
Vol. 34, No. 6 ACTA AUTOMATICA SINICA June, 2008

Hybrid Estimation of State and Input for Linear Discrete

Time-varying Systems: A Game Theory Approach
YOU Fu-Qiang1 WANG Fu-Li1 GUAN Shou-Ping1

Abstract The H∞ hybrid estimation problem for linear discrete time-varying systems is investigated in this paper, where estimated
signals are linear combination of state and input. Design objective requires the worst-case energy gain from disturbance to estimation
error to be less than a prescribed level. Optimal solution of the hybrid estimation problem is the saddle point of a two-player zero
sum differential game. On the basis of the differential game approach, necessary and sufficient solvable conditions for the hybrid
estimation problem are provided in terms of solutions to a Riccati differential equation. Moreover, one possible estimator is proposed
if the solvable conditions are satisfied. The estimator is characterized by a gain matrix and an output mapping matrix, where the
latter reflects the internal relations between unknown input and output estimation error. At last, a numerical example is provided
to illustrate the proposed approach.
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When estimated signal includes both state and unknown
input of the system, the estimation problem is referred to
as state and input hybrid estimation (in the following, only
hybrid estimation will be used for brevity). Hybrid estima-

tion is originated from practical application and theory[1].
One practical example is load current estimation of uninter-
ruptible power supply (UPS), where load current is a linear
function of capacitor voltage (state) and back electromotive

force (unknown input)[2]. From a theoretical view point,
either filtering (state estimation) or deconvolution (input
estimation) is just a special case of the hybrid estimation.
Both of the former two can be treated in the framework of
hybrid estimation. Therefore, research on hybrid estima-
tion is more general. Fault diagnosis is another important
related area of hybrid estimation. Scheme of fault diagnosis
can be designed on the basis of hybrid estimation approach
because fault signal can be treated as unknown input.

In the past decade, H∞ optimization-based estimation
has been an active research area[3−5]. Differential game-
theory approach is one of main time-domain approaches,
because H∞ estimation is a min-max problem in essen-
tial. Differential game-theory approach can directly deduce
estimator′s design method from the performance specifi-
cation and therefore, is a constructive approach. More-
over, the existence conditions of the proposed estimator are
necessary and sufficient so that the least conservativeness
might be achieved. Differential game-theory approach is
also capable of dealing with time-varying problems, which
makes it a powerful math tool. Banavar and Speyer[6]

first investigated H∞ filtering and smoothing for contin-
uous linear time-varying (LTV) systems using differential
game-theory approach. Later, discrete differential game-
theory approach was applied to H∞ filtering for discrete
LTV systems[7]. In contrast, a new H∞ deconvolution fil-
ter was derived by using game-theory approach[8]. It should
be noted that existing conditions for the deconvolution fil-
ter are not provided explicitly. Moreover, the performing
specification is defined in an indirect manner which makes
their results unnecessarily complicated.

Other related research of H∞ hybrid estimation is in-
troduced in the following. Optimal performance was first
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presented for continuous LTV system by differential game-
theory approach. However, construction of the estimator
was not discussed there. Khargonekar et al. gave results
on H2/H∞ hybrid estimation for continuous linear time-

invariant (LTI) systems[9]. In [10], H∞ filtering was ex-
plored, where uncertain initial state is deemed as a ficti-
tious external input and the H∞ filtering was converted to
an equivalent hybrid estimation problem. At last, Cuzzola
and Ferrante proposed LMI conditions for H2 estimation
for discrete LTI systems[1]. They also illustrated explicitly
the theoretical and practical sense of hybrid estimation.

Above research on hybrid estimation mostly focused on
LTI systems. There is however still a lack of results for
H∞ hybrid estimation problem for discrete LTV systems,
which will be the subject of this paper. We will use a game
theory approach that incorporates maximum principle ar-
guments to study such a problem over a finite horizon. The
connection is first established between H∞ hybrid estima-
tion problem and a two-player zero sum differential game.
On the basis of the differential game approach, necessary
and sufficient solvable conditions for the hybrid estimation
problem are then provided in terms of solutions to a Ric-
cati differential equation. Moreover, one possible estimator
is proposed if the solvable conditions are satisfied. The es-
timator is characterized by a gain matrix and an output
mapping matrix, where the latter reflects the internal rela-
tions between unknown input and output estimation error.
At last, effectiveness of the proposed approach is shown
through a numerical example.

Notation. Rn and Rm×n denote n-dimensional and
(m × n)-dimensional Euclidean space, respectively. L2

denotes square summable real sequences and ‖‖ stands
for inner product in Euclidean space. For any h ∈ L2,
‖h‖ = (hTh)1/2.

1 Problem formulation

Consider the following discrete-time LTV system Σ1

{
xxxk+1 = Akxxxk + Bkuuuk, xxx0 = x̄xx0

yyyk = Ckxxxk + Dkuuuk + vvvk
(1)

where xxxk ∈ Rn is state vector, yyyk ∈ Rm is measured
output, uuuk ∈ Rp is unknown input, and vvvk ∈ Rq is
measurement noise. Matrices Ak ∈ Rn×n, Bk ∈ Rn×p,
Ck ∈ Rm×n, and Dk ∈ Rm×p are known time-varying pa-
rameters. State initial value x̄xx0 is unknown. The control
input does not influence the results and is not included in
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system Σ1. Estimated signal is given by

zzzk = Lxkxxxk + Lukuuuk (2)

where zzzk ∈ Rl, Lxk ∈ Rl×n, and Luk ∈ Rl×p are prede-
fined parameter matrices to describe estimated objectives.

With different forms of zzzk in (2), three kinds of esti-
mation problem can be defined as follows: 1) Lxk 6= 0,
Luk = 0, filtering; 2) Lxk = 0, Luk 6= 0, input estimation;
3) Lxk 6= 0 and Luk 6= 0, SISE (State and input simul-
taneous estimation). Obviously, both filtering and input
estimation are just special cases of SISE.

Define a scalar γ to denote disturbance attenuation level
and a worst-case estimation performance index

Jwrt(ẑzzk,uuuk, vvvk,xxx0) =

sup
(uuu,vvv)∈L2,xxx0∈Rn




N−1∑
k=0

‖zzzk − ẑzzk‖2

xxxT
0 Rxxx0 +

N−1∑
k=0

(‖uuuk‖2 + ‖vvvk‖2
)




1/2

(3)

where the subscript “wrt” of Jwrt denotes “worst”, ẑzzk ∈
Rl is estimate of zzzk and R ∈ Rn×n is a positive definite
weighting matrix on uncertainty of initial state. N → ∞
corresponds to infinite horizon case and in this paper we
will focus on the finite horizon case (N < ∞).

H∞ SISE estimator for discrete-time LTV systems:
Consider system (1) and (2). Given a positive scalar γ,

an estimator ẑzzk = =(yyyk) satisfying the performance speci-
fication Jwrt < γ for all possible uuu,vvv, and xxx0 is referred to
as H∞ SISE estimator for discrete-time LTV systems.

2 Main results

From the output equation in (1) and the performance
specification Jwrt < γ, we formulate a new performance
measure

J(ẑzzk,uuuk, yyyk,xxx0) =

N−1∑

k=0

‖zzzk − ẑzzk‖2−

γ2

[
xxxT

0 Rxxx0 +

N−1∑

k=0

(‖uuuk‖2 + ‖yyyk − Ckxxxk −Dkuuuk‖2
)
]

(4)

To seek H∞ SISE estimator, we are involved with solving
a two-player zero sum differential game

inf
ẑzzk

sup
yyy

sup
xxx0

sup
uuu

J (5)

As the two opponents in the game, unknown input uuu, out-
put yyy, and unknown initial state xxx0 try to make the perfor-
mance measure J maximize, the estimate ẑzzk actes counter.
Optimal solution to H∞ SISE problem is exactly the game′s
saddle point (ẑzz∗k,uuu∗, yyy∗,xxx∗0) satisfying

J(ẑzz∗k,uuuk, yyyk,xxx0) ≤ J(ẑzz∗k,uuu∗k, yyy∗k,xxx∗0) ≤ J(ẑzzk,uuu∗k, yyy∗k,xxx∗0)
(6)

For notation brevity, define matrices

Fk = LT
xkLuk − γ2CT

k Dk, Ek = γ2(I + DT
k Dk)− LT

ukLuk

Sk = LT
xkLxk−γ2CT

k Ck+FkE−1
k FT

k , Ack = Ak+BkE−1
k FT

k

Theorem 1. Given a positive scalar γ, for discrete-time
LTV system (1) and (2), an estimator satisfying perfor-
mance specification Jwrt < γ exists if and only if there ex-
ists bounded positive matrix function Qk for ∀k ∈ [0, N−1]

such that (I − SkQk) is invertible and the following condi-
tions hold

γ2(I + DT
k Dk)− LT

ukLuk > 0 (7)

I + LukE−1
k LT

uk + (LT
xk+

FkE−1
k LT

uk)TQk(I − SkQk)−1(LT
xk + FkE−1

k LT
uk) > 0 (8)

Qk+1 = (Ak + BkE−1
k FT

k )Qk(I − SkQk)−1(Ak+

BkE−1
k FT

k )T + Bk

[
γ2(I + DT

k Dk)− LT
ukLuk

]−1

BT
k (9)

Q0 = γ−2R−1 (10)

Furthermore, if such an estimator exists, one H∞ SISE
estimator is given by





x̂xxk+1 = Ax̂xxk + (γ2AkQkCT
k + BkDT

k )(DkDT
k +

Iγ2CkQkCT
k )−1(yyyk − Ckx̂xxk)

ẑzzk = Lxkx̂xxk + (LukDT
k + γ2LxkQkCT

k )(DkDT
k +

I + γ2CkQkCT
k )−1(yyyk − Ckx̂xxk),

x̂xx0 = 0
(11)

Theorem 1 for existing conditions of H∞ SISE estima-
tor for discrete-time LTV systems can be checked by in-
equalities (7) and (8) and by solving a differential Riccati
recursion, which is propagated by (9) from initial condi-
tion (10). In case that Qk exists, one H∞ SISE estima-
tor can be constructed as (11) with a special innovation
structure. Innovation information (yyyk − Ckx̂xxk) is used to
update estimator′s state equation and provide input esti-
mation through gain matrix and projector matrix, respec-
tively. Let Luk = 0, conditions (7)∼(10) recover the re-

sults on H∞ filtering for discrete-time LTV systems[11]. Let
Lxk = 0, and we can obtain an H∞ deconvolution filter for
discrete-time LTV systems.

Proof of Theorem 1.
We will propose the necessary proof of Theorem 1 and it

is easy to finish its sufficient proof by reversing the process
of the necessary proof.

Step 1. Seek optimal uuu∗k and xxx∗0 of unknown input uuuk

and initial state xxx0.
Having known the performing specification Jwrt < γ

holds for discrete-time LTV systems (1) and (2), follow-
ing (4), and constraint condition (1), define Hamiltonian
function as

Hak(ẑzzk,uuuk, yyyk,xxx0, λk+1) =
1

2
‖zzzk − ẑzzk‖2 − 1

2
γ2(‖uuuk‖2 +

‖yyyk − Ckxxxk −Dkuuuk‖2) + λT
k+1(Akxxxk + Bkuuuk) (12)

where λk+1 is a Lagrange multiplier.
First order necessary conditions are given by

NC1: λk = −∂Hak

∂xxxk
, NC2:

∂Hak

∂uuuk
= 0

NC3: λ0 = γ2Rxxx0, NC4: λN = 0

NC2 gives the optimal unknown input value as

uuu∗k = E−1
k (FT

k xxxk − LT
ukẑzzk + γ2DT

k yyyk + BT
k λk+1) (13)

To make sure uuu∗k maximizes performance measure J re-
quires that

Ek > 0 (14)
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A new Hamiltonian accompanying system is obtained from
NC1 ∼ NC4.

[
xxxk+1

λk

]
=

[
Ack BkE−1

k BT
k

Sk AT
ck

] [
xxxk

λk+1

]
−

[
BkE−1

k LT
uk

FkE−1
k LT

uk + LT
xk

]
ẑzzk + γ2

[
BkE−1

k DT
k

FkE−1
k DT

k + CT
k

]
yyyk

[
xxx0

λN

]
=

[
x̄xx0

0

]

(15)
(15) is a two point boundary value problem and its so-

lution is given by

xxx∗k = x̂xx∗k + Qkλ∗k (16)

Substituting (16) into (15), we have

Qk+1 = AckQk(I − SkQk)−1AT
ck + BkE−1

k BT
k (17)

Q0 = γ−2R−1 (18)

xxx∗0 = γ−2R−1λ∗0 (19)

x̂xxk+1 = Ax̂xxk − [BkE−1
k LT

uk + AckQk(I − SQk)−1(Fk×
E−1

k LT
uk + LT

xk)](Lxkx̂xxk − ẑzzk) + γ2[BkE−1
k DT

k + AckQk×
(I − SQk)−1(FkE−1

k DT
k + CT

k )](yyyk − Ckx̂xxk), x̂xx0 = 0 (20)

If (20) is used to solve the differential game, the result
will be ẑzzk = Lxkx̂xxk, i.e., only state observation term occurs
in ẑzzk. By inspection, unknown input part in zzzk is estimated
by Hk(yyyk − Ckx̂xxk), where projector matrix Hk can be de-
termined in a similar way to that in [11] using the bounded
real lemma approach.

Hk = (LukDT
k + γ2LxkQkCT

k )(DkDT
k + I + γ2CkQkCT

k )
(21)

Introduce a zero term by adding and subtracting term

γ2

[
BkE−1

k DT
k + AckQk(I − SQk)−1×

(FkE−1
k DT

k + CT
k )

]
Hk(yyyk − Ckx̂xxk)

in the right side of (20). After rearrangement, (20) is trans-
formed to

x̂xxk+1 =Ax̂xxk−[BkE−1
k LT

uk+AckQk(I − SQk)−1(FkE−1
k ×

LT
uk+LT

xk)][Hk(yyyk−Ckx̂xxk)+Lxkx̂xxk−ẑzzk]+(γ2AkQkCT
k +

BkDT
k )(DkDT

k + I + γ2CkQkCT
k )−1(yyyk − Ckx̂xxk) (22)

Step 2. Seek optimal yyy∗k and zzz∗k of yyyk and zzzk, define
function

Lk(ẑzzk,uuuk, yyyk,xxx0) = ‖zzzk − ẑzzk‖2−
γ2(‖uuuk‖2 + ‖yyyk − Ckxxxk −Dkuuuk‖2) (23)

Then

J(ẑzzk,uuuk, yyyk,xxx0) = −γ2xxxT
0 Rxxx0 + λT

0 Q0λ0 − λT
NQNλN+

N−1∑

k=0

[
Lk(ẑzzk,uuuk, yyyk,xxx0) + λT

k+1Qk+1λk+1 − λT
k Qkλk

]

(24)

and

J(ẑzzk,uuuk, yyyk,xxx∗0) =

N−1∑

k=0

[
Lk(ẑzzk,uuuk, yyyk,xxx0) + λT

k+1Qk+1λk+1 − λT
k Qkλk

]

(25)

Substituting uuu∗k described by (13) into (25), and through a
rather involved algebraic operation, we can obtain

J(ẑzzk,uuu∗k, yyyk,xxx∗0) =

N−1∑

k=0

{z̃zzT
k [(LT

xk + FkE−1
k LT

uk)TQk(I−

SkQk)−1(LT
xk + FkE−1

k LT
uk)]z̃zzk−

γ2ỹyyT
k (DkDT

k + I + γ2CkQkCT
k )ỹyyk} (26)

where z̃zzk = Lxkx̂xxk+Hk(yyyk−Ckx̂xxk)−ẑzzk and ỹyyk = yyyk−Ckx̂xxk.
For positive matrix DkDT

k +I+γ2CkQkCT
k , to maximize

J(ẑzzk,uuu∗k, yyyk,xxx∗0), the optimal solution of yyyk should be given
by

yyy∗k = Ckx̂xxk (27)

In contrast, matrix inequality relation

(LT
xk +FkE−1

k LT
uk)TQk(I−SkQk)−1(LT

xk +FkE−1
k LT

uk) > 0
(28)

must be held to guarantee that the optimal solution of zzzk

exists. Otherwise, zzzk, that is bounded, does not minimize
J(ẑzzk,uuu∗k, yyyk,xxx∗0). In case that (28) holds, optimal zzz∗k is
expressed by

ẑzz∗k = Lxkx̂xxk + H(yyyk − Ckx̂xxk) (29)

Step 3. Verify (ẑzz∗k,uuu∗k, yyy∗k,xxx∗0) to guarantee saddle point
condition (6).

It follows from (26), (27), and (29) that

J(ẑzz∗k,uuu∗k, yyy∗k,xxx∗0) = 0 (30)

On the one hand

J(ẑzz∗k,uuuk, yyyk,xxx0) ≤ J(ẑzz∗k,uuu∗k, yyyk,xxx∗0) =

N−1∑

k=0

−γ2ỹyyT
k (DkDT

k + I + γ2CkQkCT
k )ỹyyk ≤ 0 (31)

On the other hand, with (28), we have

J(ẑzzk,uuu∗k, yyy∗k,xxx∗0) =

N−1∑

k=0

{z̃zzT
k [(LT

xk + FkE−1
k LT

uk)TQk(I−

SkQk)−1(LT
xk + FkE−1

k LT
uk)]z̃zzk} ≥ 0 (32)

By (30) ∼ (32), we can conclude that the optimal solu-
tion (ẑzz∗k,uuu∗k, yyy∗k,xxx∗0) satisfies the saddle point condition

J(ẑzz∗k,uuuk, yyyk,xxx0) ≤ J(ẑzz∗k,uuu∗k, yyy∗k,xxx∗0) ≤ J(ẑzzk,uuu∗k, yyy∗k,xxx∗0)
(33)

Finally, necessary and sufficient existing conditions for H∞
SISE estimator in Theorem 1 are followed by (14), (17),
(18), and (28). If we choose the optimal strategy (29) for
estimated signal zzzk, from (20) estimator described by (11)
is an H∞ SISE estimator that satisfies the performance
specification Jwrt < γ.
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3 Simulation example

In this paper, we exploit a modified example from [7].
Considering a damped harmonic oscillator with velocity
measurements described by (1) and (2), the system′s pa-
rameters are given by

Ak =

[
0.5079 0.7594
−0.7594 0.2801

]
, Bk =

[
0.4921
0.7594

]

Ck =
[

0 1
]
, Dk = 5, Lxk =

[
1 0

]
, Luk = 1

The state vector xxxk stands for position and velocity, and
output yyyk is the measured velocity. Unknown input uuuk here
stands for a step fault signal and its waveform is shown in
Fig. 1. Measurement noise vvvk is a band-limited white noise
with power 0.02, and its waveform is shown in Fig. 2.

For clarity, in (2), let zzzxk = Lxkxxxk and zzzuk = Lukuuuk

denote state observation and input estimation objective,
respectively. Choose disturbance attenuation level γ = 0.8.
By Theorem 1, the solution to differential Ricatti recursion
(9) is obtained as

Q =

[
0.0644 0.0039
0.0039 0.0685

]

It is easy to verify that inequalities (7) and (8) are guar-
anteed. From (11), an estimator satisfying performance
specification Jwrt < γ is constructed as follows

x̂xxk+1 =

[
0.5079 0.7594
−0.7594 0.2801

]
x̂xxk +

[
0.0958
0.1462

]
(yyyk−Ckx̂xxk)

ẑzzk =
[

1 0
]
x̂xxk + 0.1921(yyyk − Ckx̂xxk), x̂xx0 = 0

where ẑzzxk =
[

1 0
]
x̂xxk and ẑzzuk = 0.1921(yyyk −Ckx̂xxk) are

estimate of zzzxk and zzzuk, respectively. Observation of the
state and input estimation results are shown in Figs. 3 and
4. Fig. 5 shows state and input simultaneous estimation
results. Define estimation error vector z̃zzk = zzzk − ẑzzk. Fig. 6
gives the estimation error of signal zzzk. It is seen that the
estimator shows superior performance in each case. Both
state and fault signals are reconstructed in a high precision
despite the influence of fault and measurement noise.

Fig. 1 Waveform of uuuk

Fig. 2 Waveform of vvvk

Fig. 3 zzzxk (solid line) and ẑzzxk (dot line)

Fig. 4 zzzuk (solid line) and ẑzzuk (dot line)

Fig. 5 zzzk (solid line) and ẑzzk (dot line)
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Fig. 6 Estimation error z̃zzk

4 Conclusion

H∞ state and input simultaneous estimation for discrete-
time LTV–hybrid estimation are investigated in this paper.
On the basis of differential game-theory approach, neces-
sary and sufficient solvable conditions for H∞ state and
input simultaneous estimation for discrete-time LTV sys-
tems are proposed, which are equivalent to solvability of
a set differential Riccati recursion. An estimator is pre-
sented in case that the H∞ SISE is solvable. The estimator
is parameterized by a gain matrix and a projector matrix.
The work in this paper shows that innovation information
can be used to provide state observation and input estima-
tion simultaneously. Because fault signal can be treated
as exogenous input, with input estimation ability, one im-
mediate application area of the proposed estimator is fault
diagnosis.
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