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Static Anti-windup Synthesis for

a Class of Linear Systems

Subject to Actuator Amplitude
and Rate Saturation

LIU Sheng1 ZHOU Li-Ming1

Abstract For a wide class of linear saturated systems, we
address the anti-windup synthesis problem. By absorbing the
actuator dynamics into the augmented system, we show that the
original system can be simplified to a larger system with only
amplitude saturation. The static anti-windup gain is therefore
obtained through the proposed linear matrix inequality (LMI)
based optimization procedures with regional closed-loop stabil-
ity and minimized nonlinear L2 gain. A simulation example
illustrates the effectiveness of the approaches.
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Linear systems with saturating actuator have attracted
much attention for the past decade[1−14]. However, effec-
tively solvable controller synthesis approaches have rarely
been established, especially with practically encountered
actuator amplitude and rate saturation, such as in reac-
tion processes and ship steering control systems[1−2]. More
specifically, most of the works adopted the framework of
direct nonlinear design[2−3], whereas the approaches based
on the anti-windup framework were preferred, since the
design parameters could always be obtained via convex
optimization[4−8]. The anti-windup framework, composed
of an unconstrained controller and an anti-windup com-
pensator, can fully utilize the mature linear design tech-
niques in synthesizing the former. When the actuator sat-
urates, the anti-windup compensator ensures less perfor-
mance degradation and stability deterioration. In com-
parison with the traditional global sectors, the recently
proposed generalized sector condition led to less conser-
vative analysis methods[9−10] and more effective controller
design techniques using linear matrix inequalities (LMIs)

and/or bilinear matrix inequalities (BMIs)[9−14]. Accord-
ingly, Hu introduced the polytopic differential inclusions
and the norm-bounded differential inclusions that contain
the saturated system and obtained more effective regional
analysis tools[12]. Following this direction, we discuss here
the static anti-windup problems with neat theoretical re-
sults.

Notations. For uuu ∈ Rm, the standard vector-valued
saturation function is defined as

(sat(uuu))i =

{
ui, |ui| ≤ 1

sgn(ui), |ui| > 1

For uuu ∈ Rm, there are two norms ||uuu||∞ = maxi |ui| and

||uuu||2 = (
∫∞

0
uuuT(t)uuu(t)dt)

1
2 .

HeX = X + XT where X is a matrix.
∆i belongs to the diagonal matrix set with all the diag-

onal elements being either 0 or 1.
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With a matrix H ∈ Rm×n, L(H) is the set {xxx ∈ Rn :
||Hxxx||∞ ≤ 1}.

For a positive definite matrix P , the ellipsoid {xxx ∈ Rn :
xxxTPxxx ≤ 1} is denoted as E(P ), for which the following set

inclusion condition holds[9−10]

E(Q−1) ⊂ L(H) ⇔
[

1 YYY l

YYY T
l Q

]
≥ 0, 1 ≤ l ≤ m (1)

where YYY l is the l-th row of Y = HQ.

1 Problem formulation
Consider a class of linear systems

P :





ẋxxp = Apxxxp + Bpuuuup + Bpwwww

yyyp = Cpyxxxp + Dpyuuuup + Dpywwww

zzzp = Cpzxxxp + Dpzuuuup + Dpzwwww

(2)

with the actuator dynamics given by

A :

{
δ̇δδ = sat(K1uuua + K2δδδ)

yyya = sat(δδδ)
(3)

where xxxp ∈ Rn, yyyp ∈ Rl,uuup ∈ Rm,www ∈ Rr, and zzzp ∈ Rp

are, respectively, the state, the measured output, the con-
trol input, the exogenous input (reference and disturbance),
and the performance output. K1 and K2 are diagonal ma-
trices and δδδ,uuua, yyya ∈ Rm are the internal state, input, and
output vectors of the actuator.

Suppose that an unconstrained controller (i.e., neglecting
the saturation effect in (3) and under the interconnection
yyyc = uuua, yyya = uuup) has been designed as

C :

{
ẋxxc = Acxxxc + Bcyyyyp + Bcwwww

yyyc = Ccxxxc

(4)

with closed-loop stability and desired performance.
In order to deal with the saturation nonlinearity, we re-

arrange the original system (2)∼ (4) and design a static
anti-windup compensator F as shown in Fig. 1.
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Fig. 1 Closed-loop system with static anti-windup

With the actuator dynamics being absorbed into the aug-
mented plant, the augmented vectors are





x̄xxc = xxxc ∈ Rnc

x̄xxp = (xxxT
p δδδT)T ∈ Rn+m

ȳyyc = (δδδT ηηηT)T ∈ R2m

ȳyyp = (yyyT
p δδδT)T ∈ Rl+m

where ηηη = K1uuua +K2δδδ from (3). The anti-windup term Fqqq
may enter not only the augmented controller state equation
but also the output equation. Clearly, the closed-loop sys-
tem depicted in Fig. 1 corresponds to the general form in
Fig. 2, since the amplitude and rate saturation has been
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Āc B̄cy B̄cw

C̄c D̄cy D̄cw

B̄c1 D̄c2


 =




Ac Bcy 0

0 0 I
K1Cc 0 K2

Bcw

0
0

I 0
0 0
0 K1




,




Āp B̄pu B̄pw

C̄py D̄pyu D̄pyw

C̄pz D̄pzu D̄pzw


 =




Ap 0

0 0

Bpu 0

0 I

Bpw

0
Cpy 0

0 I

Dpyu 0

0 0

Dpyw

0
Cpz 0 Dpzu 0 Dpzw







A Bq Bw

Cy Dyq Dyw

Cz Dzq Dzw


 =




Āp + B̄pu∆uD̄cyC̄py B̄pu∆uC̄c

B̄cy∆yC̄py Āc + B̄cy∆yD̄pyuC̄c
B1 + B2F

B̄pw + B̄pu∆u(D̄cw + D̄cyD̄pyw)

B̄cw + B̄cy∆y(D̄pyw + D̄pyuD̄cw)

D̄cy∆yC̄py C̄c + D̄cy∆yD̄pyuC̄c Y1 + Y2F D̄cw + D̄cy∆y(D̄pyw + D̄pyuD̄cw)

C̄pz + D̄pzu∆uD̄cyC̄py D̄pzu∆uC̄c Z1 + Z2F D̄pzw + D̄pzu∆u(D̄cw + D̄cyD̄pyw)




[
B1 Y1 Z1 ∆u

B2 Y2 Z2 ∆y

]
=




−B̄pu∆u

−B̄cy∆yD̄pyu

−D̄cy∆yD̄pyu −D̄pzu∆u (I − D̄cyD̄pyu)−1

B̄pu∆uD̄c2

B̄c1 + B̄cy∆yD̄pyuD̄c2
D̄c2 + D̄cy∆yD̄pyuD̄c2 D̄pzu∆uD̄c2 (I − D̄pyuD̄cy)−1




transformed into the standard amplitude saturation. From
(2)∼ (4), it is obvious that the corresponding matrices in
(5)∼ (7) are uniquely determined by the equations shown
at the top of this page.

C̄ :

{
˙̄xxxc = Ācx̄xxc + B̄cyȳyyp + B̄cwwww + B̄c1Fqqq
ȳyyc = C̄cx̄xxc + D̄cyȳyyp + D̄cwwww + D̄c2Fqqq

(5)

P̄ :





˙̄xxxp = Āpx̄xxp + B̄puūuup + B̄pwwww
ȳyyp = C̄pyx̄xxp + D̄pyuūuup + D̄pywwww
zzzp = C̄pzx̄xxp + D̄pzuūuup + D̄pzwwww

(6)

For a saturated linear system (as depicted in Fig. 2) with
the general form





ẋxx = Axxx + Bqqqq + Bwwww
yyy = Cyxxx + Dyqqqq + Dywwww
zzz = Czxxx + Dzqqqq + Dzwwww
qqq = dz(yyy)

(7)

where xxx ∈ Rn, qqq ∈ Rm, yyy ∈ Rm,www ∈ Rr, zzz ∈ Rp, and the
vector-valued deadzone function dz(·) : Rm 7→ Rm is de-
fined as dz(yyy) = yyy − sat(yyy), we assume that the algebraic
loop in the second equation of (7) is well-posed. Also note
the following:

Ti = (I −∆iDyq)
−1∆i

Ai = A + BqTiCy, Bi = Bw + BqTiDyw

Ci = Cz + DzqTiCy, Di = Dzw + DzqTiDyw

(8)

H

dz

--

¾

-

zzz

yyyqqq

www

Fig. 2 The general framework of saturated linear systems

2 Main results
Lemma 1[12]. Given a matrix Q ∈ Rn×n, Q > 0, and

a real positive number γ, let V (xxx) = xxxTQ−1xxx . For system
(7), if there exists a matrix Y ∈ Rm×n satisfying (1) and

He




AiQ−BqTiY Bi 0
0 −I/2 0

CiQ−DzqTiY Di −γ2I/2


 ≤ 0 (9)

then V̇ (xxx,www)+ 1
γ2zzzTzzz ≤ wwwTwww for all xxx ∈ E(Q−1). Moreover,

E(Q−1) is a contractively invariant ellipsoid with www = 0 and
||zzz||2 ≤ γ||www||2 for xxx(0) = 0, ||www||2 ≤ 1.

Lemma 2[12]. Given a matrix Q ∈ Rn×n, Q > 0, and
a real positive number γ, let V (xxx) = xxxTQ−1xxx . For sys-
tem (7), if there exist a matrix Y ∈ Rm×n and a diagonal
matrix U > 0 satisfying (1) and

He




AQ Bw 0 BqU
0 −I/2 0 0

CzQ Dzw −γ2I/2 DzqU
CyQ− Y Dyw 0 −U + DyqU


 ≤ 0

(10)
then the same conclusion as in Lemma 1 can be drawn.

Remark 1. Based on the polytopic differential inclu-
sions instead of the norm-bounded differential inclusions,
the condition of Lemma 1 is less conservative than that of
Lemma 2, at the cost of introducing more LMIs and thus
bringing a higher computational complexity. So the system
synthesis tools induced from Lemma 1 are intrinsically less
conservative.

Theorem 1. Given a matrix Q ∈ Rn×n, Q > 0, and
real positive numbers ε and γ, we assume that Fqqq does not
enter the controller output equation, namely, the lower part
of the anti-windup gain matrix F ∈ R(nc+m)×2m is 0m×2m.
For the augmented system (5) and (6) with the closed-loop
interconnection as shown in Fig. 1, if there exist matrices
Y, G ∈ Rm×n, G = CyQ − Y satisfying (1) and (11), then
E(Q−1) is a contractively invariant ellipsoid with www = 0
and ||zzz||2 ≤ γ||www||2 for xxx(0) = 0, ||www||2 ≤ 1.

He




AQ Bw + (B1 + B2F )∆iDyw 0 B1 + B2F 0
0 −I/2 0 0 0

CzQ + Z1∆iG Dzw + Z1∆iDyw −γ2I/2 0 0
0 0 0 −ε/2 0
G 0 0 0 −1/(2ε)


 ≤ 0 (11)
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Proof. Under the assumption

F ∈
{[

F1

0m×2m

] ∣∣∣ F1 ∈ Rnc×2m

}

simple calculation shows that Dyq = 0 and Dzq = Z1 are
definite matrices. We can argue that the algebraic loop
of the system is well-posed, since Dyq certainly satisfies
a well-posedness equivalent condition that the values of
det(I −Dyq∆i) are all nonzero and have the same sign[12].

Noting that Ti = ∆i, we have the condition in Lemma 1
as follows

He




AQ + Bq∆iG Bw + Bq∆iDyw 0
0 −I/2 0

CzQ + Dzq∆iG Dzw + Dzq∆iDyw −γ2I/2


 ≤ 0

(12)
where G = CyQ− Y . Recall the well known fact that if

εDDT + ε−1ETE < 0

is feasible for some real number ε > 0, then D∆E +
(D∆E)T < 0 holds for all matrices ∆ satisfying ∆T∆ ≤ I.
By applying the above fact and the Schur complements, we
get (11) which is a sufficient condition of (12). The proof
ends finally from Lemma 1. ¤

Remark 2. Since (11) is not an LMI, we actually im-
plement an iterative LMI optimization procedure with two
steps. First, solve the following LMI with a randomly pre-
setted ε > 0, then start the new iteration by choosing a new
ε according to the norms of Bq and G. In general, the pro-
cedure does not guarantee a global or even local optimum.
However, better results can be expected in conjunction with
some other heuristic optimization algorithms.

min
Q>0,F,G

γ2

s.t. (11) and

(1) with Y = CyQ−G (13)

Theorem 2. Given a matrix Q > 0 and a real num-
ber γ > 0, if there exist matrices Y ∈ Rm×n, M ∈
R(nc+m)×2m, and a diagonal matrix U > 0 satisfying (1)
and the following LMI, then E(Q−1) is a contractively
invariant ellipsoid with www = 0 and ||zzz||2 ≤ γ||www||2 for
xxx(0) = 0, ||www||2 ≤ 1. In addition, the static anti-windup
gain F is given by MU−1.

He




AQ Bw 0 B1U + B2M
0 −I/2 0 0

CzQ Dzw −γ2I/2 Z1U + Z2M
CyQ− Y Dyw 0 −U + Y1U + Y2M


 ≤ 0

(14)
Proof. The LMI condition (14) stems directly from the

condition (10) of Lemma 2 by substituting FU = M and
recalling from above that Bq = B1 +B2F, Dyq = Y1 +Y2F ,
and Dzq = Z1 + Z2F . Then, according to Lemma 2, we
completes the proof. ¤

3 Numerical example
Consider the system (2) and (3) with the parameters

Ap =

[
0 1
−2 0

]
, BBBpu =

[
0.1
−1

]
, BBBpw =

[
1
0

]

CCCpy =
[
1 0

]
, Dpyu = 0.8, Dpyw = 1

Cpz =




1 0
0 1
0 0


 , DDDpzu =




0
0
1


 , DDDpzw =




0
0
0




K1 = 1.1, K2 = −0.5

It is easy to see from the above parameters that ||zzzp||22 =∫∞
0

(xxx2
1 +xxx2

2 +uuu2
p)dt, which covers the guaranteed cost con-

trol problem with quadratic cost function. The parameters
of the pre-designed unconstrained controller (4) are listed
as:

Ac =

[−2 0
0 −1

]
,BBBcy =

[
1.2
1

]
, BBBcw =

[
0
0

]
,CCCT

c =

[−1.24
0

]

By solving the optimization problem (13), we get a static
anti-windup gain as

F ∗ =




1.350 0.499
0.348 0.831

0 0




with ε∗ = 2.89, γ∗ = 24.957. While from Theorem 2, we
can get another static anti-windup gain as

F ∗ =




5.227 1.926× 10−8

0.600 4.436× 10−9

−0.035 0.909




with U∗ = diag{0.434, 8.089 × 107} and a smaller γ∗ =
5.785, indicating that the second method outperforms the
other for this case. But this is not always true since it is
hard to theoretically analyze the conservativeness of the
two methods.

Subject to an impulse disturbance with unit energy, the
state responses starting from zero initial condition are plot-
ted in Fig. 3 for four cases. To justify the effectiveness of the
proposed methods, the magnified curves around the peak
are also shown in the top left margin. From the dotted and
the solid curves, we can see that the unconstrained perfor-
mance seriously deteriorates when the the actual saturation
is considered. The proposed two anti-windup design meth-
ods do work in that the dashed and the dash-dot curves
keep closer to the solid curve.

Fig. 3 State responses with and without anti-windup

4 Conclusion
For a certain class of linear saturated systems, an appro-

priate static anti-windup solution is proposed, as shown in
Theorem 1, with guaranteed algebraic loop well-posedness.
The problem of well-posedness in Theorem 2 needs further
study. Dynamic anti-windup compensator introduces more
free parameters in system synthesis and is hence potential
in improving the results.
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