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We present an end-to-end system for the automatic measurement of flow-mediated dilation (FMD) and intima-media thickness
(IMT) for the assessment of the arterial function. The video sequences are acquired from a B-mode echographic scanner. A spline
model (deformable template) is fitted to the data to detect the artery boundaries and track them all along the video sequence. The
a priori knowledge about the image features and its content is exploited. Preprocessing is performed to improve both the visual
quality of video frames for visual inspection and the performance of the segmentation algorithm without affecting the accuracy
of the measurements. The system allows real-time processing as well as a high level of interactivity with the user. This is obtained
by a graphical user interface (GUI) enabling the cardiologist to supervise the whole process and to eventually reset the contour
extraction at any point in time. The system was validated and the accuracy, reproducibility, and repeatability of the measurements
were assessed with extensive in vivo experiments. Jointly with the user friendliness, low cost, and robustness, this makes the system
suitable for both research and daily clinical use.
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1. INTRODUCTION

The assessment and characterization of the endothelial
function (i.e., the production of protective factors from
the vascular endothelium) is a topic of both clinical and
research importance. Techniques that assess this function
have been proposed as useful tools in the diagnosis and
management of cardiovascular diseases [1]. In particular,
endothelium-dependent changes in hemodynamics (blood
flow, blood pressure, vascular diameter, and tone) have
been used as surrogate markers of vascular health and in
the management of patients with cardiovascular diseases
[2–4]. In detail, the endothelium responds to changes in
intravascular shear stress by releasing several compounds
which determine relaxation of smooth muscle cells and,
subsequently, vasodilation [5]. In humans in vivo, such
changes in shear stress can be experimentally determined
by inflating to suprasystolic pressure a pneumatic cuff
around the forearm for 4 minutes and 30 seconds. Upon
release of the cuff, the sudden increase in blood flow (and
shear stress) that follows reperfusion is a potent stimulus

for endothelium-dependent vasorelaxation, which can be
observed using ultrasounds [6, 7]. In sum, the endothelium
shows measurable responses to flow changes, determining
endothelium dependent, flow-mediated dilation (FMD).
These measures might have a clinical potential, as several
studies show an association between impaired FMD and
poorer prognosis [2–4].

High-resolution B-mode ultrasonography (US) is a
cheap and noninvasive technique that permits depiction of
peripheral arteries. Image analysis techniques allow accurate,
objective, and repeatable measurement of the diameter of
such arteries. Several methods based on the detection of
the edges of the arterial wall have been proposed over
the last ten years. The first studies used a tedious manual
procedure, which had a high intra- and interobserver
variability. Some interactive methods tried to reduce this
variability by attracting manually drawn contours to image
features, like the maximum image gradient, where the vessel
bound is assumed to be localized. Some more recent efforts
are focused on dynamic programming or deformable models
and neural networks [8–15].
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All these methods present some common limitations.
First, edge detection techniques are often undermined by
speckle noise. Second, most methods require expert inter-
vention to manually guide or correct the measurements, thus
being prone to introduce operator-dependent variability. As
well, temporal continuity of the measurements (as compared
to measurements at predetermined time points) is another
aspect that has not been exploited enough in previous work.
Finally, there is a general lack of large-scale validation studies
in most of these techniques.

However, getting rid of the first two factors out of
the scopes of this contribution as, in general, it is not
desired by cardiologists. The presence of speckle noise cannot
be avoided unless denoising is performed on the images,
which could alter the diagnostically relevant information.
Furthermore, the doctor must be enabled to intervene in
the segmentation process in case some causes of degradation
(like a sudden movement of the patient) make the algorithm
diverge.

Accordingly, in the present contribution we propose a
new technique for the detection of artery boundaries which
has the advantages of (i) improved accuracy and robustness
to noise in the contour identification due to the use of a
spline-based model for the artery contours; (ii) improved
human-machine interaction through the design of an ad
hoc graphical user interface (GUI); (iii) low-computational
complexity; (iv) portability, and (v) low cost. In this respect,
it is worth mentioning that currently there is no commer-
cially available system able to perform both the FMD and
IMT measurements automatically. Furthermore, the solution
proposed in [11] for assessing the FMD functionality is
proprietary and expensive, besides not being portable since
it is implemented on device.

This paper is organized as follows. Section 2 describes
the proposed system, including the experimental setup,
preprocessing, and contour extraction. Section 3 illustrates
the system validation from the clinical point of view as well as
the performance, and Section 4 derives conclusions. Finally,
the GUI is illustrated in the appendix.

2. METHODS

2.1. Experimental setup

The technique that was used for measuring the FMD is
described in detail in [16–18]. Briefly, the left arm is
immobilized using a deflation pillow and a pneumatic cuff
is placed at the wrist (i.e., distally to the imaged site).
The radial artery is imaged 10–15 cm below the elbow at
rest for 60 seconds to acquire the baseline diameter. A
pneumatic cuff positioned around the wrist is then inflated
to 250 mmHg. After an interval of 4′30′′, the cuff is deflated
to achieve reactive hyperemia. The artery is imaged for the
following 4′30′′. Studies have shown that FMD does not
change for occlusion times comprised between 4′30′′ and
10′ [19]. ECG-triggered end-diastolic frames are captured
at a frame rate of 1 second by the Acuson Sequoia 512
high-resolution echograph from Sonoma Health, Calif, USA
(http://www.sonomahealth.com/).

Figure 1: Typical FMD image resulting from the echo scanner.

Each FMD movie consists of 600 frames: 60 for the
baseline period, 270 during cuff inflation, and 270 after cuff
deflation. FMD is defined as 100 times (maximum diameter
after cuff deflation minus baseline diameter) divided by the
baseline diameter. FMD is expressed as percentage increase
from this resting diameter.

For intima-media thickness (IMT) analysis, an image of
the posterior common carotid wall 1 cm proximal to the
aortic bulb was taken using a linear 15 MHz probe and
an Acuson Sequoia 512 ultrasound equipment. IMT was
calculated as the mean distance between the two spline
guides positioned at the lumen-intima and the media-
adventitia interfaces (“leading edge” principle) [20].

2.2. Model-based segmentation of
the vessels boundaries

The vessel segmentation consists in modeling the artery
boundaries by a couple of cubic splines which are indepen-
dently fitted to the contours following the minimization of
a cost function. Preprocessing on the echographic images is
performed in order to (i) improve the visual quality of the
frames for visual inspection; (ii) support the segmentation
algorithm; (iii) speed up the processing to enable real-time
functionality. However, this does not affect the accuracy of
the segmentation, as will be discussed in what follows.

2.3. Preprocessing

Data were acquired by a workstation and put in AVI format
by a freeware software tool (VirtualDub).

Figure 1 shows a typical image. In order to reduce the
required memory storage and to speed up the subsequent
processing, the user can choose to low-pass filter and down-
sample the frames by a factor two along both dimensions.
This reduction in size does not compromise the accuracy
of the measurement of the vessel diameter. This was proved
by comparing the output parameters (FMD, diameters, and
IMT) obtained by processing some test videos with and
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Figure 2: Preprocessing. (a) Original image; (b) after histogram stretching; (c) after sharpening.

without subsampling and calculating the impact on accuracy.
Results show that this introduces a variability of about
0.1–0.3% in the FMD measure, which is negligible with
respect to the other sources of variability (like the patient
movement during the acquisition) and it is of the same order
of magnitude of others (the positioning of the observation
window and the setting of the metric units). However, we
would like to emphasize that subsampling is an option and
can be switched off. The results presented here were obtained
using original size full images.

Two preprocessing steps are performed before boundary
detection: contrast enhancement by histogram stretching
and sharpening via a negative of Laplacian filter of size 3× 3.
Such operations are functional to both visual inspection and
boundary detection.

In order to further speed up the processing, the graphical
interface enables the selection of a region of interest (ROI).
Again, this is based on the fact that cardiologists identify
a region in the image which corresponds to the portion of
the vessel that is suitable for the measurement under way.
However, the option can be disabled and the analysis can
be performed on the entire images. The selection of the
ROI is performed on a representative image obtained by
averaging of all the images along the sequence. In this way,
the positioning of the observation window in an artifact-free
region is ensured. The window is then propagated along the
sequence.

The effects of the preprocessing steps are illustrated in
Figure 2. The original cropped image is shown in Figure 2(a),
the effect of contrast enhancement through histogram
stretching is illustrated in Figure 2(b), and the final image
after sharpening is shown in Figure 2(c). As mentioned
above, these steps support the subsequent contour extraction
process as they enhance the contrast without compromising
the accuracy of the target measurement, as discussed above.

2.4. Vessel segmentation

The a priori knowledge about the shape of the vessels is
exploited for segmentation. It is a fact that the vessel contours
are smooth, have very small curvature, and are almost
perfectly horizontal. Accordingly, they can be conveniently
modeled by low-order polynomials. The use of a cubic
spline proved to be suitable to the purpose. Importantly, as
mentioned above, local tissue modifications corresponding

to high curvatures must be discarded for the analysis as
they would produce spurious changes in the estimated
diameter that do not hold any information relevant to the
measurement of the endothelial function. The choice of
using smooth functions to model the contour of the vessel
solves this problem as local high curvature segments are
automatically disregarded. Should a more complex border
be identified, it would be sufficient to add more knots in
the interpolation procedure. We refer to [21, 22] for a more
detailed discussion about spline-based interpolation.

Two cubic splines are independently fitted to the artery
walls and progressively propagated along the video sequence
such that the final estimation of the contours in image n is
used for initialization in image n + 1.

The spline interpolating curve S(x) is a piecewise con-
tinuous function consisting of a set of polynomial segments
Sk(x). Each segment can be written as a polynomial of third
degree:

Sk(x) =
3∑

i=0

aik
(
x − xk

)i
, ∀x ∈ [xk, xk+1

]
. (1)

The set of points {xk, yk, k = 1, . . . ,n} is the control points
of the curve (the knots) which are set manually on the
first image of the video sequence for initialization. Results
(that are not reported here) show that three to five points
allow capturing the shape of the artery wall with the desired
accuracy. Due to the smoothness of the contours, the knots
were equally spaced along the horizontal dimension (i.e., the
{xk} coordinates were kept unchanged) while the vertical
positions {yk} of the knots are the free parameters. The value
of the {aik} coefficients follow.

The objective of the cost function is the maximization of
the contrast between the image regions that are above and
below each curve, respectively, within a predefined radius, as
illustrated in Figure 3.

Let r be the radius of the circular-section tube centered
on the current estimation of the boundary. The radius was
set to either 12 or 6 pixels in case the downsampling option
is switched off and on, respectively. Let then Ωu and Ωl be
the two regions intercepted by the tube above and below the
spline curve. The average gray values of these regions are

gν =
1∣∣Ων

∣∣
∑

Ων

I(i, j), (2)
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Figure 3: Search region for positioning the spline curve.

where I(i, j) is the gray level at position (i, j) in the image,
|Ων| is the cardinality of the set, and ν = u, l, where u stands
for upper and v for lower, respectively. The cost function f is
defined as the difference of the average gray levels in the two
regions, that is, the measure of the contrast that we use here:

f = −∣∣gu − gl
∣∣. (3)

The average intensity is calculated columnwise such that

f = −
Ncol∑

j=1

∣∣gu( j)− gl( j)
∣∣,

gu( j) =
ŷ j+r∑

i= ŷ j
I(i, j),

gl( j) =
ŷ j∑

i= ŷ j−r
I(i, j)

(4)

with ŷ j being the estimation of the vertical coordinate of the
spline point at horizontal position j at the current iteration.
A multidimensional unconstrained nonlinear minimization
procedure is used to determine the ŷk,opt optimal values for
the y coordinates of the splines knots:

ŷk,opt = min
ŷk
{ f }. (5)

Given the definition of the cost function, it is straightfor-
ward to conclude that contrast enhancement improves the
performance. An example of the result is shown in Figure 4,
where the model is superimposed to the ROI image. To reach
the segmentation of the entire set of images, the model is
propagated through the sequence such that the boundaries
that have been determined in frame n serve as initialization
of the search procedure in frame n + 1. However, the GUI
allows the user to supervise the process and eventually stop
it at any time in case of unsatisfactory result. In this case, the
spline knots can be repositioned manually for the remaining
of the analysis. Alternatively, the user can activate a temporal
filtering operation to eliminate badly estimated contours
in one or a group of frames and replace them with an a
posteriori prediction. The cardiologist can then decide about
the suitability of the result and thus decide to repeat the
measurement or to drop the corresponding set of frames.

Figure 4: Results: the modeling splines corresponding to the upper
and lower boundaries are represented as red curves.

2.5. Diameter estimation

Once the models are fitted to the boundaries, the artery
diameter is estimated as the average of the columnwise
difference among the vertical coordinates of the two splines
over the frame (the subscript opt was omitted for simplicity
of notations):

dm = 1
Ncol

Ncol∑

j=1

(
ŷ j,u − ŷ j,l

)
, (6)

where m is the frame index and { ŷ j,u, ŷ j,l} are the y
coordinates of the two splines at column j.

The reason why it is expected that relation (6) provides
a good estimation of the diameter is that in these images the
artery wall is almost perfectly horizontal, especially in case
an ROI is selected. Indeed, the correctness of this assumption
was confirmed a posteriori by the validation of the method,
showing a very good correlation among the values of the
diameters and FMD with those of the gold standard.

The other parameters which characterize the FMD
function are (i) the time interval between cuff deflation and
peak diameter, (time to peak diameter) and (ii) the FMD
percent diameter dilation, given by the percent difference of
the peak diameter with respect to the baseline:

FMD = dpeak − dbasal

dbasal
[%]. (7)

The value of the diameter as a function of the frame
position within the movie (or, equivalently, as a function of
time) is stored for further analysis. Following the request of
the cardiologist, a smoothed version of the diameter plot is
also made available as an option. This is obtained by low-
pass filtering of the original profile with a kernel of length
three.

3. RESULTS AND DISCUSSION

The gold standard for validation was obtained by manual
segmentation of the artery by an expert.

The criteria used for performance assessment are accu-
racy, reproducibility, and repeatability of the measurements.
It is worth to outline that the only source of variation in
the performance of the algorithm is due to the human
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intervention, namely, the manual positioning of the ticks
setting the units, the choice of the observation window,
and the patient movement. The first one introduces a
systematic scaling in the measurements expressed in metric
units (micron), while leaves unchanged the ones expressed as
numbers of pixels. This also applies to the comparison of the
measured values with those obtained by the gold standard.
Accordingly, the system validation presented hereafter refers
to repeatability and reproducibility in such respect.

Concerning the preprocessing, the only step that could
compromise the accuracy of the measurements is downsam-
pling. In order to assess this, we performed the diameter
measurements on a typical video sequence and compared the
results obtained without subsampling. The ticks were fixed
on the full-resolution reference image and kept in the same
position after downsampling to avoid the systematic error
mentioned above. The full images were used (i.e., the ROI
functionality was disabled).

The correlation coefficient between the two sets of
measurement of the diameter was 0.99841, and the one-
way ANOVA analysis confirmed that the two sets of samples
are obtained from two distributions having the same mean
(P = .57). The signal-to-noise ratio (SNR) between the two
curves is 62.77 dB. For the FMD, according to relation (7),
the accuracy depends on that of the diameter estimation
as well as on the positioning of the peak. Tests performed
on a set of typical sequences revealed that downsampling
leads to a change in the FMD in the range 0.1–0.3%,
which is smaller than the variation due to the other causes
mentioned above. Accordingly, switching on the downsam-
pling option would not compromise the accuracy of the
measurements.

In what follows, the setup used for validation is de-
scribed.

(i) Accuracy: 100 ultrasound images of an artery were
analyzed manually using a modified version of
Image J [16]. The average of two such measure-
ments was considered as the gold standard.

(ii) Repeatability: 25 healthy young volunteers (age range
24–37, 9 females) underwent measurement of arterial
diameter and FMD twice with a delay of 24 hours.

(iii) Reproducibility in FMD studies: 65 ultrasound images
of the artery and 65 complete FMD movies were
analyzed twice using our software. The movies were
acquired in 27 healthy volunteers (age 23 to 30 years,
12 males), 12 hypertensive patients (age 40–60, 6
males), 8 patients with coronary artery disease (age
45–65, all males), 8 smokers (age 28–30, 5 females),
and 10 patients with congestive heart failure (age
60–78, 7 males).

(iv) Reproducibility in IMT studies: 60 US images of the
posterior wall of the common carotid artery were
analyzed twice using our software. The images were
acquired in 15 healthy volunteers (age 23 to 30 years,
7 males) and 45 patients with coronary artery disease
(age 45–65, 40 males).
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Figure 5: FMD analysis. (a) Correlation between manual (gold
standard, horizontal axis) and automatic (vertical axis) analyses; (b)
Bland and Altman plot: difference between software and manual
measurements versus their average.

Healthy volunteers included medical residents with neg-
ative anamnesis of any active disease, nonsmokers, with
a systolic blood pressure lower than 130 mmHg, and a
diastolic blood pressure lower that 80 mmHg. Smokers
had a history of 5–10 cigarettes/day for 3–10 years and
were asked to smoke one cigarette immediately before FMD
measurement. Hypertensive subjects (age 40–60, 6 males)
had undergone 24-hour blood pressure monitoring which
documented average systolic values larger than 140 and
diastolic values larger than 90 mmHg. FMD was measured
before initiation of antihypertensive therapy. The diagnosis
of coronary artery disease was made based on coronary
angiography. These patients were on treatment with aspirin.
All other active treatments were suspended for at least 24
hours. Congestive heart failure patients included subjects
with symptoms of heart failure (NYHA class II-IV) and an
ejection fraction lower than 40%.
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Figure 6: Correlation between repeated measurements in 25
healthy subjects studied twice with a delay of 24 hours. (a) Resting
diameter; (b) FMD. The interclass correlation coefficients are
ICC = 0.85 and ICC = 0.63, respectively.

3.1. Performance analysis

To characterize the system performance, the following de-
scriptors were used.

(i) Intraclass correlation coefficient (ICC);

(ii) coefficient of variation (CV). It is a measure of
the dispersion of a probability distribution and it is
calculated as the standard deviation (SD) of repeated
measurements divided by their mean:

CV = 100× σ

μ
, (8)

where σ and μ are the standard deviation and the
mean of the measurement distribution, respectively;

(iii) range of variation (R). It is calculated for repeatability
and reproducibility studies as the mean of the
absolute differences between repeated measurements;

(iv) bias (B) across separate measurements. Bias is given
by the mean of these differences.
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Figure 7: Repeatability. (a) FMD; (b) IMT.

Bland and Altman plots [23] were derived. In all cases,
analysis was performed in a randomized, blinded fashion.
Statistical analysis for the reproducibility studies was per-
formed as recommended by published guidelines [24] using
Statview (SAS Institute, NC, USA). FMD was calculated as in
(7). Besides the patient movement, there are two potential
causes of variability in the measurements. The first one is
the positioning of the observation window (ROI), and the
second is the manual positioning of the tags setting the units.
The following sections provide the characterization of the
system.

3.1.1. Accuracy

In order to assess the accuracy, 100 frames were analyzed
both manually and using the new software. The two sets
of measurements are highly correlated, as illustrated in
Figure 5(a). The intraclass coefficient was ICC = 0.97
(P < .0001). The range of variation was equal to
RV = 76 (2–220) μm for arteries with an average diameter
of 2.35 mm. The Bland and Altman plot is shown in
Figure 5(b).
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3.1.2. Repeatability

The intraclass coefficient for diameter measurements
repeated with a delay of 24 hours on the same 25 subjects
was ICC = 0.85 (Figure 6(a)). The intraclass correlation
coefficient for repeated FMD measurements following the
same paradigm was ICC = 0.63 (Figure 6(b)). The RV
for each of these variables was 0.15 (0.01–0.40) mm for the
diameter and 1.7 (0.1–5.2)% for FMD, respectively. CV was
4.5% for the diameter measurements.

3.1.3. Reproducibility

(i) Diameter: 65 frames were analyzed twice using the
software. The mean arterial diameter was 2.55 ±
0.05 mm and 2.54 ± 0.05 mm, respectively. The
intraclass coefficient across the two measurements
was ICC = 0.998 (P < .0001). The coefficient
of variation for repeated measures of arterial diam-
eter was 0.8 (0.0–3.5)%, and the mean range of
variation between the two sets of measurements
was 28 (0–143) μm. The bias across the two sets
of measurements was B = 7 μm with a standard
deviation of the differences of 39 μm. The Bland and
Altman plot is presented in Figure 8(a).

(ii) FMD: when 65 FMD studies were analyzed twice,
the intraclass coefficient was ICC = 0.969 (P <
.0001), and the mean range of variation between the
two sets of measurements was RV = 0.6 (0.2–3.5)%
(Figure 7(a)). The bias across the two sets of mea-
surements was 0.3% with a standard deviation of
the differences of 0.9%. The Bland and Altman plot
is presented in Figure 8(b). When all subjects were
considered, the coefficient of variation for FMD
was 16%. The coefficient of variation in healthy
volunteers (FMD = 6.0± 0.8%) was 8.3%. FMD was
significantly higher in healthy volunteers compared
to the other groups (smokers: 4.9±1.9; hypertensive:
4.5±0.7%; coronary artery disease: 1.7±0.6%; heart
failure: 2.9± 1.4%, P < .05 among groups).

(iii) IMT: sixty IMT images were analyzed twice. The
intraclass coefficient for these measurements was
ICC = 0.99, (P < .0001, Figure 7(b)), and the
mean range of variation between the two sets of
measurements was 0.03 mm; the bias across the two
sets of measurements was 0.017 mm with the SD of
the differences 0.037 mm. The coefficient of varia-
tion was 3.6%. These parameters of reproducibility
compare favorably with those of previously pub-
lished methods [20]. IMT was significantly lower in
healthy volunteers compared to coronary artery dis-
ease patients (coronary artery disease: 0.8370.27 mm;
healthy: 0.5060.11 mm, P < .00001).

4. SUMMARY AND CONCLUSIONS

We describe a simple, accurate, and highly reproducible
edge-detection wall-tracking software for the analysis of
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Figure 8: Bland and Altman plots of repeated measurements. The
horizontal axis reports the average of two consecutive measure-
ments, the vertical axis their difference. The dotted lines represent
1.96 standard deviation from the mean. (a) Diameter; (b) FMD.

Figure 9: Reference frame: ROI selection.
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Figure 10: The first window of the software presents an “average frame” derived as an average of all frames in the video and is used to
manually set the ROI. The second window requires the operator to click on two calibration marks to calibrate the images.
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Figure 11: FMD data. Thin line: artery diameter as a function of frame index. Thick line: artery diameter after smoothing. Red line: frame
selection.

peripheral endothelial function and IMT. As compared to
manual and semiautomatic analyses [16], the proposed
software limits significantly measurement errors, reducing
the sample size necessary for studies and increasing the
reliability of FMD measurements in clinical practice. As
well, as compared to previously presented software with
the same functions, the one presented here is more rapid
and allows manual correction at any point during the

automatic analysis. In particular, the user friendliness and
rapidity of the analysis (an average of 60 seconds for a
full analysis as compared to other software requiring up to
10 minutes [12]) are particularly important characteristics
when planning to use this type of analysis in large population
studies. Furthermore, the software presented here has the
unique advantage that it allows saving both numerical results
and a movie containing the echo-tracking analysis. This
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provides researchers with the possibility of auditing results
at any time, which in our experience improves significantly
the quality of the data and facilitates interinstitution cooper-
ation. Because in our system image acquisition and analysis
are digital, picture quality and resolution are preserved as
compared to other systems that require transfer of images
from digital to analog and back to digital.

Other features of clinical relevance are as follows.

(i) Continuous analysis of FMD movies. The proposed
system enables the continuous analysis of FMD
movies. In the considered setup, the duration of a
typical FMD movie is 10 minutes: 1 minute base-
line diameter recording, 4.5 minutes cuff inflation,
and 4.5 minutes cuff deflation. The software pre-
sented here performs arterial diameter measurement
throughout these 10 minutes in order to construct
a continuous FMD curve. Studies have shown that,
as compared to healthy subjects, the FMD response
in patients with cardiovascular disease is both lower
and delayed in time [25]. Therefore, this time shift
should be considered an important component in
the characterization of the endothelial dysfunction
and the importance of the detection of true peak
responses (and of the measurement of the time delay
between cuff deflation and peak diameter) should be
emphasized. The software proposed here calculates
the FMD, the time lag, and the slope between cuff
deflation and peak arterial diameter, providing both
spatial and temporal parameters characterizing the
endothelial function.

(ii) Improved reproducibility. Previous reproducibility
studies have reported that observer error accounts
for as much as 60% of the within subject varia-
tion for both FMD and IMT measurements [6].
As compared to manual analysis, automatic edge-
detection is not affected by interobserver variability,
which allows a substantial reduction in the number
of subjects necessary for clinical studies under the
assumption that this is the sole factor limiting the
reproducibility. However, it has to be recognized that
US resolution, artefacts, and patient movements are
the major sources of variation in FMD studies. The
range of variation for repeated measures performed
using modern software, including the one presented
here, approximates the maximum reachable with
currently available US technologies. Use of a stereo-
tactic clamp with micrometric movements for the
ultrasound probe, ECG triggering as well as optimal
immobilization of the arm, a quiet and temperature-
controlled environment, and a fasting state remain
of great importance. In our laboratory, the radial
artery is preferred over the brachial because it can
be more solidly immobilized, minimizing movement
artefacts. While having a comparable FMD (6-7% in
healthy volunteers), the smaller diameter of the radial
artery represents a challenge for the type of software
presented here.

(iii) Online versus offline analyses. Previously published
software allows online image analysis of vessel diam-
eter, which has the advantage of reducing study
times [11]. In contrast, our offline technique requires
vessel images to be stored digitally for later analysis.
While this prolongs analysis time (by 60–90 seconds
in average), the advantage of offline analysis is
portability (e.g., stored images can be analyzed at
any time in randomized batches). As well, an online
analysis system implies that the region of interest
is selected at the beginning of the study, which
is limited by the unpredictability of artifacts. The
first window of our software gives a reference frame
obtained from the whole 10 minutes of registration,
allowing to choose the most artefact-free region of
interest. Furthermore, our software is designed to
allow interrupting and editing the analysis (including
changing the ROI) in the case of patient movement.
This source of artifacts is an important limitation of
online and previous offline analysis methods [26].
The possibility of such “interactivity” dramatically
improves the robustness (i.e., the ability to provide
results without failures due to movement artifacts)
of the analysis as recently shown in [11]. Both
online and offline systems have relative advantages
and disadvantages. Our opinion is that a rapid
offline analysis that allows operator interaction is an
alternative to online analysis facilitating and speeding
up both data collection and analysis.

Overall, we believe that the proposed solution will
trigger new interest in the field because of its low cost,
portability, interactivity, and user friendliness.

APPENDIX

The system is equipped with a GUI that has been designed
following the recommendations of the cardiologist of our
team. It allows a high degree of interactivity at any time
during the processing, which is a must when analyzing low-
quality images and videos. To initialize the procedure, the
user is asked to click on two positions close to the artery
wall in a prototype frame used as reference, that has been
previously obtained by averaging all frames in the video.
This allows selecting an ideal crop area, where the image
will remain stable and the arterial contours sharp throughout
the FMD study (see Figure 9) in case the ROI option are
activated. A second window allows the operator to click on
two contiguous calibration marks in the image in order to
set the number of pixels corresponding to a known distance
(in [cm]), thus providing quantitative measurement of the
arterial diameter in metric units.

The human intervention is possible at any time during
the analysis through the manual displacement of the knots in
case either the position of the contour in the current frame
is judged unsatisfactory or the quality of the current frame is
so poor that the algorithm would not converge. In this case,
the doctor can also decide to remove the concerned group of
frames without affecting the automatic analysis in the rest of
the movie.
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Figure 10 gives an example. A color bar (indicated as D)
gives an index of how parallel the splines remain throughout
the study thus facilitating the detection of artifacts: a red
color corresponds to a movie section of worse quality. Posi-
tioning the cursor in correspondence of these frames enables
manual analysis, for their eventual removal. Finally, the FMD
data are presented as a plot as illustrated in Figure 11. The
GUI allows the evaluation of the set of measurements and
the visualization of the frame corresponding to a given
diameter. The tract of artery analyzed is typically 0.5–1 cm
long. Intervals for each relevant condition (baseline, peak
dilation) can be set. In order to facilitate the recognition of
outliers, a frame preview window is added to this window.
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[25] A. Pálinkás, E. Tóth, L. Venneri, F. Rigo, M. Csanády, and E.
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