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Statistical methods have been intensively applied in genomic signal processing (Dougherty et al. 2005). For budding yeast Sac-
charomyces cerevisiae with around 6000 proteins, genome-wide protein-protein-interaction (PPI) (Fromont-Racine et al. 2000, Ito
et al. 2001, Newman et al. 2000, and Uetz et al. 2000 among others) and protein subcellular localization (PSL) (Huh et al. 2003)
data recently became available and for the latter the presence of 4152 proteins is experimentally tested in each of the 22 subcellular
compartments. Recent work shows that multiple biological sources are helpful for both PSL and PPI predictions, and this paper
studies statistical feasibility of modeling PPI from PSL since PSLs may play different marginal or joint roles in the complex regula-
tory network. However, our results indicate that PSL may be controversial for this purpose as an independent source.

Copyright © 2008 Junfeng Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. STATISTICAL METHODS

1.1. Two-way PPI count contingency table

We extracted 2712 PPIs from MIPS [1] which were
available at http://hto-b.usc.edu/∼msms/AssessInteraction/
MIPSMatchYPD.txt as of 2005 and used by Lin and Zhao
[2] for PPI network robustness study. We use 1641 PPIs
with complete PSL information in Huh et al. [3], for ex-
ample, protein A has a 22-dimensional PSL vector ˜LA =
(LA,1,LA,2, . . . ,LA,22), where LA,i = 1 represents presence of
protein A at PSL i and LA,i = 0 represents absence of protein
A at PSL i. For proteins A and B, we create 44-dimensional
PSL vector ˜LAB (˜LA, ˜LB) along with an exchanged counterpart
˜LBA (˜LB, ˜LA) for naive balance. Since log-linear model with
large number (244) of cross-classified cells may lack power
where the total PPI count is relatively small (<10 000), we
instead explore an alternative two-way (222) contingency ta-
ble whose rows (compartments: i = 1, . . . , 22) and columns

(compartments: j = 1, . . . , 22) jointly assign each PPI into
cell (i, j) with one protein in compartment i and the other
one in compartment j (i, j = 1, 2, . . . , 22) (Figure 1). Note
that one PPI may be redundantly counted due to multiple
PSL occupation. Cytoplasm and nucleus likely play crucial
roles since these two compartments hold most PPI entries
and other compartment pairs have much less entries. Nega-
tive binomial model avoids overdispersion and shows ER to
Golgi, lipid particle and nucleus may be significant effects for
this two-way contingency table.

1.2. PSL correlation pattern

For 44-dimensional joined PSL vectors we calculate all C2
44 +

C1
44 (= 990) pairwise Pearson correlation coefficients

Corr(˜LAB, ˜LAB) =
⎡

⎣

Corr(˜LA, ˜LA), Corr(˜LA, ˜LB)

Corr(˜LB, ˜LA), Corr(˜LB, ˜LB)

⎤

⎦ . (1)
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This calculation was carried over to the following four
disjoint sets of protein pairs: (1) interacting protein pairs
from PPIs (set [1]), (2) non-PPI protein pairs from those
proteins with PPI (set [2]), (3) non-PPI protein pairs from
those proteins without PPI (set [3]), and (4) non-PPI pro-
tein pairs from combining protein without PPI and protein
with PPI (set [4]). As in Section 1.1, by selecting those PPIs
(MIPS) with PSL information (Huh et al. [3]), we obtained
2883 proteins without PPI, 3282 exchanging PSL vectors for
(set [1]), 1 591 338 exchanging PSL vectors for (set [2]), 8
308 806 exchanging PSL vectors for (set [3]) and 7 317 054
exchanging PSL vectors for (set [4]). 30% of non-PPI pro-
tein pairs and 69% of PPI protein pairs have colocalization,
thus 31% of PPIs may be transient. The pseudoimages and
contour plots for PSL correlations (1) are given in Figure 2,
where the upper-left quadrat in panel 1 shows significant
between-protein colocalization pattern for (set [1]) and no
clear colocalization pattern occurs for between-protein PSLs
for (sets [2,3,4]). These observations motivate us to study if
between-protein PSL pattern could potentially discriminate
between protein pairs with PPI and those without PPI.

1.3. Retrospective logistic regression

We propose a realistic model for quantifying PPI tendency
from fused PSLs of proteins A and B (with exchanging). The
PSL and PPI information is expressed as

(

LA,1,LA,2, . . . ,LA,22,LB,1,LB,2, . . . ,LB,22
)∼ IAB,

(

LB,1,LB,2, . . . ,LB,22,LA,1,LA,2, . . . ,LA,22
)∼ IBA,

(2)

where IAB(= IBA) is the binary PPI indicator (response) and
the logistic regression model is proposed to be logit

Pr (PPI | A,B) = β0 +
22
∑

i=1

βi
(

LA,i + LB,i
)

+
∑

i< j

βi j
(

LA,iLA, j + LB,iLB, j
)

+
∑

i≤ j
β′i j
(

LA,iLB, j + LB,iLA, j
)

,

(3)

where β0 and βi imply default PPI probability and PPI ten-
dency of single protein with PSL i, βi j , and β′i j represent PPI
tendency of single protein with PSLs i and j and two proteins
with PSLs i and j, respectively, where i = j describes PPI ten-
dency of two proteins with common PSL i. The number of
model parameters is 1 + 2C1

22 + 2C2
22 = 507. For efficiency

we consider a reduced model β0 +
∑

i≤ jβ′i j(LA,iLB, j + LB,iLA, j)
which incorporates second-order PSL effects between two
proteins. The yeast interactome and proteome are inherent
libraries and not subject to arbitrary experimental design,
which indicates a retrospective (case-control) study. On the
other hand, we have ∼18 × 106 total protein pairs and only
∼2 × 103 PPIs in our data. In order to overcome computer
memory limitation and achieve reasonable sample sizes for
both case (PPI) and control (non-PPI) groups, we need to
select out a sample subset under statistical justification. For
logistic model with responses yis and predictors xis, we let

Zi indicate whether subject i is selected and assume ρ1 =
Pr(Zi = 1 | yi = 1) and ρ0 = Pr(Zi = 1 | yi = 0),
both of them are free of xi. If the logistic model based on
all subjects has logit (Pr(yi = 1 | xi)) = α + βxi, then the
retrospective logistic regression (RLR) after selection proba-
bility adjustment would be logit (Pr(yi = 1 | xi, zi = 1)) =
α + log(ρ1/ρ0) + βxi (Chapter 4.3.3, McCullagh and Nelder
[4]). We apply case selection probability 1 and control se-
lection probability 2 × 10−3 (3282 PPIs, 38 338 entries and
254 parameters) and identify around 60 significant effects.
The resultant prospective PPI probabilities are to be adjusted
based on foregoing theory.

1.4. PPI prediction from PSL

After fitting the preceding model, we apply certain threshold
τ to the simple classification rule

Pr
(

PPI | ˜LAB or ˜LBA
)

> τ =⇒ PPI,

Pr
(

PPI | ˜LAB or ˜LBA
) ≤ τ =⇒ non-PPI.

(4)

We randomly divide the whole dataset for retrospective study
into 10 disjoint portions. Each portion (includes PPIs and
non-PPIs in proportion) acts as one testing set and the other
nine portions are combined into one training set for 10-fold
cross validation. We classify each protein-protein pair in the
testing set into PPI or non-PPI by comparing the calculated
probabilities (from trained model parameters) with some
threshold τ. We find that PPI probability median of the non-
PPI subset in the training set is always equal to that of the
PPI subset in the training set and the PPI probability median
(1.88×10−4) for PPI subset also equals that of non-PPI subset
for the whole dataset in retrospective study. For retrospective
study with PPI probability median threshold, we have speci-
ficity around 98% and sensitivity around 15%, RandomFor-
est Breiman [5] in R reaches specificity around 99% and sen-
sitivity around 20% and support vector machine (SVM) in R
reaches specificity around 50% and sensitivity around 90%.
The PPI probabilities from retrospective study dataset and
10-fold cross-validation are plotted in Figure 3. The logistic
model-based classification results are found to be sensitive
to threshold. If we use “Pr(PPI | ˜LAB or ˜LBA) ≥ τ ⇒ PPI”
and “Pr(PPI | ˜LAB or ˜LBA) < τ ⇒ non-PPI”, where τ equals
PPI probability median, then we obtained very different clas-
sification results. After prospective PPI probability adjust-
ment, the threshold-based classification (4) is applied to the
complete PPI and PSL data ([Sets 1,2,3,4], Section 1.2) and
the resultant ROC curve is given in Figure 4 with area un-
der curve (AUC) less than 0.5. Since we may simply invert
this classifier to make AUC greater than 0.5, Figure 4 in-
dicates that the proposed logistic regression model ((3) in
Section 1.3) may not be highly sufficient even if this model
is carefully chosen. We also observe the following facts: se-
lection procedure in retrospective study may involve some
bias, the joined PSL patterns (from two proteins) are finite
with uncertain overlap between PPI set and non-PPI set, false
positives and false negatives may exist in both PPI and PSL
data and others. From statistical point of view, interprotein
PSL pattern may not independently determine PPI tendency,
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Figure 1: Pseudoimages for two-way PPI count contingency table by combining pairwise PSLs (Section 1.1). The left panel includes cyto-
plasm and nucleus and the right panel excludes cytoplasm and nucleus. From left (bottom) to right (top) on the x(y)-axis: compartments
[1 : 22].
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Figure 2: Correlation pseudoimages and contour plots for PPIs (set [1]: panel 1) and non-PPIs (sets [2,3,4], panels 2, 3, 4). From left
(bottom) to right (top) on the x(y)-axis in each panel: compartments [1 : 22] for protein A(B).
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Figure 3: (Top panel) PPI probabilities from retrospective study. (Lower panel) PPI probabilities from 10-fold cross-validation (after
prospective adjustment), each pair of consecutive boxplots is for individual testing set where PPI subset follows non-PPI subset.
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Figure 4: ROC (∇ connection) based on prospective PPI proba-
bility (adjusted from retrospective study) threshold-based classifi-
cation.

and threshold-based PPI prediction rule may not discrimi-
nate PPI from non-PPI either. The former conclusion is also
a major concern from biologists who consider PPI mecha-
nism far beyond only PSL information.

2. DISCUSSION

In this article, we proposed statistical analysis of the asso-
ciation between PPI and PSL with the possibility of offer-
ing clues for further specific biological experiments. The
aforementioned model is only one possible approach out of
many helpful tries. It is likely that a totally different approach
based on PSL information may lead to disparate results. As
an alternative, if we could describe the distribution of 44-
dimensional joined binary PSL vectors given PPI or non-PPI:
Pr(˜LAB | PPI) and Pr(˜LAB | non-PPI), then armed with some
prior PPI probability, say Pr(PPI) = 3 : (1.8 × 104), we can
predict PPI probability for joined PSL pattern ˜LAB by Bayes
rule

Pr
(

PPI | ˜LAB
) = Pr

(

˜LAB | PPI
)

Pr(PPI)
Q

, (5)

where Q=Pr(˜LAB |PPI) Pr(PPI)+Pr(˜LAB |non-PPI) Pr(non-
PPI). Section 1.2 is essentially an attempt to work on either
the PPI or non-PPI set to study PSL pattern without consid-
ering the non-PPI or PPI counterpart, which may be only a
matter of exploring Pr(˜LAB | PPI) or Pr(˜LAB | non-PPI) sepa-
rately. However, the explicit probability of high-dimensional
binary vector is difficult to be constructed. Empirical ap-
proaches (Sections 1.1 and 1.2, Huh et al. [3]) offer informa-
tive results from different perspectives. On the other hand,
Liu et al. [6] modeled PPI based on domain-domain inter-
action information and computational PSL prediction from
other sources which are also feasible, the readers are referred
to Lu et al. [7], Szafron et al. [8], Höglund et al. [9], Horton
et al. [10], Guda [11], Yu et al. [12], and Zhang et al. [13, 14]
among many others.
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