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Two-dimensional state-space systems arise in applications such as image processing, iterative circuits, seismic data processing,
or more generally systems described by partial differential equations. In this paper, a new direct method is presented for the
polynomial realization of a class of noncausal 2D transfer functions. It is shown that the resulting realization is both controllable
and observable.

Copyright © 2007 M. S. Boudellioua. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

A 2D system is a system in which information propagates in
two independent directions. Multidimensional (nD) systems
have found many applications in areas such as image and
video processing, geophysical exploration, linear multipass
processes, iterative learning control systems, lumped and dis-
tributed networks [1]. In his pioneering work, Rosenbrock
[2] has used polynomial matrices in a single variable to rep-
resent systems described by ordinary differential/difference
equations. The success of his approach is mainly due to
the computational aspects of the division ring involved. The
polynomial matrix approach has been extended to the 2D
case by a number of authors such as Bose [1], Frost and
Boudellioua [3, 4], Johnson [5], Pugh et al. [6]. In the case
of a 2D system, the resulting matrix is a two-variable poly-
nomial matrix. Unfortunately, the polynomial ring in two
variables is not an Euclidean division ring which makes ex-
tensions from 1D to 2D in most situations not possible.

2. CAUSAL 2D SYSTEMS

State-space models play an important role in the theory of
1D finite-dimensional linear systems. Several authors, for ex-
ample, Attasi [7], Fornasini and Marchesini [8], and Roesser
[9] have proposed different state-space models for 2D dis-
crete systems or systems described by partial differential
equations and have suggested some extensions of the usual
1D notions to the 2D case. However, it has been shown by

Kung et al. [10] and other authors that Roesser’s model is the
most satisfactory and the most general since the other mod-
els can be embedded in it. Roesser’s model is one in which
the local state is divided into a horizontal state and a verti-
cal state which are propagated, respectively, horizontally and
vertically by first-order difference equations.

The model has the form

xh(i + 1, j) = A1x
h(i, j) + A2x

v(i, j) + B1u(i, j),

xv(i, j + 1) = A3x
h(i, j) + A4x

v(i, j) + B2u(i, j),

y(i, j) = C1x
h(i, j) + C2x

v(i, j),

(1)

where xh(i, j) is the horizontal state vector, xv(i, j) is the ver-
tical state vector, u(i, j) is the input vector, y(i, j) is the out-
put vector, and A1, A2, A3, A4, B1, B2, C1, C2 are real constant
matrices of appropriate dimensions.

System (1) can be written in the polynomial form
⎡
⎢⎣
sIn − A1 −A2 B1

−A3 zIm − A4 B2

−C1 −C2 0

⎤
⎥⎦

⎡
⎢⎣
xh(i, j)
xv(i, j)
−u(i, j)

⎤
⎥⎦ =

⎡
⎢⎣

0
0

−y(i, j)

⎤
⎥⎦ ,

(2)

where s denotes an advance shift operator in the horizontal
direction and z denotes an advance shift operator in the ver-
tical direction. The polynomial matrix in s and z,

P(s, z) =
⎡
⎢⎣
sIn − A1 −A2 B1

−A3 zIm − A4 B2

−C1 −C2 0

⎤
⎥⎦, (3)
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is called a polynomial matrix description (PMD) associated
with system (1). The order of P(s, z) is given by n+m and its
rational transfer function is

G(s, z) =
[
C1 C2

][sIn − A1 −A2

−A3 zIm − A4

]−1 [
B1

B2

]
. (4)

Given the transfer function G(s, z), the associated PMD,
P(s, z) that gives rise to G(s, z) is called a realization of G(s, z).

Using the definitions given by Zerz [11], system (1) is said
to be strongly controllable if the matrix

C(s, z) =
[
sIn − A1 −A2 B1

−A3 zIm − A4 B2

]
(5)

has full rank for all (s, z) ∈ C2 and canonical if furthermore
it is observable, that is, the matrix

O(s, z) =
⎡
⎢⎣
sIn − A1 −A2

−A3 zIm − A4

−C1 −C2

⎤
⎥⎦ (6)

has no nontrivial factors in R[s, z], that is, any factorization
O(s, z) = O(s, z)F(s, z), where F(s, z) is square, implies that
F(s, z) is unimodular.

Another term used in the context of PMDs of the form
(3) is that the PMD is said to be separable if the determinant

∣∣∣∣∣
sIn − A1 −A2

−A3 zIm − A4

∣∣∣∣∣ (7)

can be written as a product of two polynomials, one in s, the
other in z.

3. NONCAUSAL 2D SYSTEMS

One of the limitations of the model given in (1) is that
it can only be used to describe causal 2D transfer func-
tions. In other words, it is suitable only for the representa-
tion of northeast quarter plane 2D systems. Several authors
have suggested a generalized state-space description for 2D
systems. Zak [12] suggested a generalized model based on
Roesser’s model while Kaczorek [13, 14] proposed a model
based on that of Fornasini and Marchesini. Noncausal 2D
systems have been studied more recently by a number of au-
thors such as Galkowski [15], Kaczorek [16], Zou and Camp-
bell [17], and Xu et al. [18].

In the following, we will be concerned with PMDs of the
type given by Zak [12], that is,

P(s, z) =
⎡
⎢⎣
sE1 − A1 −A2 B1

−A3 zE2 − A4 B2

−C1 −C2 0

⎤
⎥⎦, (8)

where A1, A2, A3, A4 are, respectively, n × n, n × m, m × n,
m ×m real constant matrices, E1, E2 are, respectively, n × n
and m×m real constant matrices which may be singular, and
B1, B2, C1, C2 are, respectively, n× l, m× l, p× n, p×m real
constant matrices.

The transfer function corresponding to the PMD (8) is
the p × l rational matrix given by

G(s, z) =
[
C1 C2

][sE1 − A1 −A2

−A3 zE2 − A4

]−1 [
B1

B2

]
. (9)

PMDs of the form (8) can be regarded as extensions of
the PMDs over R[s] of the form

P(s) =
[
sE − A B
−C 0

]
, (10)

which are often encountered in the study of the so-called
generalized or descriptor state-space systems developed by
Verghese et al. [19]. PMDs of the type (8) have been found
to be useful by Zak [12] in the study of systems described by
high-order partial differential equations.

One way to establish a connection between PMDs of the
form (8) is via Rosenbrock’s strict-system equivalence (SSE)
defined by the following.

Definition 1. Two PMDs P(s, z) and Q(s, z) of the type (8)
and having the same size are said to be SSE if they are related
by a transformation of the form

[
M(s, z) 0
X(s, z) Ip

]⎡
⎢⎣
sE1 − A1 −A2 B1

−A3 zE2 − A4 B2

−C1 −C2 0

⎤
⎥⎦

︸ ︷︷ ︸
P(s,z)

=
⎡
⎢⎣
sF1 − L1 −L2 R1

−L3 zF2 − L4 R2

−S1 −S2 0

⎤
⎥⎦

︸ ︷︷ ︸
Q(s,z)

[
N(s, z) Y(s, z)

0 Il

]
,

(11)

where M(s, z), N(s, z) are (n+m)×(n+m) unimodular poly-
nomial matrices and X(s, z), Y(s, z) are polynomial matrices
of appropriate dimensions.

The transformation of SSE given in (11) preserves the
transfer function and other system structural properties such
as controllability and observability. However, the main dis-
advantage of using SSE in the context of PMDs of the type
(8) is that it does not preserve the state space form (8). So
in the case when two PMDs P(s, z) and Q(s, z) are in state-
space form (8) and have the same dimensions, we introduce
the following notion of restricted-system equivalence (RSE).

Definition 2. Two PMDs P(s, z) and Q(s, z) of the type (8) are
said to be RSE if they are related by a transformation of the
form⎡
⎢⎣
M1 0 0
0 M2 0
0 0 Ip

⎤
⎥⎦

⎡
⎢⎣
sE1 − A1 −A2 B1

−A3 zE2 − A4 B2

−C1 −C2 0

⎤
⎥⎦

︸ ︷︷ ︸
P(s,z)

=
⎡
⎢⎣
sF1 − L1 −L2 R1

−L3 zF2 − L4 R2

−S1 −S2 0

⎤
⎥⎦

︸ ︷︷ ︸
Q(s,z)

⎡
⎢⎣
N1 0 0
0 N2 0
0 0 Il

⎤
⎥⎦ ,

(12)
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where M1, M2, N1, N2 are nonsingular real constant matrices
of appropriate dimensions.

The transformation of RSE in (12) is clearly a special case
of the general SSE given in (11), and therefore preserves the
transfer function matrix (9) and the controllability and ob-
servability properties of the original system. Note that when
E1 and E2 are nonsingular, the PMD P(s, z) is RSE to a PMD
of the type (3), that is, with F1 = In and F2 = Im.

In the following, we will be concerned with PMDs having
both E1 and E2 singular. First, we present a result for reduc-
ing a PMD of the type (8) to a canonical form using an RSE
transformation.

Theorem 1. Let P(s, z) be an (n+m+ p)×(n+m+ l) PMD in
state-space form (8) with |sE1 − A1| �≡ 0 and |zE2 − A4| �≡ 0.
Then P(s, z) is RSE to a PMD of the form

P(s, z) =

⎡
⎢⎢⎢⎢⎢⎣

sIr − A1 0 −A21 −A22 B1s

0 In−r − sJ1 −A23 −A24 B1 f

−A31 −A32 zIt − A4 0 B2s

−A33 −A34 0 Im−t − zJ2 B2 f

−C1s −C1 f −C2s −C2 f 0

⎤
⎥⎥⎥⎥⎥⎦

,

(13)

whereA1,A4 are, respectively, r×r, t×t matrices in first natural
form (r = deg(|sE1−A1|), t = deg(|zE2−A4|)) and J1 and J2
are in Jordan form.

Proof. This result follows from the theory of regular matrix
pencils given by Gantmacher [20].

Example 1. Consider the PMD

P(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s− 1 s− 1 0 −2 −2 1
−1 s s −3 2 1
−1 0 1 2 −1 1
−2 −3 1 z − 2 z − 2 0
−2 −6 1 z − 2 z − 1 1
−2 −1 0 −3 −1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
. (14)

Here, n = 3, m = 2, and l = p = 1. The matrices in (8) are
given by

E1=
⎡
⎢⎣

1 1 0
0 1 1
0 0 0

⎤
⎥⎦ , A1 =

⎡
⎢⎣

1 1 0
1 0 0
1 0 −1

⎤
⎥⎦ , A2=

⎡
⎢⎣

2 2
3 −2
−2 1

⎤
⎥⎦ ,

A3 =
[

2 3 −1
2 6 −1

]
, E2 =

[
1 1
1 1

]
, A4 =

[
2 2
2 1

]
.

(15)

Then, clearly |sE1−A1| = s−1 �≡ 0 and |zE2−A4| = z−2 �≡ 0.
It follows that the RSE transformation of the type (12) with

M1 =
⎡
⎢⎣

1 0 0
−1 1 0
0 0 −1

⎤
⎥⎦ , M2 =

[
1 0
−1 1

]
,

N1 =
⎡
⎢⎣

1 −1 0
0 1 0
1 −1 −1

⎤
⎥⎦ , N2 =

[
1 −1
0 1

] (16)

reduces P(s, z) to the PMD in the form (13):

P(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

s− 1 0 0 −2 0 1
0 1 −s −1 5 0
0 0 1 −2 3 −1
−1 −2 −1 z − 2 0 0
0 −3 0 0 1 1
−2 1 0 −3 2 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(17)

4. CANONICAL PMD OF 2D NONCAUSAL SYSTEMS

The problem of finding a realization which is minimal in
some sense is important in multidimensional systems the-
ory. Zak [12] used a similar approach to that of Eising [21]
for 2D causal systems to obtain a two-level algorithm for
the realization of a class of noncausal 2D transfer functions.
However, the method given by Zak does not result in a real-
ization which is necessarily minimal. More recently, progress
has been made for special classes of systems, see for example
Galkowski [15] and Kaczorek [16]. In the following, we give
a new direct method for a canonical realization of another
class of SISO noncausal 2D transfer functions. Furthermore,
the realization obtained is both controllable and observable.

Algorithm 1. Consider the SISO noncausal 2D transfer func-
tion:

g(s, z) = ñ(s, z)
d(s, z)

, (18)

where

ñ(s, z) = r(s, z)d(s, z) + n(s),

n(s) = ens
n + en−1s

n−1 + · · · + e0,

d(s, z) = k0(s)zm + k1(s)zm−1 + · · · + km(s),

(19)

k0(s) is monic and has degree equal to n, and kj(s), j =
1, 2, . . . ,m have degree less or equal to n, and ñ(s, z) and d(s, z)
are factor coprime. Furthermore,

r(s, z) = rq+1(s)zq + rq(s)zq−1 + · · · + r1(s), (20)

where

ri(s) =
l+1∑

j=1

wijs
l− j+1, i = 1, 2, . . . , q + 1, (21)

where l = degs r(s, z). Then g(s, z) can be decomposed as

g(s, z) = g0(s, z) + r(s, z), (22)

where

g0(s, z) = n(s)
d(s, z)

. (23)

It follows using the algorithm given by Frost and Boudel-
lioua [4] that g0(s, z) can be realized by a PMD of the form

P0(s, z) =
⎡
⎢⎣
sIn − F1 −A2 0
−A3 zIm − F4 Em
−C1 −C2 0

⎤
⎥⎦, (24)
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where F1 and F4 are n × n and m × m companion matrices
and A2 = [En 0]. The elements of F1, F4, and A3 are uniquely
determined from the characteristic polynomial

∣∣∣∣∣
sIn − F1 −A2

−A3 zIm − F4

∣∣∣∣∣ . (25)

Furthermore, if d(s, z) is separable, then A3 = 0.
On the other hand, it can be easily verified that the PMD

Pr(s, z) =
⎡
⎢⎣
Il+1 − sJ1 0 El+1

−W Iq+1 − zJ2 0
0 −ET

1

⎤
⎥⎦ (26)

is a realization of r(s, z), where

W = [wij
]
, i = 1, 2, . . . , q + 1, j = 1, 2, . . . , l + 1, (27)

and El+1 is the (l + 1)th column of the identity matrix Il+1.
Therefore, the PMD

P1(s, z) =

⎡
⎢⎢⎢⎢⎢⎣

sIn − F1 −A2 0 0 0
−A3 zIm − F4 0 0 Em

0 0 Il+1 − sJ1 0 El+1

0 0 −W Iq+1 − zJ2 0
−C1 −C2 0 −ET

1 0

⎤
⎥⎥⎥⎥⎥⎦

,

(28)

where F1, F4, A2, A3, C1, and C2 are the matrices which appear
in the realization of g0(s, z), is a realization of g(s, z).

P1(s, z) in (28) can be rearranged by elementary row and
column operations to yield a PMD in the form (8)

P(s, z)

⎡
⎢⎢⎢⎢⎢⎣

sIn − F1 0 −A2 0 0
0 Il+1 − sJ1 0 0 El+1

−A3 0 zIm − F4 0 Em
0 −W 0 Iq+1 − zJ2 0
−C1 0 −C2 −ET

1 0

⎤
⎥⎥⎥⎥⎥⎦
.

(29)

Now it remains to show that the P(s, z) in (29) is canonical.
The strong controllability of P(s, z) follows from the fact that
P(s, z) can be reduced by SSE, in this case by elementary row
and column operations, to the form

S(s, z) =
⎡
⎢⎣
In+m+l+q+1 0 0

0 d(s, z) 1
0 −ñ(s, z) 0

⎤
⎥⎦, (30)

where the PMD, S(s, z), clearly satisfies the condition in (5) and
since the polynomials ñ(s, z) and d(s, z) are factor coprime, it
follows that S(s, z) and therefore P(s, z) are canonical.

Example 2. Consider the transfer function

g(s, z) = 1
d(s, z)

[(
s3 + 2s2 + 2s + 1

)
z3 +

(
s3 + 3s2 + 5s + 1

)
z2

+ 2
(
s3 + 2s2)z + 2s3 − 2s2 − 3

]
,

(31)

where

d(s, z) = (s2 + s + 1
)
z2 + (3s + 2)z + 2s2 − s + 2. (32)

Then

g(s, z) = g0(s, z) + r(s, z), (33)

where

g0(s, z) = s2 − 3s− 1(
s2 + s + 1

)
z2 + (3s + 2)z + 2s2 − s + 2

, r(s, z)

= (s + 1)z + s− 1.
(34)

Here n = m = 2 and l = q = 1. g0(s, z) can be realized by the
PMD

P0(s, z) =

⎡
⎢⎢⎢⎢⎢⎣

s −1 0 0 0
1 s + 1 −1 0 0
2 3 z −1 0
0 −3 2 z 1
2 4 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦
. (35)

It remains to find a realization for r(s, z). Here r1(s) = s− 1,
r2(s) = s + 1. Therefore,

W =
[

1 −1
1 1

]
, (36)

so that the PMD

Pr(s, z) =

⎡
⎢⎢⎢⎢⎢⎣

1 −s 0 0 0
0 1 0 0 1
−1 1 1 −z 0
−1 −1 0 1 0
0 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎦

(37)

is a realization of r(s, z).
Finally, it can be easily verified that the PMD

P(s, z) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s −1 0 0 0 0 0 0 0
1 s + 2 0 0 −1 0 0 0 0
0 0 1 −s 0 0 0 0 0
0 0 0 1 0 0 0 0 1
2 3 0 0 z −1 0 0 0
0 −3 0 0 2 z 0 0 1
0 0 −1 1 0 0 1 −z 0
0 0 −1 −1 0 0 0 1 0
2 4 0 0 −1 0 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(38)

is canonical and gives rise to g(s, z).

5. CONCLUSIONS

A new method for the realization of a class of noncausal 2D
transfer functions has been presented. The resulting poly-
nomial description is canonical in the sense that it is both
strongly controllable and observable.
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