
new parent population Pt+1 is formed. Thereafter, the so-
lutions of the last accepted front are sorted according to the
crowed comparison and the first N points are picked. In
this way, the population Pt+1 of size N is constructed. Sub-
sequently, it is used for the circulated selection, crossover,
and mutation to create a new population Qt+1 of size N .
The recombination operator used in this paper is two-point
crossover. After recombination, the mutation operator is
applied to complement some genes in the chromosomes of
the child randomly.

Similar to the virtual force algorithm (VFA)[14], the
ECSS algorithm is designed to be executed by the cluster
head, which is equipped with better resource to manage
one-time computing status of the sensors within a cluster.
As only the final results obtained are sent back to the sensor
nodes, the power consumption can be reduced effectively.
The main procedure of the ECSS algorithm is described as
follows.

Input. Cover set sov = {s1, s2, · · · , sN}, the number of
generations Max generation, population size N , recombi-
nation probability Pr, mutation probability Pm, reduction
rate of the controlled elitism ρ.

Output. Nondominated solutions in P .
Step 1 (Initialization). Set t = 0, P ′ = ∅. Generate

an initial population P randomly. Calculate the objective
functions for each individual.

Step 2 (Nondominated sorting). P = P ∪ P ′.
Do fast nondominated sorting approach resulting nondom-
inated fronts {F1, F2, · · · , Fr}.

Step 3 (Controlled elitism). Set r = 1, P = ∅. While
|P | < K, do: 1) calculate nr according to the controlled
elitism scheme with ρ; 2) sort Fr in descending order using
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crowded comparison; 3) put the first nr members of Fr in
P , i.e., P = P ∪ Fr[1 : nr]; 4) r = r + 1.

Step 4 (Fitness assignment). Assign fitness to each
individual according to its position in P .

Step 5 (Reproduction). Generate an offspring P ′

from P with size of K according to the genetic operators;
Calculate f1(sov

′) and f2(sov
′) for each individual in P ′.

Step 6 (Termination). t = t + 1. If t >
Max generation or the required f1(sov

′) and f2(sov
′) are

met, then terminate; else go to Step 2.
When the cluster head is not available, the parallel ECSS

algorithm can be executed by the individual sensors only
based on its neighborhood information. In this case, the
sensors need to undergo status transformation after some
generations. Then, computing and comparing the full cov-
erage would not be feasible. The number of generations
must be limited to reduce the power consumption in sensor
communication.

4 Performance evaluation

To study the performance of ECSS, three experiments
have been conducted using the binary and probabilistic de-
tection models in different scenarios. Throughout these
experiments, the communication radius rc is set as twice
the sensing radius rs. This is to ensure that even when
the sensing range is very small and two neighboring sen-
sors are barely jointly placed (i.e., the distance between
two neighboring sensors is 2rs), it is still possible to estab-
lish a communication link between the two sensors. For
all these simulations, distances are measured in units of m.
The simulations were run on a Pentium 2.0GHz PC using
Matlab 7.0.

Test 1. 200 potential sensors are randomly distributed
in the target area of 100 m × 100m. The sensing ra-
dius for all the nodes is set to 14m. The genetic algo-
rithm (GA) parameters used in the simulation are listed in
Table 1.

Table 1 GA parameters used in Test 1

Parameter Value

Population size 200

Recombination rate 0.9

Mutation rate 0.005

Reduction rate 0.5

Fig. 2 shows the simulation results of ECSS run of 200
generations for the binary detection model in Test 1.
The initial population is randomly generated, as shown
in Fig. 2 (a). After running a number of generations, the
Pareto optimal solutions are shown from Figs. 2 (b)∼ (d).

Since the nodes deployment is random, 20 experiments
have been made to observe the average results. The ob-
tained Pareto optimal front is shown in Fig. 3. At the
beginning, there are only a few nondominated solutions,
which constitute a nondominated front (the short curve in
Fig. 3). After 10 generations, more nondominated solutions
are found, and the Pareto optimal front becomes fully out-
spread. By observing the history from the beginning to
generation 200, it can be clearly seen that the search is
directed toward the global Pareto optimal set.

Test 2. 200 potential sensors are randomly distributed
in the target area of 100 m × 100m on the basis of binary
detection model. The GA parameters used are the same as
for Test 1.

Fig. 4 compares the nondominated solutions achieved by

ECSS and the original NSGA-II, where only values of the
two objectives are displayed in order to make the com-
parison clear. Both algorithms were running through 150

(a)

(b)

(c)

(d)

Fig. 2 Illustration of nondominated solutions obtained in the
simulation of Test 1 ((a) Initial distribution; (b) The 50-th

generation, coverage rate 98.56%, 50 sensors; (c) The 100-th
generation, coverage rate 99.68%, 44 sensors; (d) The 200-th

generation, coverage rate 97.32%, 33 sensors)
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Fig. 3 Simulation results of Test 1 using ECSS Fig. 4 Comparison between ECSS and NSGA-II

(a) Initial distribution (b) The 30-th generation (c) The 80-th generation

(d) The 120-th generation (e) The 150-th generation

Fig. 5 Illustration of nondominated solutions obtained in the simulation of Test 3
((a) 100 sensors; (b) 45 sensors, coverage rate 93.92%; (c) 33 sensors, coverage rate 99.89%;

(d) 31 sensors, coverage rate 99.89 %; (e) 27 sensors, coverage rate 99.12 %)

generations. From the simulation results, we can see that
the ECSS algorithm improves the network coverage rate
considerably compared with the original NSGA-II, and it
does not require more working nodes. By using the cir-
culation crossover and delete operators, ECSS achieves a
longer nondominated line with the nondominated solutions
distributed uniformly over the Pareto optimal front. Based
on the trade-off information obtained by ECSS, the deci-
sion maker can find a compromise solution between the
conflicting objectives.

Test 3. 100 potential sensors are distributed randomly
in the target area of 50m× 50m on the basis of probabilis-
tic detection model. Each sensor has a sensing range of 9m
(rs = 9) and a detection error range of 5 m (re = 5). The
parameters in the probabilistic detection model are set as
λ = 0.5, β = 0.5, and cth = 0.7.

Fig. 5 presents simulation results for the probabilistic de-

tection model in Test 3. The initial distribution is shown
in Fig. 5 (a). Nondominated solutions obtained in different
generations are illustrated from Figs. 5 (b)∼ (e). With the
gray bar shown on the right hand sides of the figures, we
can see each grid point of the target area is detected or
not intuitionally. The grid points with the detection prob-
ability 1 are represented by a circle of which the center
is sensor location and the radius is (rs − re). The sub-
optimal solutions are obtained after 150 generations, as
shown in Fig. 5 (e), which use only 27 sensors to achieve the
coverage rate of 99.12 %. When running more than 1 000
generations, no better solutions can be found to dominate
the sub-optimal solution discussed above. Although all the
surrounding neighbor nodes should be considered for the
influence of each other with respect to the coverage and in-
terference, ECSS can converge to the optimal solution more
rapidly for our studies.
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5 Conclusions
In this paper, the relationship between the network cov-

erage rate and the sensors usage rate is investigated. For a
practical approach, a probabilistic sensor detection model
is adopted in combination with the detection error range
and coverage threshold. As a new contribution, ECSS, an
efficient cover set selection algorithm based on improved
NSGA-II is proposed. The basic goal of ECSS is to acti-
vate only a minimum number of sensor nodes in a densely
deployed environment. It is subjected to two constraints:
one is the desired coverage rate of the network and the other
is the number of the working nodes chosen from the whole
network. By searching through the whole state-space, it
can avoid partial optimized solutions. ECSS offers a num-
ber of important advantages, including negligible compu-
tation time and one-time resetting the status of all the sen-
sor nodes. Moreover, the desired sensor field coverage and
model parameters can be provided as inputs to the ECSS
algorithm, thereby ensuring flexibility.

In the future, the optimal distributions with different
coverage thresholds will be developed for the probabilistic
detection model, including the calculation of the minimum
sensors and the optimal topology control. We will also fo-
cus on the fully distributed density control algorithm in
heterogeneous sensor networks, where sensors may differ
from each other in the detection modalities and parame-
ters.
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