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Hybrid Estimation of State and Input for Linear Discrete
Time-varying Systems: A Game Theory Approach

YOU Fu-Qiang' WANG Fu-Li? GUAN Shou-Ping!

Abstract The H,, hybrid estimation problem for linear discrete time-varying systems is investigated in this paper, where estimated
signals are linear combination of state and input. Design objective requires the worst-case energy gain from disturbance to estimation
error to be less than a prescribed level. Optimal solution of the hybrid estimation problem is the saddle point of a two-player zero
sum differential game. On the basis of the differential game approach, necessary and sufficient solvable conditions for the hybrid
estimation problem are provided in terms of solutions to a Riccati differential equation. Moreover, one possible estimator is proposed
if the solvable conditions are satisfied. The estimator is characterized by a gain matrix and an output mapping matrix, where the
latter reflects the internal relations between unknown input and output estimation error. At last, a numerical example is provided

to illustrate the proposed approach.
Key words

‘When estimated signal includes both state and unknown
input of the system, the estimation problem is referred to
as state and input hybrid estimation (in the following, only
hybrid estimation will be used for brevity). Hybrid estima-
tion is originated from practical application and theorym.
One practical example is load current estimation of uninter-
ruptible power supply (UPS), where load current is a linear
function of capacitor voltage (state) and back electromotive
force (unknown input)m. From a theoretical view point,
either filtering (state estimation) or deconvolution (input
estimation) is just a special case of the hybrid estimation.
Both of the former two can be treated in the framework of
hybrid estimation. Therefore, research on hybrid estima-
tion is more general. Fault diagnosis is another important
related area of hybrid estimation. Scheme of fault diagnosis
can be designed on the basis of hybrid estimation approach
because fault signal can be treated as unknown input.

In the past decade, Ho, optimization-based estimation
has been an active research areal® . Differential game-
theory approach is one of main time-domain approaches,
because Ho, estimation is a min-max problem in essen-
tial. Differential game-theory approach can directly deduce
estimator’s design method from the performance specifi-
cation and therefore, is a constructive approach. More-
over, the existence conditions of the proposed estimator are
necessary and sufficient so that the least conservativeness
might be achieved. Differential game-theory approach is
also capable of dealing with time-varying problems, which
makes it a powerful math tool. Banavar and Speyerl®
first investigated H filtering and smoothing for contin-
uous linear time-varying (LTV) systems using differential
game-theory approach. Later, discrete differential game-
theory approach was applied to Hs filtering for discrete
LTV systems(™. In contrast, a new Ho deconvolution fil-
ter was derived by using game-theory approach!®. It should
be noted that existing conditions for the deconvolution fil-
ter are not provided explicitly. Moreover, the performing
specification is defined in an indirect manner which makes
their results unnecessarily complicated.

Other related research of H., hybrid estimation is in-
troduced in the following. Optimal performance was first
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presented for continuous LTV system by differential game-
theory approach. However, construction of the estimator
was not discussed there. Khargonekar et al. gave results
on Hy/H. hybrid estimation for continuous linear time-
invariant (LTT) systems®!. In [10], He filtering was ex-
plored, where uncertain initial state is deemed as a ficti-
tious external input and the H filtering was converted to
an equivalent hybrid estimation problem. At last, Cuzzola
and Ferrante proposed LMI conditions for H2 estimation
for discrete LTI systems[l]. They also illustrated explicitly
the theoretical and practical sense of hybrid estimation.

Above research on hybrid estimation mostly focused on
LTI systems. There is however still a lack of results for
H hybrid estimation problem for discrete LTV systems,
which will be the subject of this paper. We will use a game
theory approach that incorporates maximum principle ar-
guments to study such a problem over a finite horizon. The
connection is first established between Ho, hybrid estima-
tion problem and a two-player zero sum differential game.
On the basis of the differential game approach, necessary
and sufficient solvable conditions for the hybrid estimation
problem are then provided in terms of solutions to a Ric-
cati differential equation. Moreover, one possible estimator
is proposed if the solvable conditions are satisfied. The es-
timator is characterized by a gain matrix and an output
mapping matrix, where the latter reflects the internal rela-
tions between unknown input and output estimation error.
At last, effectiveness of the proposed approach is shown
through a numerical example.

Notation. R"™ and R™*" denote n-dimensional and
(m x n)-dimensional Euclidean space, respectively. Lo
denotes square summable real sequences and ||| stands
for inner product in Euclidean space. For any h € Lo,
Il = (RTR)2.

1 Problem formulation

Consider the following discrete-time LTV system 3

Tpt1 = ArTr + Brug, To = Zo 1)

Y, = Crxr + Dyur + v
where z, € R" is state vector, y, € R™ is measured
output, ury € RP is unknown input, and vy € RY is
measurement noise. Matrices Ar € R"*", By € R"*P,
Cr € R™*", and D € R™*? are known time-varying pa-
rameters. State initial value Zo is unknown. The control
input does not influence the results and is not included in
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system ¥;. Estimated signal is given by
2k = Lak®i + Lukr (2)

where 2z, € R!, Lo € R™", and Ly, € R'*? are prede-
fined parameter matrices to describe estimated objectives.

With different forms of z, in (2), three kinds of esti-
mation problem can be defined as follows: 1) Lzr # 0,
Ly = 0, filtering; 2) Lyk = 0, Lyk # 0, input estimation;
3) Lur # 0 and Ly, # 0, SISE (State and input simul-
taneous estimation). Obviously, both filtering and input
estimation are just special cases of SISE.

Define a scalar v to denote disturbance attenuation level
and a worst-case estimation performance index

Jwrt(Zk, Uk, Vi, To) =
N1 1/2
> N2k — 2
sup e (3)
(w,)EL3,xgER™ moTRzo—l— kZ:O (||Uch2+Hvk”2)

where the subscript “wrt” of Ju,r: denotes “worst”, 2x €
R is estimate of zx and R € R™ ™ is a positive definite
weighting matrix on uncertainty of initial state. N — oo
corresponds to infinite horizon case and in this paper we
will focus on the finite horizon case (N < o00).

H, SISE estimator for discrete-time LTV systems:

Consider system (1) and (2). Given a positive scalar =,
an estimator 2, = S(y,) satisfying the performance speci-
fication Jy,r+ < 7y for all possible u,v, and & is referred to
as Hoo SISE estimator for discrete-time LTV systems.

2 Main results

From the output equation in (1) and the performance
specification Jy,rt < 7, we formulate a new performance
measure

N-1
J(‘%’Wulwykvzo) = sz - ‘ékHQ_
k=0
N-1
v |25 Reo + ) (lusl® + llyx — Crar — Diui®) | (4)
k=0

To seek Ho SISE estimator, we are involved with solving
a two-player zero sum differential game

inf sup sup sup J (5)
2y xT u
As the two opponents in the game, unknown input u, out-
put y, and unknown initial state o try to make the perfor-
mance measure J maximize, the estimate 2, actes counter.
Optimal solution to Ho, SISE problem is exactly the game’s
saddle point (25, u",y",x)) satisfying

J(227ukyyk7x0) S J(227u27y;::7x8) S J(2k7u;’;7y27z8)( )
6
For notation brevity, define matrices

Fr =LY Luk —vCiDy, Ex=~(I+DEDy)— LY Lug

Sk = LypLox—7"Cr Co+FrEy 'FyY, Ak = Ap+ByEy 'FyY

Theorem 1. Given a positive scalar ~, for discrete-time
LTV system (1) and (2), an estimator satisfying perfor-
mance specification Jyrt < v exists if and only if there ex-
ists bounded positive matrix function Qy, for Vk € [0, N —1]

such that (I — SkQk) is invertible and the following condi-
tions hold
v*(I + Dj Dy) — Ly Luk > 0 (7)

I+ LukE;ZlLEk + (Lgk+
FoEy " L) " Qr(I — SkQr) ™ (Lay + FrEy 'Lyx) > 0 (8)

Qi1 = (Ax + BBy ' FDQu(I — SkQr) ™' (Ar+
-1
BrE;'FD)" + By [f([ DYDY — LY Lu|  BY (9)

Qo=~""R"" (10)

Furthermore, if such an estimator exists, one Ho SISE
estimator is given by

Zpy1 = Az + (Y ARQLCY + By DY )(Dip DE +
Iy CruQrCr )™ (yy, — Citr)
2k = Lar@n + (Luk DY 4+ 72 Lok QrCE) (D DY+
I+7°CrQuCi )~ (i — Critr),
Zo=0
(11)

Theorem 1 for existing conditions of H., SISE estima-
tor for discrete-time LTV systems can be checked by in-
equalities (7) and (8) and by solving a differential Riccati
recursion, which is propagated by (9) from initial condi-
tion (10). In case that Q exists, one Hy SISE estima-
tor can be constructed as (11) with a special innovation
structure. Innovation information (y, — Ck&r) is used to
update estimator’s state equation and provide input esti-
mation through gain matrix and projector matrix, respec-
tively. Let Ly, = 0, conditions (7)~(10) recover the re-
sults on Ho, filtering for discrete-time LTV systems*). Let
L. =0, and we can obtain an H, deconvolution filter for
discrete-time LTV systems.

Proof of Theorem 1.

We will propose the necessary proof of Theorem 1 and it
is easy to finish its sufficient proof by reversing the process
of the necessary proof.

Step 1. Seek optimal u;, and z§ of unknown input uy
and initial state xq.

Having known the performing specification Jyr: < 7y
holds for discrete-time LTV systems (1) and (2), follow-
ing (4), and constraint condition (1), define Hamiltonian
function as

N 1 R 1
Hog 2k, Uk, Yy, To, Apt1) = 5 Iz — Zk||2 - 572(”“16“2 +
ly), — Crar — Diurl|®) + Ny 1 (Ax®i + Brug) (12)

where A;41 is a Lagrange multiplier.
First order necessary conditions are given by

NCi: M\, = —8H“’“, NCs: OHar _
oz Ouy,

NCs: Mo = v*Rzo, NCy: Ay =0

NC5 gives the optimal unknown input value as
ui = By ' (Fr @k — Lurze +7°Diyy + Bidier)  (13)

To make sure wj maximizes performance measure J re-
quires that
Er >0 (14)
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A new Hamiltonian accompanying system is obtained from

NC1 ~ NCjy.

Try1r | | Ack BkEk_lB,;r Tk _
Ak Tl Sk AL Akt1
BLE; 'Ly, . 5 ByE;'Df
{ RELT + L%, |77 | RE'DF +oF | Y

EIRCI

(15) is a two point boundary value problem and its so-
lution is given by

z = &, + QrAL (16)

Substituting (16) into (15), we have
Qrt1 = AckQr(I — Ska)ilAch + BkEllel? (17)
Qo=7""R"" (18)

zy =7 "R\ (19)

&rs1 = A& — [BuEy, ' Luy + AcxQu(I = SQu) ™" (Fiox
E,ZILEk + sz)}(szﬁk —2) + ’Y2[BkE/:1DE + Ak Qr X
(I - SQi)™ (FuEy ' Dy + Ci)(y), — Cur), @0 = 0 (20)
If (20) is used to solve the differential game, the result

will be 2 = L.rZy, i.e., only state observation term occurs

in 2. By inspection, unknown input part in 2z is estimated
by Hy(y, — Ck&r), where projector matrix Hj, can be de-

termined in a similar way to that in [11] using the bounded
real lemma approach.

Hy, = (Lur Dy + 7" LoxQiCit )(Di Dy + 1 + fckaC(E ))
21
Introduce a zero term by adding and subtracting term

2 BrE, "D} + AckQi(I — SQr) ™' x

(FyE;'DF + ) Hi(yy — Crtv)

in the right side of (20). After rearrangement, (20) is trans-
formed to

Fri1=AZ— [Br B}, ' Lip+AckQu(I — SQr) ™ (FrEy ' x
L +L;Fk)][Hk (Y1, —Crr)+ LarZs —2k]+(’Y2AkaCkT+
BiDi)(DeDi +1+7°CrQiCi) ™ (y), — Crr)  (22)

Step 2. Seek optimal y; and zj of y, and 2z, define
function

Li(2k, uk, Yy, o) = |z — 24||° —
Y2 (llurll® + [ly, — Crzr — Dru?) (23)
Then

J(2k, Uk, Y, To) = —7 %o RTo + Mg Qodo — ANQNAN+

-1

z

[Lk(ﬁmuk,yk,l‘o) + M1 Qe 1 N1 — )\EQMk}

a (24)

o

and

J(élmukaykyxs) =
N-—1
Z [Lk(‘%k:ukyyk,xo) + M1 Qe 1 kg1 — AEQMI@]

k=0

(25)

Substituting uy described by (13) into (25), and through a
rather involved algebraic operation, we can obtain

N-—1
J (e, ui, Ypomo) = > {Zi (Lo + FrEy ' Luy) " Qu(I-
k=0
SkQu) (Lt + FrEy ' Lig))ze—
Vi (DiDy + I +~+*CrQuCr )i} (26)

where 2, = LypZr+Hy, (yk—Ckik)—ék and ’_l)k =Y —CrZ.
For positive matrix Dy Df +I++?CrQrCF, to maximize
J(Zk,ur, Yy, Z5), the optimal solution of y,, should be given

by
y}z = Ckiik (27)

In contrast, matrix inequality relation

(Lax+ FrBy " L) "Qu(I = SkQi) ™' (L + Fi By, ' Lyy) > 0

(28)
must be held to guarantee that the optimal solution of zj
exists. Otherwise, 2y, that is bounded, does not minimize
J(Zk,uk, Y, o). In case that (28) holds, optimal 2} is
expressed by

27; = LorZyr + H(yk — Ck.'i:k) (29)

Step 3. Verify (25, uy, ¥, o) to guarantee saddle point
condition (6).
It follows from (26), (27), and (29) that

J (2%, uk, Yy, x0) = 0 (30)
On the one hand

J(227ukaykvxo) S J(£Z7’"’Zayk7$3) =
N-1

~v*U (DeDyy + I ++*CuQrCy )iy, <0 (31)
k=0

On the other hand, with (28), we have

N-1

J(Erout, 45, 20) = ) {Zk [(Lak + FrBy ' Luy) " Qu(I—

k=0

SkQr) " (Lak + FrEy 'Li)]zZe} >0 (32)

By (30) ~ (32), we can conclude that the optimal solu-
tion (23, u}, Yy, xo) satisfies the saddle point condition

J(%Z,’U,k,yk,xo) S J(£Zvu27y27zs) S J(2k7u27y27m:;()33)
Finally, necessary and sufficient existing conditions for H
SISE estimator in Theorem 1 are followed by (14), (17),
(18), and (28). If we choose the optimal strategy (29) for
estimated signal z, from (20) estimator described by (11)
is an Ho, SISE estimator that satisfies the performance
specification Jyre < 7.
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3 Simulation example

In this paper, we exploit a modified example from [7].
Considering a damped harmonic oscillator with velocity
measurements described by (1) and (2), the system’s pa-
rameters are given by

A 0.5079  0.7594 } By = { 0.4921 }

~ | —0.7594 0.2801 0.7594

Ce=[0 1],Dg=5Ler=[1 0], Lux=1

The state vector x; stands for position and velocity, and
output y,, is the measured velocity. Unknown input u, here
stands for a step fault signal and its waveform is shown in
Fig. 1. Measurement noise vj, is a band-limited white noise
with power 0.02, and its waveform is shown in Fig. 2.

For clarity, in (2), let 245 = Lyrzr and zukx = Lyrug
denote state observation and input estimation objective,
respectively. Choose disturbance attenuation level v = 0.8.
By Theorem 1, the solution to differential Ricatti recursion
(9) is obtained as

Q= 0.0644 0.0039
| 0.0039 0.0685

It is easy to verify that inequalities (7) and (8) are guar-
anteed. From (11), an estimator satisfying performance
specification Jyrt < 7y is constructed as follows

[ 05079 0.7594 | . 0.098 1 a0y
Tet1 =1 _0.7504 0.2801 |7 | 0.1462 | Yk~ “KEE

Zr=[1 0 ]&k+0.1921(y, — Crr), 2o=0

where Zzp = [ 1 0 | &k and Zu, = 0.1921(y,, — Cidx) are
estimate of z,, and z,k, respectively. Observation of the
state and input estimation results are shown in Figs. 3 and
4. Fig.5 shows state and input simultaneous estimation
results. Define estimation error vector Z, = 2zx — 2. Fig.6
gives the estimation error of signal z;. It is seen that the
estimator shows superior performance in each case. Both
state and fault signals are reconstructed in a high precision
despite the influence of fault and measurement noise.
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Fig.1 Waveform of uy
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Fig.2 Waveform of vy
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Fig.3 2.k (solid line) and 2., (dot line)
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Fig.4 2.k (solid line) and 2, (dot line)
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Fig.5 2z (solid line) and 2 (dot line)
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Fig.6 Estimation error zj

4 Conclusion

H state and input simultaneous estimation for discrete-
time LTV-hybrid estimation are investigated in this paper.
On the basis of differential game-theory approach, neces-
sary and sufficient solvable conditions for H., state and
input simultaneous estimation for discrete-time LTV sys-
tems are proposed, which are equivalent to solvability of
a set differential Riccati recursion. An estimator is pre-
sented in case that the H., SISE is solvable. The estimator
is parameterized by a gain matrix and a projector matrix.
The work in this paper shows that innovation information
can be used to provide state observation and input estima-
tion simultaneously. Because fault signal can be treated
as exogenous input, with input estimation ability, one im-
mediate application area of the proposed estimator is fault
diagnosis.
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