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1. Introduction

The use of near-infrared (NIR) light in biomedical research
has made significant progress over the past few years [1].
It has been shown that light with wavelengths in the near-
infrared range can propagate through tissue for distances
on the order of multiple centimeters, because of low tissue
absorption in the “near-infrared window.” This finding has
encouraged the development of fluorescence techniques to
visualize specific biochemical events inside living subjects (in
vivo molecular imaging) [2]. Fluorescence techniques have
played a critical role in the description of biological processes
at the molecular and cellular levels [3]. One particular
example is fluorescent molecular tomography (FMT), which
is an emerging tool for molecularly based medical imaging
[1]. In this imaging modality, a fluorescent biochemical
marker used as contrast agent is injected into the biological
system and consequently accumulates in diseased tissue as
a result of the increased vascular density or by means of
selective targeting [4]. During the imaging process, light
at the fluorophore’s excitation wavelength is launched into
the tissue, and then it is absorbed by fluorophore that
presents in the tissue, and the fluorophore is elevated to

an excited state and remains there for some period of
time (the fluorescence lifetime). Some proportion of the
excited molecules will ultimately release their excess energy
by emitting a photon as they drop back to the ground
state. This creates fluorescence which can be separated
from the excitation light via interference filters [5]. Volume
images of the fluorescent yield and lifetime parameters are
reconstructed from several optical measurements on the
surface of the tissue [4].

Reconstruction of tomographic data from diffusing
sources involves the generation of a forward model that
predicts the photon distribution striking the detectors for
a given source location and medium [6]. One challenging
problem in the reconstruction process is that the compu-
tational complexity is very high due to an extremely large
dimension of the matrix, which is not only in the inverse
problem but also in the forward problem. Multiresolution
approach is an effective way to speed up the process of solving
the above problem. It is well known that the most important
feature of the wavelet transforms lies in the fact that most
information of the signal is contained in a small number
of entries with other entries being very small and therefore
can be neglected. In [7], an efficient pyramidal algorithm
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was proposed for the multiresolution representation of
the signal with wavelets using orthogonal basis functions
and quadrature mirror filters to compute it. Unser et al.
extended these ideas to the case of nonorthogonal basis
functions using splines [8]. Because the forward problem
should be repeatedly solved during the process of solving
the inverse problem especially for the case where there are
large deviations in the optical properties between the target
and the reference medium, the speed and accuracy of the
forward computation are of critical importance determining
the performance of the reconstruction algorithm. In order
to speed up the forward computation process, we propose
to generalize the strategy in [9] for solving the forward
problem of FMT in the wavelet domain in combination
with a parallel computing strategy [10]. Simulation results
demonstrated that the proposed algorithm can significantly
improve the efficiency of reconstruction for FMT. The main
contribution of this paper is the extension of the mul-
tiresolution reconstruction approach originally developed
for the diffuse optical tomographic reconstruction to the
case of fluorescent molecular tomographic reconstruction
suitable for the case where there are large deviations in
the optical properties between the target and the reference
medium. The forward problem of FMT is solved in wavelet
domain in combination with a parallel computing strategy
originally developed by our group, which decouple the two
originally coupled differential equations corresponding to
the excitation and the emission light, making the forward
problem suitable for parallel implementation [10].

2. Forward Problem

2.1. Governing Equations. The generation and propagation
of the excitation and fluorescence (emission) light in random
highly scattering media can be described by two coupled
diffusion equations which are the P1 approximation to
the radiative transport equation (RTE). In the frequency
domain, the diffusion equations become elliptic and can be
expressed as

−∇ · (Dx∇Φx) + kxΦx = Sx, (1)

−∇ · (Dm∇Φm) + kmΦm = βΦx (2)

subjecting to the Robin boundary conditions on the bound-
ary of the tissue

n · [Dx∇Φx(r)] + bxΦx(r) = 0 ∀r ∈ ∂Ω,

n · [Dm∇Φm(r)] + bmΦm(r) = 0 ∀r ∈ ∂Ω,
(3)

where (1) describes the propagation of the excitation light,
and (2) models the generation and propagation of fluo-
rescently emitted light. The subscripts x and m denote the
excitation and emission light wavelengths, respectively. ∇
is the gradient operator, Sx is the excitation light source,
and Φx,m is the photon fluence. n is a vector normal to the
boundary ∂Ω, bx, and bm are the Robin boundary coefficients
which are governed by the reflection coefficients (Rx,Rm).
The values of bx and bm are 1/2 (no reflection). In addition,

the diffusion coefficients Dx,m, decay coefficients kx,m, and
emission source coefficients β are, respectively, defined as

Dx = 1

3
(
μaxi + μax f + μ′sx

) ,

Dm = 1

3
(
μami + μam f + μ′sm

) ,

kx = iω

c
+ μaxi + μax f ,

km = iω

c
+ μami + μam f ,

β = ημax f
1− iωτ ,

(4)

where μaxi (cm−1) and μami (cm−1) are the absorption coef-
ficients due to nonfluorescing chromophore; μax f (cm−1)
and μam f (cm−1) are the absorption coefficients due to
fluorophore; μ′sx (cm−1) and μ′sm (cm−1) are the isotropic
scattering coefficients; η is the fluorescence quantum effi-
ciency; τ (s) is the fluorescence lifetime; c (cm/s) is the speed
of light in the media and i = √−1.

2.2. Finite Element Formulation. The solutions to (1) and
(2) can be obtained using the finite element method (FEM)
which is a completely general numerical technique applied
to any geometry [11]. The FEM is one of the most
popular methods for numerically solving partial differential
equations (PDEs) because of its applicability to a range of
problems and the existing large body of mathematical theory
[12]. In the FEM framework, the domain is divided into
P elements, joined at N vertex nodes. The solution Φx,m is
approximated by the piecewise function Φx,m =

∑N
i Φxi,miϕi,

with ϕi (i = 1, . . . ,N) being basis functions [13].
Suppose Vh

0 = span{ϕj}Nj=1 [14],∀vh ∈ Vh
0 , we have

vh =
N∑

k=1

ckϕk. (5)

Let uh =
∑N

j=1 (Φ j)x,mϕj , where uh stands for both Φx and
Φm. In order to obtain the weak solutions of (1) and (2)
under the boundary conditions of (3), (1) and (2) are written
as the following sesquilinear form:

aΩh(uh, vh)x,m =
(
fx,m, vh

)
Ωh

, (6)

where

aΩh(uh, vh)x,m =
∫∫

Ωh

[
Dx,m(∇uh · ∇vh) + kk,muhvh

]
dΩ

+
∫

Γh
bx,muhvhds,

(
fx,m, vh

)
Ωh
=
∫∫

Ωh

fx,mvhdΩ,

fx = Sx,

fm = βΦx,

(7)
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where Ωh and Γh are, respectively, the bounded domain and
its boundary. Equation (6) can be further rewritten in a more
compact matrix form as

AxΦx = Sx, (8)

AmΦm = Sm, (9)

where

Sx,m =

⎡
⎢⎢⎢⎢⎣

(
fx,m,ϕ1

)
Ωh

...
(
fx,m,ϕN

)
Ωh

⎤
⎥⎥⎥⎥⎦

,

Ax,m =

⎡
⎢⎢⎢⎢⎣

aΩh

(
ϕ1,ϕ1

)
x,m · · · aΩh

(
ϕN ,ϕ1

)
x,m

...
...

aΩh

(
ϕ1,ϕN

)
x,m · · · aΩh

(
ϕN ,ϕN

)
x,m

⎤
⎥⎥⎥⎥⎦
.

(10)

The elements of finite element matrix Ax,m can be obtained
from the following formula:

aΩh

(
ϕi,ϕj

)
x,m
=
∫∫

Ωh

Dx,m∇ϕi · ∇ϕjdΩ +
∫∫

Ωh

kx,mϕiϕjdΩ

+
∫

Γh
bx,mϕiϕjds.

(11)

2.3. Forward Computation. The accuracy and speed of
solving the forward problem as discussed in Section 1 are
of critical importance determining the performance of the
reconstruction algorithm. A multiresolution iterative pertur-
bation reconstruction method for the optical tomographic
image reconstruction based on the wavelet transform is
presented in [9]. By computing the Jacobian matrix, which
is a measure of the rate of changes in measurement with
respect to the optical parameters, at a reference medium
whose optical properties are similar to those of the target
medium, the reconstruction problem is reduced to a system
of linear equations. As a result, there is no need for repeated
solving of the forward differential equations. However, this
method would not be valid for the case where there are
large deviations in the optical properties between the target
and the reference medium. In such a case, the forward
problem should be repeatedly solved during the process
of solving the inverse problem. In order to speed up the
forward computing process so as to speed up the whole
process of reconstruction, we propose to generalize the
strategy proposed in [9] originally developed for the inverse
reconstruction of the diffuse optical tomography to the case
of the forward problem of FMT and solve it in the wavelet
domain. Furthermore, in order to decouple the forward
problem of FMT, a parallel strategy previously developed
by our group [10] will be used in combination with the
aforementioned strategy for solving the forward problem.
Our innovations are especially suitable for the case where
there are large deviations in the optical properties between
the target and the reference medium.

2.3.1. Brief Introduction of Wavelets. For the convenience of
the following discussion, a brief introduction of the theory of
wavelet transform is presented here. The wavelet transform is
a tool that cups up data of functions or operators into differ-
ent frequency components and then studies each component
with a resolution matched to its scale. By a proper design
of the basis, the wavelet can project the signal onto a chain
of embedded approximations and details at various levels of
resolutions, and, as a result, the wavelet transform is usually
referred to as the multiresolution analysis. For example,
the two-level wavelet-based multiresolution representation
of one dimensional discrete signal f with N components can
be described as

f̃N×1 =
⎡
⎣A−1fN/2×1

D−1fN/2×1

⎤
⎦, (12)

where f̃N×1 = [ f̃1, f̃2, . . . , f̃N ]
T

is the wavelet transform of the
original signal f . It can be seen from this equation that the
original signal can be decomposed into two parts of the detail
component D−1fN/2×1 and the approximation component
A−1fN/2×1.

Similarly, the two-level wavelet-based multiresolution
representation of a 2D image F sized M×N can be expressed
with the following formula:

F̃M×N =
⎡
⎣A−1FM/2×N/2 D1

−1FM/2×N/2

D2
−1FM/2×N/2 D3

−1FM/2×N/2

⎤
⎦. (13)

Four elements in the matrix of the right-hand side of
(13) are, respectively, the approximation image A−1FM/2×N/2
and three detail images D1

−1FM/2×N/2, D2
−1FM/2×N/2, and

D3
−1FM/2×N/2.

2.3.2. Multiresolution Computing of the Forward Problem for
the Excitation Light in Wavelet Domain. In order to exploit
the multiresolution property of the wavelet and reduce the
forward computational time, the forward problem is first
represented in the wavelet domain. For such a purpose,
multiplying both sides of (8) from the left by WS and
assuming the orthonormality of WΦ, we have

ÃxΦ̃x = S̃x, (14)

where Ãx = WSAxWT
Φ, S̃x = WSSx, Φ̃x = WΦΦx, WS and

WΦ are, respectively, the wavelet transform matrix of S and
Φ.

It is well known that the most important feature of the
wavelet transforms lies in the fact that most information of
the signal is contained in a small number of entries with
other entries being very small and therefore can be neglected.
As a result, the dimension of the forward problem can
be reduced level by level by using only the approximation
components of the wavelet coefficients to describe the
forward problem, that is,

Ãx,lΦ̃x,l = S̃x,l, l = −1, . . . ,−L, (15)
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(1) Calculate Ax and Sx according to (10) and (11);
(2) For l = −1, . . . ,−L, perform wavelet transform of Ax

and Sx to obtain Ãx,l and S̃x,l ;
(3) Set l = −L and Φ̃(0)

x,−L = 0;
(4) While (l < 0)

{
Solve Ãx,lΦ̃x,l = S̃x,l with the conjugate gradient descent
(CGD) method with an initial value of Φ̃(0)

x,l ;
Prolongate Φ̃x,l through padding zeros to obtain an initial
guess for Φ̃x,l+1 at the (l + 1)th level, that is,

Φ̃(0)
x,l+1 = [Φ̃T

x,l , 0T]
T

;
Let l = l + 1;
}

(5) Solve AxΦx = Sx with Φ(0)
x = WT

Φ,0Φ̃
(0)
x,0 as an initial guess.

Algorithm 1

where l denotes the index of the scale, Ãx,l = WS,lAx,lWT
Φ,l,

S̃x,l = WS,lSx,l, Φ̃x,l = WΦ,lΦx,l, and WS,l and WΦ,l are,
respectively, the wavelet transform matrix of Sx,l and Φx,l

at the lth scale with Sx,l and Φx,l being, respectively, the
approximation components of the corresponding signal at
the (l + 1)th scale, and Ax,l is the LL components of the
corresponding wavelet transformed stiffness matrix at the
(l + 1)th scale.

Using the above multiresolution representation, the
forward problem can be solved in a fine-to-coarse-to-fine
procedure which can be summarized as in Algorithm 1.

Owing to the fact that some important features are
contained in the coarse resolution solution, as a result, it will
be very helpful for speeding up the iterative process when
solving the forward problem at a higher level resolution with
the solution obtained at a coarser resolution as an initial
guess. Therefore, we can expect to expedite the process of
solving the forward problem by using Algorithm 1 with a
fine-to-coarse-to-fine strategy.

2.3.3. Parallel Implementation of the Forward Problem for the
Emission Light. After the discussion of the wavelet-based
algorithm for the forward problem corresponding to the
excitation light, the next task for us will be that of solving
the forward problem for the emission photons. For the case
where there are large deviations between the referenced and
target medium, the forward equations must be solved repeat-
edly during the process of reconstruction following a model-
based iterative image reconstruction scheme. Therefore, a
rapid and accurate computational implementation of the
forward problem is of critical importance for fluorescent
molecular tomographic image reconstruction. From (8) and
(9), we can see that the two forward models corresponding
to the excitation and emission light at different wavelength
coupled together because the solution to (8) is contained in
the source term of (9). Traditionally, the forward problem of
(8) and (9) are solved in a sequential manner, that is, (8) is
first solved whose solution is then substituted to (9), which

yields the photon fluence at the emission wavelength. That
scheme will affect the computational speed of the forward
problem, even the inverse problem. To tackle such a problem,
an approximate computing strategy for decoupling these two
forward equations was proposed in [15] and was used for
the FMT reconstruction in [16]. However, this strategy is
not valid for the case where there is a large stokes shift [15].
For a rapid implementation of the forward problem, we
have proposed an accurate parallel implementation scheme
in [10] where the following equation is solved instead of (9):

AmH = I. (16)

In (16), I is an identity matrix. Since Ax,m is symmetric and
positive definite [10], we can always obtain an inverse matrix
H for Am from (16). The matrix H can be obtained with
the numerical method which can be speeded up when the
matrix is symmetric and positive definite [17]. Combining
(8) and (16) leads to a system of equations in discretized
domain for the forward problem of FMT. Because (8) and
(16) are independent, they can be solved in a parallel
manner. Obviously, the photon fluence ofΦm at the emission
wavelength can be recovered by simple matrix multiplication
with Φx contained in Sm obtained from Algorithm 1, that is,

Φm = H · Sm. (17)

In summary, the whole forward computation process in
our proposed algorithm can be realized with Algorithm 1 in
the wavelet domain for the excitation light and in a parallel
manner for the emission light. It has been proved in our
simulations that our proposed forward computing algorithm
can significantly reduce the computational requirements.

2.3.4. Computational Complexity Analysis of the Parallel
Computing Strategy. The most important aspect of the
parallel computing strategy is decoupling of the two coupled
equations. In order to illustrate the improvement of the
parallel computing strategy in computational complexity
as compared with the sequential one quantitatively, the
computing efficiency is analyzed as follows.

Because the maximum computational complexity of
solving linear equations defined by a matrix sized N ×
N with CGD method is O(N3) (the maximum iteration
number for such an optimization problem is N [18], and the
complexity of each iteration is O(N2)) [19], the complexity
of solving the coupled forward problem of FMT, that is,
(8) and (9), in a sequential manner will be O(N3) +
O(N3). On the other hand, if the forward problem is solved
according to the parallel strategy as discussed previously, the
computational complexity will be O(N3) + O(N2) because
the operations of matrix inversion in (16) and solving the
linear equation in (8) can be implemented independently
with two processors simultaneously whose computational
complexities are O(N3), while the computational complexity
of multiplying the matrix Ax,m by a vector in (17) is O(N2)
[20]. Thus, the speed of forward computing can be improved
in such a parallel manner. The above analysis is valid for both
two-dimensional (2D) and three-dimensional (3D) cases,
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because the only difference between these two cases is that
the size N of the matrix Ax,m for 3D case is much larger than
that of 2D case.

Particularly, if we are interested only in the reconstruc-
tion of the absorption coefficient μax f due to the fluorophore,
the matrix H in (16) needs to be calculated only once
during the whole reconstruction process and hence the
computational requirements are extremely reduced.

3. Image Reconstruction of FMT

3.1. Inverse Problem. The forward and inverse problem of
FMT can be, respectively, formulated as

y = F(x),

x = F−1(y),
(18)

where y is the detector readings, F is the forward operator,
and x is the optical or fluorescent properties of the tissue.

Generally, y is a nonlinear function of x. In order to
simplify the reconstruction process, we expand the function
F in the vicinity of x0 in a Taylor series [21]:

y = y0 + F′(x0)(x − x0) +
1
2
F′′(x0)(x − x0)2 + · · · , (19)

where F′ and F′′ are the first- and second-order Frechet
derivatives of F and are usually referred to as the Jacobian
matrix and Hessian matrix, respectively, if represented in
matrix form. Keeping up to the first-order terms in (19) and
introducing the Tikhonov regularization term for tackling
the ill-posedness of the inverse problem, the linearized
formulation for the reconstruction problem can be described
by

x − x0 =
(

JTJ + λI
)−1

JT
(
y − y0

)
, (20)

where I is an identity matrix, λ is a regularization parameter,
and J is the Jacobian matrix describing the influence of a
voxel on a detector reading y [22]. The Jacobian matrix
is obtained using the perturbation method which can be
described as

J = ∂F(x)
∂x

≈ F(x + Δx)− F(x)
Δx

, (21)

where Δx is the perturbation in the optical or fluorescent
properties, and F(x+Δx)−F(x) stands for the corresponding
residual data between the two predicted data.

By introducing two quantities of Δx and Δy which are,
respectively, the perturbation in the optical or fluorescent
properties and residual data between the measurements and
the predicted data, (20) can be rewritten in a more compact
matrix form as [23]

KΔx = JTΔy = b (22)

with K = (JTJ + λI) and b = JTΔy.
Using (22), we can obtain the reconstructed image simply

by finding a solution of Δx to it. In our case, both the matrix

(1) Set x0 to an initial guess;
(2) x = x0, Compute y and J at x with Algorithm 1;
(3) Perform wavelet transform for K and b level by level to

obtain K̃l and b̃l for l = −1, . . . ,−L, with K̃l and b̃l
being the wavelet transform at the lth level
for K and b;

(4) Set l = −L and Δx̃(0)
−L = 0;

(5) While (l < 0)
{

Obtain a solution from K̃lΔx̃l = b̃l using the CGD
method with an initial value Δx̃(0)

l ;
Prolongate Δx̃l through padding zeros to obtain an initial
guess for Δx̃l+1 at the next higher resolution, that is,

Δx̃(0)
l+1 = [Δx̃Tl , 0T]

T
;

l = l + 1;
}

(6) Solve KΔx = b with Δx(0) = WT
xΔx̃(0)

0 as an initial guess;
(7) x0 = x0 + Δx;
(8) If ‖Δx‖ > ε (Define termination criterion ε) go to (2);

Else x = x0, output x.

Algorithm 2

K and the vector b and hence the Jacobian matrix J and the
residual data Δy are functions of Δx considering the fact that
there are large deviations between the target and reference
medium, which is different from the case in [9] where K
and J are irrelative to Δx and remain unchanged during the
iteration process. Therefore, both J and Δy should be repeat-
edly calculated during the reconstruction process if iterative
method is used to find a solution to (22), which means that
the forward problem should also be repeatedly solved in
the reconstruction process. As a result, the reconstruction
efficiency can be significantly improved if we can expedite the
repeated forward computation. As mentioned before, we can
expect to expedite the process of the forward computing with
an algorithm in the wavelet domain discussed in Section 2. In
order to further speed up the reconstruction algorithm, we
propose to adopt the multiresolution reconstruction scheme
in the inversion process. For such a purpose, we perform the
wavelet transform on both sides of (22) and have

K̃Δx̃ = b̃, (23)

where K̃ = WbKWT
x , Δx̃ = WxΔx, b̃ = Wbb, Wx

and Wb are, respectively, the wavelet transform matrix of
Δx and b, and Wx is an orthonormal matrix. As for the
case of the forward problem, the wavelet transform can
be successively performed level by level with respect to the
approximation components of both sides of (23) and obtain
a multiresolution representation of the reconstruction prob-
lem. The whole reconstruction algorithm can be summarized
as in Algorithm 2.

From Algorithm 2, we can see that there are actually
two layers of iterations in it: one is the inner iteration
where the Jacobian matrix is not updated which is similar
to that proposed in [9], and the other is the outer iteration
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where both the Jacobian matrix and the residual vector are
recomputed at the new values of the optical parameters
obtained in the former iteration. Owing to the fact that
both the Jacobian matrix and the residual vector are updated
during the outer iterations, our algorithm can free the
constraints of small deviations of the properties between the
target and the reference medium.

3.2. Data Correction. Actually the fluorescent measurements
are used as the input to reconstruct the image for FMT
according to Section 2. Usually the fluorescence may exist not
only in the target but also in the background [24]. When
the fluorescence image is reconstructed, it may contain the
target fluorescence as well as the background fluorescence.
Therefore, if the detector readings are directly used for image
reconstruction, the performance of the reconstruction result
will drop [25]. In order to improve the reconstruction quality
in the presence of the background fluorescence, the data of
reconstruction need to be corrected.

In the presence of the background fluorescence, the
fluorescence concentration can be formulated as follows
[25]:

n = ntarget + nback, (24)

where n is the total fluorescence concentration, and ntarget

and nback denote the target and background fluorescence
concentration, respectively.

Furthermore, the fluorescence concentration can be
described as follows [25]:

n = ημa, (25)

where η is the fluorescence quantum efficiency, and μa is the
absorption coefficients.

According to (24) and (25), the absorption coefficients
of the fluorescence can be formulated as the sum of
the absorption coefficients of the target and background
fluorescence, that is,

μa = μa,target + μa,back, (26)

where μa,target and μa,back are the absorption coefficients of the
target and background fluorescence, respectively.

In order to improve the reconstruction quality in the
presence of the background fluorescence, the reconstruction
results can be corrected as follows [25]:

μa,corrected = μa − 1
SΩh

∫∫

Ωh

μadΩ, (27)

where Ωh is the domain of interest for the reconstruction
with an area of SΩh . From (27), it can be seen that μa,back

can be obtained by taking the average of the reconstructed
absorption coefficients especially when the variations of
background fluorescence concentration are small. Addition-
ally, as no negative fluorescence exits, any negative value of
μa,corrected should be set to zero.

Figure 1: Model of reconstruction.

Figure 2: Uniform mesh.

4. Simulation Results

4.1. Two-Dimensional Reconstruction. The algorithm pro-
posed in this paper has been firstly tested in a 2D simulated
phantom with two anomalies existing within it as illus-
trated in Figure 1. Four sources and thirty detectors equally
distributed around the circumferences of the phantom are
adopted in the simulations. The optical and fluorescent
parameters in different regions of simulated phantom are
listed in Table 1. The simulated forward data are obtained
from (1) and (2), in which the Gaussian noise with a Signal-
to-Noise Ratio of 15 dB is added for evaluating the noise
robustness of the algorithms. Furthermore, the background
fluorescence is also included in the simulated data for
evaluating the data correction strategy according to Table 1.
Since Daubechies 1 (haar wavelet) has the advantages such
as orthogonality and symmetry, Daubechies 1 wavelet as
defined in (28) is used in the simulations [26]:

ψ(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1, 0 ≤ t <
1
2

,

−1,
1
2
≤ t < 1,

0, others.

(28)

In our current implementation, we will focus on reconstruct-
ing the distributions of absorption coefficients μax f due to
the fluorophore. The termination criterion ε in Algorithm 2
is set to 0.02. The regularization parameter λ is set to
0.005 in the simulations for better results after a lot of
simulations [27]. The uniform mesh for reconstruction is
shown in Figure 2 with 91 vertex nodes in it. Two quantities
are introduced for the quantitative evaluations of different
algorithms. The first one is the error function E between the
simulated data and the predicted data computed at the final
reconstructed value, that is,

E = 1
N

∥∥F(x)− y
∥∥2, (29)
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Table 1: Optical and fluorescent properties.

Excitation light μaxi (mm−1) μax f (mm−1) μ
′
sx (mm−1) η τ (ns) μaxi (mm−1)

Background 0.06 0.06 5.0 0.3 0.5 0.06

Anomalies 0.06 0.15, 0.2 5.0 0.3 0.5 0.06

Fluorescent light μami (mm−1) μam f (mm−1) μ
′
sm (mm−1) η τ(ns) μami (mm−1)

Background 0.02 0.006 2.0 0.3 0.5 0.02

Anomalies 0.02 0.05, 0.1 2.0 0.3 0.5 0.02

where N is the number of vertex nodes, y is the detector
readings, F is the forward operator, x is the reconstructed
result of optical or fluorescent properties of tissue, and ‖ · ‖2

is L2-norm. The second one is the normalized root mean
squares (NRMSs) error for the reconstructed results defined
as

NRMS =
{∑N

i=1 (x̃i − xi)2

∑N
i=1 (x̃i − xi)2

}1/2

, (30)

where N is the number of vertex nodes, x̃i and xi are the
original pixel and reconstructed pixel values, respectively,
and xi is the mean value of the original pixel.

The data correction strategy is implemented after the
reconstruction for improving the reconstruction quality.
Figure 3(a) depicts the reconstructed result of absorption
coefficients μax f without data correction, and Figure 3(b)
shows the corresponding result after data correction, both of
them are based on the proposed wavelet-based multiresolu-
tion algorithm. From these two images, it can be seen that
the data correction strategy can improve the image quality.
Hence, all reconstruction results presented in the latter part
of this section are those after data correction.

Figures 4(a) and 4(b) show the reconstructed images of
μax f using the proposed algorithm and the method in [9],
respectively. In this example, the deviation of the optical
properties between the reference and the target medium is
set to a relatively larger value (here x0 is set to 10 mm−1) for
an illustration of the reliabilities of the above two different
algorithms under the circumstance with large deviations.
These two algorithms are implemented with a same initial
guess of 10. Table 2 summarizes the performance of these
two algorithms in terms of E and NRMS. From this table it
can be seen that the proposed algorithm can achieve a more
accurate reconstructed result for the case where there are
large deviations in the optical properties between the target
and the reference medium, that is, our algorithm is more
suitable for such a case.

Recently, there has been a great amount of interest in
developing multimodality imaging techniques for oncologic
research and clinical studies with the aim of obtaining com-
plementary information and, thus, improving the detection
and characterization of tumors [28]. As a result, it will be
helpful to incorporate the prior information obtained from
other imaging modalities in the reconstruction process for
reducing the computational requirements while achieving a
relatively better reconstructed result. In our case, we pro-
posed to use the prior information to generate a nonuniform
mesh for the fluorescent image reconstruction according
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Figure 3: Reconstructed image of absorption coefficient due to
fluorophore μax f (a) without data correction, and (b) with data
correction.
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Figure 4: Reconstructed image of absorption coefficient due to
fluorophore μax f with (a) proposed algorithm, and (b) method in
[9].

to an adaptively refinement scheme. The basic idea of this
scheme is that, for areas in the prior image with large
variations of the pixel values, the mesh at this position should
be locally refined, and hence the image will be reconstructed
with higher resolutions, whereas for regions with small varia-
tions, the mesh at this position should be left unchanged, and
hence the image will be reconstructed with low resolutions
locally at this position correspondingly. Obviously, this idea
is plausible because flat regions contain little information
and therefore low resolution reconstruction will not lead to
serious degradation of the reconstructed results. However,
this nonuniform reconstruction will significantly reduce the
computational requirements as compared with the uniform
fine reconstruction. To simulate such an idea in fluorescent
image reconstruction, we use the image shown in Figure 5
with a resolution of 100×100 pixels as a prior image. Figure 6
shows the adaptively refined mesh with 148 vertex nodes in
it which is generated based on the above idea. All of the
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Figure 5: Model of prior image.

Figure 6: Adaptively refined mesh.

following reconstructed results of this section are obtained
based on this adaptively refined mesh.

Furthermore, in order to demonstrate the advantage of
the proposed algorithm as compared with the traditional
single resolution method without wavelet transform, Fig-
ures 7(a) and 7(b) depict the reconstructed images using
the proposed wavelet-based multiresolution reconstruction
algorithm and the single resolution method, respectively,
both of which are implemented in combination with the
parallel forward computing strategy for further speeding
up the process of the reconstruction. Table 3 summarizes
the performance of the different algorithms in terms of the
computation time, NRMS and E, from which we can see
that our wavelet-based algorithm outperforms the single
resolution algorithm in both the reconstruction accuracy and
the computational requirements.

4.2. Three-Dimensional Reconstruction. To further validate
the proposed algorithm for 3D reconstruction, we extend
the methods previously defined for triangular elements to
tetrahedral elements. Therefore, the shape functions in the
local coordinate system (x

′
, y

′
, z

′
) is defined as

L1 = 1
2

(
1− x′ − y

′

√
3
− z

′

√
6

)
,

L2 = 1
2

(
1 + x

′ − y
′

√
3
− z

′

√
6

)
,

L3 =
y
′

√
3
− z

′

2
√

6
,

L4 = 1
2

√
3
2
z
′
.

(31)

The integration of products of shape functions over the
volume of the elements, and surface integrals over a side
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Figure 7: Reconstructed image of absorption coefficient due to
fluorophore μax f based on adaptively refined mesh with (a) wavelet-
based algorithm, and (b) single resolution method.
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Figure 8: Schematic diagram of the phantom of radius 10 mm and
height 40 mm with a uniform background of μax f = 0.005 mm−1,
which is positioned at x = 10 mm, y = 0 mm, and z = 20 mm. The
small cylindrical anomaly has a radius of 2 mm and height 6 mm
with μax f = 0.01 mm−1. The anomaly is positioned at x = 5 mm,
y = 0 mm, and z = 20 mm. The dashed curves represent the
measurement planes, at z = 15 mm, z = 20 mm, z = 25 mm, each
containing four sources and sixteen measurements.

of the element, as required for the computation of element
stiffness and mass matrices, is performed by a numerical
integration rules. Once the element matrices are computed,
the FEM model can be solved as in the 2D case without needs
for any further alteration.

In the 3D case, a phantom of radius 10 mm and height
40 mm with a uniform background μax f = 0.002 mm−1 as
illustrated schematically in Figure 8 is used for simulations.
Within this phantom, a small cylindrical object of radius
2 mm and height 6 mm with μax f = 0.016 mm−1 is sus-
pended. In Figure 8, the dashed curves represent the planes of
measurement, 5 mm apart with z coordinates of 15, 20, and
25 mm. Four sources and sixteen measurements are used for
each plane in the simulations. The mesh for reconstructing
the 3D image as shown in Figure 9 is a cylindrical mesh
of radius of 10 mm and height 40 mm. It contains 858
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Table 2: Performance comparison of reconstruction algorithms.

Performance
Reconstruction
without data
correction

Method in [9]
Proposed
algorithm

E 1.114 × 10−7 6.573 × 10−8 2.312 × 10−8

NRMS 6.798×10−3 5.238 × 10−3 3.471 × 10−3

Table 3: Performance comparison of reconstruction algorithms.

Performance Single resolution
method

Proposed
multiresolution
algorithm

Computation time (s) 247 185

NRMS 6.623 × 10−3 2.679 × 10−3

E 7.985 × 10−8 1.572 × 10−8

nodes and 3208 tetrahedral elements. The data are collected
in all three measurement planes, as shown in Figure 8.
Figures 10 and 11 depict the 3D reconstructed images
using the proposed algorithm and the single resolution
method, respectively. These are 2D cross sections through the
reconstructed 3D images. The right-hand side corresponds
to the top of the cylinder (z = 40 mm), and the left
corresponds to the bottom of the cylinder (z = 0 mm),
with each slice corresponding to a 10 mm increment in the
z coordinates.

Table 4 lists the performance of the above two methods
for a quantitative comparison in detail. It can be seen that the
proposed algorithm can significantly speed up the process of
reconstruction and improve the reconstructed image quality.
Therefore we can conclude that our proposed algorithm also
outperforms the single resolution reconstruction algorithm
without wavelet transform for the 3D case.

Furthermore, the proposed algorithm decouples the
two coupled equations for the forward problem of FMT,
and thus it is quite suitable for parallel computing of the
two independent equations with two processors. Table 5
summarizes the computation time and rate of speedup
with different number of processors used to validate the
superiority of the proposed parallel computing strategy.
From Table 5, it can be seen that the parallel computing
strategy can speed up the reconstruction process both in the
2D and 3D reconstruction. The rate of speedup for the 3D
case is a little higher than that for the 2D case, which indicates
that the superiority of parallel computing strategy is more
prominent in 3D reconstruction than in 2D case.

a

5. Conclusion

In summary, a wavelet-based multiresolution reconstruction
algorithm is proposed in combination with the parallel
forward computation strategy for the purpose of speeding up
the reconstruction process with an improved reconstruction
accuracy. The most important contribution of this paper is

Figure 9: 3D mesh for image reconstruction with 858 nodes and
3208 tetrahedral elements.

0 mm 10 mm 20 mm 30 mm 40 mm

×10−3
161412108642

Figure 10: Reconstructed images using the proposed algorithm,
which are 2D cross sections through the reconstructed 3D volume.
The right-hand side corresponds to the top of the cylinder (z =
40 mm), whereas the left corresponds to the bottom of the cylinder
(z = 0 mm), with each slice representing a 10 mm increment.
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Table 4: Performance comparison of reconstruction methods.

Performance Single resolution
method

Proposed
multiresolution
algorithm

Computation time (s) 3196 2279

NRMS 9.114 × 10−2 2.043 × 10−2

E 1.963 × 10−5 4.566 × 10−6

0 mm 10 mm 20 mm 30 mm 40 mm

×10−3
161412108642

Figure 11: Reconstructed images using the single resolution
method, which are 2D cross sections through the reconstructed
3D volume. The right-hand side corresponds to the top of the
cylinder (z = 40 mm), whereas the left corresponds to the bottom
of the cylinder (z = 0 mm), with each slice representing a 10 mm
increment.

Table 5: Efficiency analysis of parallel computing strategy.

2D case 3D case

Number of processors 1 2 1 2

Computation time (s) 292 185 3712 2279

Speedup 1.00 1.58 1.00 1.63

the novel extension of the multiresolution reconstruction
approach originally developed for the diffuse optical tomo-
graphic reconstruction to the case of fluorescent molecular
tomographic reconstruction and for the case where there
are large deviations of the optical parameters between
the target and the reference medium. Different from the
algorithm proposed in [9], the forward problem of FMT
is solved in wavelet domain in combination with a parallel
computing strategy for speeding up the forward computing
process which is especially suitable for the case where there
are large deviations in the optical properties between the
target and the reference medium, and thus the forward
problem should be computed repeatedly. Simulation results
demonstrate that the proposed algorithm can significantly
reduce the computational complexity and achieve a higher
reconstruction quality.
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