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Actuator fault diagnosis is often studied under strong assumptions on available sensors. Typically, it is assumed that the sensors are
either fault free or sufficiently redundant. The purpose of this paper is to present a new method for actuator fault diagnosis which
is robust to sensor distortion. It does not require sensor redundancy to compensate sensor distortion. The essential assumption
is that sensor distortions are strictly monotonous. Despite the nonlinear and unknown nature of distortions, such sensors still
provide useful information for fault diagnosis. The robustness of the presented diagnosis method is analyzed, as well as its ability
to detect actuator faults. A numerical example is provided to illustrate its efficiency.
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1. INTRODUCTION

In the design of modern control systems, fault diagnosis is
often considered for component faults, sensor faults, and ac-
tuator faults. Various methods for fault diagnosis are gener-
ally based on the processing of sensor signals [1-3]. Many
methods for actuator fault diagnosis assume reliable fault-
free sensors, see, for instance, [4, 5]. For methods simultane-
ously dealing with actuator and sensor faults, it is typically
assumed that there is sufficient redundancy among the sen-
sors such that at any moment, the valid sensors can provide
the information required for faults diagnosis. For mass pro-
duction, it is important to use as less sensors as possible to
reduce production cost. In such situations, fault diagnosis
cannot uniquely rely on redundant sensors. Moreover, still
for the purpose of cost reduction, sensors used in mass pro-
duction may be highly nonlinear. If the sensor nonlinearity is
well known, it can often be electronically compensated. Un-
fortunately, sometimes sensor nonlinearity varies within the
production, and for each piece in use, the nonlinearity varies
during its normal life duration. For example, most oxygen
sensors used in cars equipped with catalytic converters are
highly nonlinear. They roughly indicate if the oxygen con-
centration is over or below a reference value. Nevertheless,
such sensors are sufficient for the purpose of engine control.
It is then important to develop fault diagnosis methods rely-
ing on the same sensors. In this paper, unknown nonlinear
behaviors of sensors are generally called sensor distortion.

The purpose of this paper is to present a method for ac-
tuator fault diagnosis which is robust to sensor distortion.
It is assumed that each sensor can be affected by an un-
known and arbitrary, but strictly monotonous, nonlinearity.
The monotonousness is a weak assumption since any non
monotonous distortion would make the sensor information
useless. Remark that saturation is not a strictly monotonous
nonlinearity, and thus is excluded in the proposed method.
Nevertheless, a correctly working sensor should not be satu-
rated when it is in its normal working range.

Robust methods for fault diagnosis has been studied in
different contexts by many authors. In [6], a method based
on adaptive wavelet analysis is proposed. The method stud-
ied in [7] uses generalized frequency response functions.
Kullback discrimination information is used as a fault de-
tection index in [8]. In [9], some faults of induction motors
are detected by Fourier analysis of frequency signatures. (See
the references cited in these publications for more informa-
tion.) Compared to these existing results, the novelty of the
method presented in this paper is its ability to deal with un-
known nonlinear sensor distortions without requiring sensor
redundancy.

The preliminary results presented in [10] are further de-
veloped in this paper, in particular, the analysis of the pro-
posed robust detection method is completed with the char-
acterization of the faults which can be detected.

The paper is organized as follows. The problem consid-
ered in this paper is formulated in Section 2. Fault detection
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and isolation are, respectively, studied in Sections 3 and 4. A
numerical example is presented in Section 5. Some conclud-
ing remarks are given in Section 6.

2. PROBLEM STATEMENT

The considered linear state-space system with sensor distor-
tion is formulated as

x(t) = Ax(t) + B diag(u(t))0 + w(t), (1a)
z(t) = Cx(t) + v(1), (1b)
y(t) = h(z(1)), (1c)

where x(t) € R” is the state, u(t) € R the input, z(t) € R™
the output before sensor distortion, y(¢) € R™ the output af-
ter sensor distortion, and w(¢) € R" and v(¢) € R™ represent
bounded modeling uncertainties. The notation diag(u(t))
denotes the diagonal matrix formed by the components of
the input vector u(t), and the vector § € R/ is a coefficient
vector introduced to describe the efficiency loss of actua-
tors (multiplicative actuator faults). For fault-free actuators,
0 takes the nominal value 0.

For notation simplicity, the parenthesis (¢) of the time-
dependent variables will not be written unless necessary.

Sensor distortion is modeled by the component-wisely
defined nonlinear function h: let z; and y; be, respectively,
the ith component of zand y,i = 1,...,m, then

yi = hi(z). (2)

Assumption 1. Each sensor distortion h; : R—R is an un-
known, but a strictly monotonously increasing, function. In
other words, for any £, &, € R,

& <& = hi(&)) <hi(&y). (3)

Assumption 2. The system dynamics matrix A is asymptot-
ically stable, that is, the eigenvalues of A have negative real
parts.

Remark 1. No additive uncertainty is assumed in the sen-
sor distortion equation (1c) since the arbitrary unknown
monotonous nonlinear function can take into account some
sensor distortion uncertainty. On the other hand, if it is as-
sumed that

y=h(z) +¢ (4)
where ¢ is some additive uncertainty, define

h~Y[h(Cx +v) + €] — Cx,
Cx+7,

(5)

=
Z =

then (4) can be replaced by
¥ = h) (©6)
which is in the form of (1c). Of course, in order to limit v,

some regularity of & should be assumed.

With the above formulation, the problem considered in
this paper is the detection and isolation of multiplicative ac-
tuator faults, modeled as changes in the coefficient vector 0,
despite the unknown sensor distortions.

3. FAULT DETECTION

The main difficulty of the problem formulated in the pre-
vious section is caused by the unknown sensor distortions.
The key question is how to use the information provided by
such sensors. Because of the unknown nature of h;, for each
measured value of y; = h;(z;), the corresponding value of z;
is completely unknown, and even the sign of z; is unknown.
The strict monotonousness of /; assumed in Assumption 1 is
not helpful in this aspect. However, it is important to make
the following observation. For any two time instants ¢ and 7,
Assumption 1 implies that

sign[z;(t) — zi(1)] = sign[yi(t) — yi(1)]. (7)

In other words, the relative sign of z; at different time in-
stants is known from the sensor output y; measured at these
time instants. Remark that t and 7 are two arbitrary and in-
dependent time instants, and either one can be earlier than
the other one. Since the absolute value |z;(t) — z;(7)| is com-
pletely unknown, the relative sign is thus the only informa-
tion about z;(t) — z;(7) provided by the sensor output. This
information will be the basis for the design of fault detection
and isolation algorithms in this paper. Such information can
also be used for the identification of Wiener systems [11].

Let Z(s), U(s), W(s), and V(s) be, respectively, the
Laplace transforms of z(t), u(t), w(t), and v(¢). It is then
derived from (1a), (1b), and (1c) (by assuming zero initial
state) that

Z(s)=C(sI—A) 'Bdiag(U(s))0+C(sI—A) "W (s)+ V(s).
(8)

Define
o(t) = £ [C(sI - A) ' Bdiag(U(s)) |, 9)
(1) =L [CsI - A) " W(s) + V(9)], (10)
where £7! is the inverse Laplace transform operator. Then
z(t) = O(1)0 + {(1), (11a)
y(t) =h(z(1). (11b)

Notice that ®(t) € R™ depends on u(t) and can be
computed through (9), whereas {(¢) € R™ depends on mod-
eling uncertainties w(¢), v(t) and is unknown.

Remark 2. Zero initial condition of the state x has been as-
sumed when (8) was derived. The asymptotic stability con-
dition (Assumption 2) is not explicitly used in the above
reasoning, but it ensures well-behaved computation of ®
through (9). To some extent, this stability condition allows
also to tolerate nonzero initial states which are asymptoti-
cally forgotten. If the system was not asymptotically stable,
then, in principle, an observer should be used in the compu-
tation of ®. However, it is difficult to design observers with
sensors distorted by unknown nonlinear functions.

Let ¢, be the ith row of ® and (; be the ith component of
(, then the ith row of (11a) writes

zi(t) = ¢,()0 + {;(1). (12)
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For any two time instants ¢ and 7, it is obvious that

sign[z;(t) — zi(1)][zi(t) — zi(7)] = 0. (13)

Substitute z;(t) and z;(7) with the last equality, then, for con-
stant 0,

sign[zi(t) — zi(1) ][ (¢;(t) = ¢:()) 0+ {;(1) = {i(7)] = 0.
(14)

Remind the relative sign equality (7), then

sign[yi(t) — yi(D) ][ (¢;(t) — ¢,(1)) 0 + {;(t) — {i(7)] 2(0’ :
15

or equivalently
—Sigll[)/i(t) - )’i(T)] [¢i(t) - ¢i(T)]6
< sign[yi(t) — yi(0)][Li(1) = {(7)].

Let 6y be the nominal value of 8 (corresponding to fault-
free actuators), a residual r;(t, 7) for actuator fault detection
can be generated as

(16)

ri(t, 1) = —sign[yi(t) — yi(0)][¢;(1) — ¢;(1)]60.  (17)

It then follows from (16) that, in the fault-free case,

ri(t,7) < signlyi(t) — yi(0)][{i(1) = (i()]. (18)
This result leads to the following proposition.

Proposition 1. If |{;(¥)| < A for some constant A and any t,
then the residual r;(t, ) defined in (17) satisfies, in the fault-
free case, that is, 0 = 0o, the inequality

ri(t, ) < 2A. (19)

Proof. Let us first consider the case y;(¢)# yi(7), then it fol-
lows from the inequality (18) that

ri(t,7) < |ri(t, 1)
< |6 = i) (20)
< |G| +1¢6G(n)] <2A

Now for the case y;(t) = yi(1), it follows trivially from the
inequality (18) that

ri(t,7) <0 < 2. (21)
O

Remind that {;(¢) is a component of the variable {(t)
depending on the bounded modeling uncertainties w(t)
and v(t), as defined in (10). The boundedness of w(t) and
v(t), together with Assumption 2, implies the boundedness
of {(t). For practical convenience, the residual threshold
should be directly derived from the assumed bounds of w(¢)
and v(t). It would require nontrivial error bound propa-
gation through (10). Techniques of interval analysis or set-
membership computation [12] can be applied for this pur-
pose. This topic is not further discussed in this paper.

Proposition 1 guarantees the absence of false detection if
fault detection is made by comparing the residual r; (¢, 7) with
the threshold 2A. However, it does not tell what are the faults
which can be detected with such a decision rule. In general,
robust fault detection methods are based on conservative de-
cision rules, preventing the detection of some faults. In pub-
lications about robust fault detection, typically robustness
results are provided, but the analysis about the set of faults
which can be detected is usually absent, because it is often
difficult to characterize the detectable faults in a robust de-
tection framework. In contrast, for the method proposed in
this paper, the faults which can be detected are clearly char-
acterized as follows.

Proposition 2. Assume that the system matrix pair (A, B) is
controllable, 6+0, and 6,+0. For the faulty actuator parameter
vector 0 # 0o, if there does not exist any positive real number
a such that 0 = aBy, then there exist an input signal u(t) and
time instants t and T such that

ri(t, ) > 2A (22)

foreachi=1,...

IG(O <A

,m, where A is a positive constant such that

Proof. This proof applies to the residual r;(t, 7) for each i =
1,...,m.
Define the vector

v =B(161I'6 ~ [6]| ' 60), (23)

where the norm ||0] = VGT@ and B is a positive number to
be specified later. Then

V76 = 81101l - [|60]| " 676)

(24)
= BIBII(1 ~ 160l " 11611 "6 6) = 0,

where the last inequality follows from the fact that |9§ 0] <
[16o 11161l
Notice that the equality

|656] = [160l1161 (25)

would imply 68 = af, for some « > 0, that is, the case ex-
cluded in Proposition 2. Therefore,

v0 = (1161l - [|6o]| ' 656) > o. (26)
Similarly, it is also shown that
v780 = (1161 - |60l 65 6) <o. (27)
It then follows that
sign[vTH] T8, < 0. (28)

For given values of 8 and 0y, the value of 8 in (23) is chosen
large enough such that

“VTQ‘ > 2M,
2
76| > 21. 22
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Now, let us consider ¢;, the ith row of the matrix @
defined in (9). If there is an input signal u(f) such that
¢,(t) — ¢.(r) = »T for two time instants t and 7, then the
inequality (28) leads to

sign[ (¢,(£) — ¢,(1)) 0] (¢,(£) — ¢,(1)) 6o < 0. (30)

Notice that the existence of such input signals is ensured
by the controllability of the matrix pair (A, B).

Because | (¢;(t) — ¢;(1))0] = [v70] > 21 = |{;(t) - {;(1)],
the sign of (¢,(¢) — ¢,(1))0 + ({;(¢t) — {;(7)) is determined by
the sign of (¢,(t) — ¢,(1))0, thus

sign[ (¢,(£) — ¢,(1))0 + ({;(t) = (1)) ]

= sign[(¢;(t) — ¢,(1))06]. Gy

This last equality, together with the inequality (30), leads to

sign[ (¢,(t) — ¢,(1))0 + ({;(t) — {i(1)) ] (9,(1) — ¢i(7))60(<03
32

or equivalently

sign[zi(t) — zi(1)](¢,(t) — ¢,(1)) 60 < 0,

sign[7(t) = (0] (6.(6) - g6 <0. )

Remind that [[¢,(t) — ¢,(1)]160] = [vT6| > 2A, then
sign[ yi(t) — yi(1)][¢,(t) — ¢.(7)]00 < —2A. (34)
Therefore, the residual as defined in (17) satisfies

ri(t, ) > 2A. (35)
O

If t is the current time instant, then r;(¢, 7) can be com-
puted for different past time instant 7. In order to reduce the
effect of modeling uncertainties, r;(¢, 7) can be averaged over
different values of 7 in a sliding window. The computation of
the residul from sampled signals is summarized as follows.

Residual generation algorithm summary

Assume that ©(f) and y(f) are sampled! at discrete time
instants 1,2,...,N. Choose the sliding window length 0 <
L < N for residual averaging. For each sensor number i =

1,2,...,m, aresidual is computed, for k > L+ 1, through the
formulas
ri(k,s) = —sign[yi(k) — yi(s)][¢,(k) — ¢,(5)]60,
o 36
7i(k) = 1 > max (ri(k, s),0). (36)
Ls:ka

Notice that the max function is used to exclude negative val-
ues of r;(k,s) in the computation of the average value.

! For notation simplicity, the sampling period is assumed to be 1 here.

4. FAULT ISOLATION

After the detection of an actuator fault, the purpose of fault
isolation is to figure out which actuators are faulty. In terms
of (11a) and (11b), it amounts to deciding which compo-
nents of 0 have deviated from the nominal value 6.

It should be first remarked that, because of the arbitrary
unknown function h, it is not possible to detect or isolate any
proportional changes in all the components of 6. In other
words, for any value « € R, the parameter vector 0; = af,
cannot be distinguished from 6, based on the known signals
®(t) and y(t). For the same reason, if all the components of
6, except one, have changed, it is not possible to determine
which one has not changed.

After having clarified the limitation related to unknown
sensor distortion, let us look for an algorithm for fault iso-
lation. The basic idea is to design residuals similar to (17),
but capable of rejecting some actuator faults. Each designed
residual should be insensitive to some of the possible actuator
faults, whereas sensitive to the others. The actually occurred
fault can then be isolated by comparing such residuals.

Let P be a permutation matrix, that is, a matrix obtained
by permuting the rows of the [ x [ identity matrix I; (remind
that [ is the number of actuators). Divide P into two sub-
matrices Py and Pg, respectively, composed of [y and [y = [~
rows of P. Then it can be easily verified that

P{P;+ P[P =1, (37)

The notations P8 and P;0 will be used to select, respec-
tively, the assumed faulty components and sound (or fault-
free) components of 6. It is derived from (11a) that

z(t) = ®()P{Pr0 + ©(t)P{ PO + {(t). (38)

If P; is assumed to select the components of 6 corresponding
to sound actuators, then, even after the occurrence of actua-
tor faults, the equality

P,0 = P,0, (39)
still holds. Define
65 = Py6, (40)
then
z(t) = cD(t)PJTHf +®(t)PI POy + ((2). (41)

For the purpose of fault isolation, different partitions of
P into (Py, P;) should be considered. For each particular par-
tition, a residual will be designed to be insensitive to changes
in the corresponding subvector 65 = P¢0. Such a residual is
said to be rejecting changes in 6. The rejection method used
in the following is the estimation of 6 from measure signals.

For two time instants ¢, 7, Assumption 1 implies (by
rewriting inequality (15)) that

sign[yi(t) = yi(D)][(¢(1) = ¢;(1)PFOs + (¢,() = §,(1))

XPIP0y + (i(t) — {i(1)] = 0.
(42)



Qinghua Zhang

For a given set of signals ®(t), y(t) sampled at discrete time
instants 1,2,..., N, the value of 6 can be estimated by min-
imizing the error term (;(t) — {;(7) in the inequality (42)
where the time instants t, 7 are replaced by all pairs among
the sampling instants 1,2,...,N.

Because y;(t) < yi(s) and yi(s) < yi(7) imply y;(t) <
¥i(7), there would be too much redundancy if all the possible
pairs among 1,2,...,N were considered in (42). In order to
reduce redundancy, for each sensor y;, the data samples are
sorted according to the values of y;(t), and only the neigh-
boring pairs are considered. The algorithm is summarized as
follows.

Residual generation algorithm summary

For each chosen partition of P into (P r, Ps), the residuals re-
jecting changes in 0y = Py are computed as follows. For
each sensor number i = 1,2,...,m, sort the data such that

yi(ki) < y,»(ké) <-.- < yi(k;‘\])- (43)

Solve the constrained optimization problem

rr}%n 1sigymi)§g\1—1("(])’ (44)
subject to the constraints, for i = 1,2,...,m and j =
,2,...,N -1,

[4:(k1) = 9:(k501) P s
(45)

+[¢z(k;) - ¢,< ;+1)]P5Tp590 +/Zt(.]) <0.
The corresponding sequences

L,4Q),..  LIN=1), i=1,2,...,m  (46)

are the residuals rejecting changes in 0.

Remark that the inequality (45) corresponds to the in-
equality (42) where the omitted sign[ y,-(k;-) - y,-(kj»ﬂ)] is al-
ways negative due to the sorted sequence, and accordingly,
the inequality changes from “= ” to “< ™.

The constrained minimization (44)-(45) can be easily
reformulated in the form of a standard linear programing
problem. There are efficient numerical algorithms for its so-
lution [13].

Proposition 3. If the true parameter vector 6 governing (11a)
satisfies Ps0 = P60y, and if |{;(t)| < A for some constant A

and any t, then the residual Z,( j ), solution of the constrained
optimization problem (44)-(45), satisfies

G(j) <21 (47)

Proof. The proof of this result is quite straightforward. Let us
first derive from (11a), (11b), and (37) that

[6:(Ki) = ¢,(k.,) [PTPs6 + [, () — ¢;(KL., ) | PTP:O

+(;‘(k;‘) - (i(kj’ﬂ) = Z,-(kj-) —Zi(k;‘+1> <0, 1)
48

where the indices k;-, k; +1 come from the sequence sorting
yi(k) as in (43).

It is assumed that P;8 = P;0,. Then the above inequal-
ity shows that there exist a value of 6 (equal to P76) and a

value of Z,(]) (equal to (,-(k;-) - (i(k§+1)) such that the in-

equality (45) is satisfied. These values of 8 and & j) do not
necessarily correspond to the solution of the constrained op-
timization problem (44)-(45), however, the optimal solution
certainly has a value ofzi (j) not larger than {;(k}) — {;(k},,).
Therefore,

Ez(]) < (;(k;> - Ci(k;ﬂ) <2A (49[)]

Property (47) has been proved under the assumption
P60 = P,0,. It can be shown that (47) holds also if P,6 =
aP6, for any « € R because of the unknown sensor distor-
tion function.

For fault isolation, various matrices P, are assumed and
the corresponding residuals are computed. Then property
(47) can be used to decide if each assumed Py is correct or
not. Alternatively, for different matrices P of the same size,
the values of the residuals can also be compared for fault iso-
lation.

Keep in mind that fault isolation cannot distinguish the
cases such that P8 = aP,0,. For reliable fault isolation, the
following assumption is required.

Assumption 3. There exists a permutation matrix P such
that, for P; composed of some rows of P,

P.6 = P,6,, (50)

and there does not exist any P, + P, (except for P, composed
of a subset of permutated rows of P;) such that

P.0 = ab,0,, (51)

for some scalar real value a.

5. NUMERICAL EXAMPLE

In this section, the presented fault diagnosis method will be
illustrated with a simulated distillation column.

In [14, page 223], a distillation column is modeled with a
transfer function matrix with three control inputs: top draw
flow rate, side draw flow rate, and bottom temperature con-
trol, and three outputs: top draw composition, side draw
composition, and bottom reflux temperature. In order to il-
lustrate the possibility of fault diagnosis with only one out-
put sensor, let us consider the model relating the three inputs
and one of the outputs, the bottom reflux temperature. The
transfer function model is

_ 4.38e7%%

442672 7.2
7(s) =
)= 33511

0
w511 PO o 1 B
(52)

Ul(S) +

Note that the known time delays at the inputs do not cause
any serious difficulty for fault diagnosis, though the on-line
computation has to be delayed accordingly.
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FIGURE 1: Fault detection residual. The same residual is plotted twice at different scales. The time unit is the minute.
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F1GURE 2: Fault isolation residuals. The time unit is the minute. Top:
residual rejecting the fault of actuator 1. Middle: residual rejecting
the fault of actuator 2. Bottom: residual rejecting the fault of actua-
tor 3.

Numerical simulation is first made in continuous time.
The three input variables are randomly drawn with uniform
distributions ranged within the intervals [20, 40] (mol/min),
[10, 30] (mol/min) and [10, 20] (°C). The simulated noise-
free output is disturbed by an additive bandlimited noise
with noise power 0.01 and unitary sample time. Then the
sensor distortion function

100
is applied. In this monotonously increasing function, the ad-
ditive constant 10 has been added to illustrate the robustness
of the proposed method to sensor bias (shifting error). Fi-
nally, the distorted sensor output y(t) sampled at the period
of one minute is corrupted by a random noise uniformly dis-
tributed within the interval [—0.05, 0.05] (°C). The simu-
lated data is recorded during 2000 minutes after an initial
simulation of 1000 minutes to avoid the initial transient pe-

riod. At the beginning, all the actuators are fault free. At the
1000th minute (of the recorded duration), a factor of 0.8 is
applied to the first actuator, simulating an actuator fault.

The residual for fault detection, computed with the av-
eraging window length L = 100, is illustrated in Figure 1. In
Figure 1(a) showing the residual in full scale, there is a strong
transient behavior of the residual after occurrence of the ac-
tuator fault (at the 1000th minute). This transient behavior
is in favor of a fast detection of the actuator fault. In order
to view better the residual outside the transient period, it is
plotted in Figure 1(b) in a finer scale. The detected fault is
clearly confirmed by the residual after the transient period.

For fault isolation, three residuals are computed with the
signals from the 1801th minute to the 2000th minute. Each
of the three residuals is designed to reject a fault affecting one
of the three actuators. The residuals rejecting the faults of ac-
tuator 1, 2, and 3 are, respectively, plotted in the top, middle,
and bottom pictures of Figure 2. The first residual is clearly
smaller than the two others, indicating that the hypothesis of
a fault affecting the first actuator is the most likely one, which
corresponds to the actually simulated fault.

6. CONCLUSION

Despite unknown nonlinear distortions of sensors, the in-
formation provided by such sensors is still useful for fault
diagnosis, even when there is no redundant sensors, if the
distortions are strictly monotonous. The monotonousness is
a weak assumption since nonmonotonous distortion would
make the sensor information useless. The main idea of the
method presented in this paper is about how to use the infor-
mation provided by such sensors. Because of the unknown
nature of nonlinear distortion, neither the absolute value of
the measured physical variable nor its sign can be determined
from the sensor signal. The strict monotonousness of the
nonlinear distortion is not helpful in this aspect. However,
for any two different time instants, the relative sign of the
measured variable is preserved by the monotonous nonlinear
distortion. By using the information residing in the relative
sign of sensor signals, the method for actuator fault diagnosis
presented in this paper is conceptually robust to sensor dis-
tortions, as illustrated by the numerical example presented in
this paper.
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