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Two hydrogen masers (HMs) are used in the Precise Timing Facility to provide the physical realization of Galileo System Time,
insuring the extremely high short-term stability required for the navigation functions. In order to allow a smooth switch over
between backup and primary HMs, the “backup HM steering algorithm” is developed. This acquires the phase difference measured
between two HMs, computes a steering correction, and generates the steering correction to the backup HM via a PicoStepper with
a 0.1-picosecond resolution. The algorithm design is based on outlier removal and a proportional-integral filtering controller. To
verify the steering operability and the loop performance, the overall backup HM steering system is simulated using real HM-HM
measurements, and with simulated anomalies (phase/frequency spikes, jumps, and drift).
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1. INTRODUCTION

The Precise Timing Facility (PTF) is one of the key facili-
ties of the Galileo ground segment. Its scope is to provide
an accurate, stable, and precise Galileo System Time Master
Clock (GST(MC)) to the Orbitography and Synchronization
Processing Facility and to the other Galileo Control Center
facilities.

Two PTFs are currently under development by two sepa-
rate teams in Germany and Italy. The discussion provided in
this paper refers to the Italian development [1], coordinated
by the Consorzio Torino Time (CTT) in Torino, Italy, with
the partnership and support of SpectraTime (former Temex
Time) and T4Science in Neuchâtel, Switzerland, and Astro-
geodynamic Observatory, Poland.

Two active hydrogen masers (a primary HM1 and a
backup HM2) externally steered via a precision PicoStep-
per, provide the physical realization of GST(MC), insuring
the extremely high short-term stability required for the nav-
igation functions, in particular, to perform a reliable satellite
clock modeling.

The “backup HM steering algorithm” is implemented in
order to allow a smooth switch over between backup and pri-
mary HM in case of failure of the latter, without producing
any significant effect in the GST continuity, uniformity, or

short-term frequency stability. The algorithm acquires the
phase difference between two HMs measured by a multi-
channel phase comparator (MCPC), and generates a steering
correction to be applied to the backup HM via a PicoStepper
with a 0.1-picosecond resolution.

2. ARCHITECTURE

Figure 1 shows the architecture of the backup HM steering
system, consisting of an MCPC, PicoSteppers (one per HM),
and the algorithm.

In the nominal situation, PicoStepper1 applies the steer-
ing correction from PTF GST algorithm to steer the pri-
mary HM1 with “GST running” (GSTR) obtaining the
GST(MC1). The phases of the two PicoSteppers’ outputs are
compared by MCPC, whose output is used by the “backup
HM steering algorithm” to obtain the steering command to
PicoStepper2 whose input is the backup HM2. Thus, the
steered output of HM2 is kept in phase with HM1.

In case of the HM1 failure, the hot backup HM2 becomes
the primary one by the PTF switching matrix. The previ-
ous phase offset “HM2(steered)-HM1” provides the seamless
switch-over signal via PicoStepper2 which is now applied by
the GSTR correction for GST(MC).
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Figure 1: Architecture of the backup HM steering system.
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Figure 2: PTF PicoStepper.

3. PICOSTEPPER

A high-resolution PTF PicoStepper (i.e., microphase step-
per), based on the existing PicoStepper by SpectraTime [2],
is being developed to provide frequency correction of HMs
signals (Figure 2).

The unit is being designed to meet the following two PTF
requirements:

(i) increase of the resolution by a factor of 100 to obtain a
minimum phase step of ±0.1 picosecond;

(ii) reduction of output jitter to get negligible degradation
of the HM signal phase noise and short term stability.

The design is based on a double heterodyne architecture
where a first structure is used for positive phase/frequency
adjustment and the second structure for negative adjust-
ment.

As shown in the high-level block diagram (Figure 3),
each positive/negative loop contains a voltage-controlled xtal
oscillator (VCXO), a phase detector, a frequency mixer, a fre-
quency multiplier, a pulse removing circuit, a frequency di-

vider and a loop filter. A microcontroller is in charge to man-
age the stepping commands sent by RS232. It has also the
capability to execute a self-test of the unit.

The 0.1-picosecond resolution of the system is obtained
by using the appropriate VCXO frequency multiplication fac-
tor and divider ratio. Taking N = 10 and M = 105, the fre-
quency resolution is Δ f / fIN = 10−6/10M = ±10−13, which
corresponds in terms of phase of 0.1 picosecond.

The frequency beats (F1, F2, F3, and F4) in both loops
while not stepping is equal to 1 KHz which is the compari-
son frequencies of the phase detectors. Thus, the nominal fre-
quency of the local oscillator is equal to 10 MHz–1 KHz/N =
9.999900 MHz.

In order not to degrade the HM performances, a phase
noise figure (Figure 4) analysis has been performed. The
comparison between the HM specification and the best per-
formances VCXO available on the market in terms of phase
noise close to the carrier gives the required cutoff frequency
to be implemented. It shows that the optimum cutoff fre-
quency should be around 4 Hz. Since the frequency beats
used as comparison signal are 1 kHz, it is easy to implement
the desired 4 Hz cutoff frequency.

4. STEERING APPROACH

The backup HM steering algorithm together with the MCPC
and PicoStepper form a basic phase-locked loop (PLL),
which locks the phase of the backup HM to the primary one.
Figure 5 shows the block diagram of the backup HM steering
model.

The algorithm design is based on a digital proportional
integral (PI) filtering controller, which contains the PI fil-
ter and periodical generation of the steering commands ac-
cepted by the PicoStepper.

To eliminate the impact of anomalies of the primary HM
output signal (e.g., phase spikes) on the steered backup HM,
the algorithm first removes the phase outliers of the dynamic
least-square linear fit (LSLF). Because the outlier routine is
sensitive only to the difference between the two HMs, the
steering computation is equally efficient at rejecting phase
outliers from both the primary and the backup HMs. These
outliers in the backup HM, however, remain in the steered
output.

4.1. Phase-locked loop and PI filter

Figure 6 illustrates the PLL control system block diagram in
the continuous (Laplace) domain.

The s-transfer function of second-order closed loop is

C(s) = 2ξτs + 1
τ2s2 + 2ξτs + 1

, (1)

where τ is the loop time constant (in seconds), 1000 seconds,
which is selected as the tradeoff of the time offset and the
frequency stability [2]; ξ is the damping factor, 1;Kc is MCPC
gain, 1013 step/s; and Km is the PicoStepper gain, 10−13/step.
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Figure 3: Block diagram of PTF PicoStepper (i.e., microphase stepper).
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In discrete domain, basic digital filtering functions can
be used. Therefore, the z-transfer function of the discrete PI
filter is

D(z) = Kp + Ki
z

z − 1
, (2)

whereKi andKp are coefficients of the discrete integrator and
proportional regulator.

4.2. Dynamic least-square linear fitting and
outlier removing

Figure 7 illustrates the block diagram of the Outlier Remover.
The input data from MCPC, e0 is checked by LSLF over the
previous 100-second data in sliding windows. If the absolute
value of the deviation from the fitting line exceeds the out-
lier criterion C (30 picoseconds), the data are removed and
replaced by the previous value. Therefore, the phase outliers
of the primary HM are filtered before the steering.

5. BACKUP HM STEERING SYSTEM SIMULATION AND
PERFORMANCE VERIFICATION

The technical requirement on the backup HM steering sys-
tem imposed by PTF design is that the phase jump will not
exceed 30 picoseconds in the value of the GST(MC) to switch
the primary and backup HMs.

A simulation model [3] is created to analyze and ver-
ify the steering operability and the loop performance un-
der various test cases including the nominal and de-
graded conditions with simulated anomalies or feared events
(phase/frequency spikes, jumps and drift) occurred in both
HMs.

Figures 8, 9, 10, and 11 demonstrate the simulation re-
sults on various test cases. The backup HM2 is steered prop-
erly to the primary HM1 under all test cases.

(i) With phase spikes at the primary HM1, the algorithm
properly eliminates the anomalies. The peak value
of the phase offset “HM2(steered)-HM1(outliers re-
moved)” is 4 picoseconds, which depends on the initial
phase difference, and the standard deviation is 1.03 pi-
coseconds after the loop is settled down.

(ii) In the presence of the phase step of 30 picoseconds
(GST(MC) maximum phase jump) either at the pri-
mary HM1 or the backup HM2, the maximum im-
pacted phase offset “HM2(steered)-HM1” is 8 picosec-
onds.

(iii) When the HM signal is applied by GST(MC) maxi-
mum frequency correction of 1e-14, the impact on the
phase offset “HM2(steered)-HM1” is 6.3 picoseconds.
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Figure 8: Simulation on phase/frequency spikes at primary HM1.
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Figure 9: Simulation on phase jump of 30 picoseconds at HM1 (similar at HM2).
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Figure 10: Simulation on frequency jump of 1e-14 at HM1 (similar at HM2).
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Figure 11: Simulation on frequency drift of 1e-13 at HM1 (similar at HM2).

(iv) Even if the HM frequency drift is seriously degraded,
the phase offset “HM2(steered)-HM1” returns to
specifications with the loop settling time, and the peak
offset around the loop time constant is 27 picoseconds
for the frequency drift of 1e-13/d (10 times worse of

the specification of T4science HM, whose typical value
is few e-15/d). The maximum phase offset as 12.5 pi-
coseconds observed near to 20 000 seconds is due to
the accompanying frequency jump of 2.5e-14 in the
HM output signal.
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Table 1: Overall performance budget.

Test case 1 2 3 4 5

Algorithm
simulation

Test event Nominal Phase/frequency
spikes

Phase jump of 30 ps
(GST(MC)

maximum
phase jump)

Frequency jump of 1e-14
(GST(MC) maximum
frequency correction)

Frequency drift of
1e-13/d

(10 times worse of
HM specification)

Peak phase offset 4 ps 4 ps 8 ps 6.3 ps 27 ps

Calibration accuracy 5 ps

MCPC resolution 0.1 ps

PicoStepper resolution 0.1 ps

Total (phase offset) 6.4 ps 6.4 ps 9.4 ps 8 ps 27.5 ps

Table 1 summarizes the overall performance budget, tak-
ing into account the calibration errors of the cables between
the input of the MCPC and the input of the switching ma-
trix, the MCPS resolution, and the PicoStepper resolution.
The total performance is within the PTF requirement on the
switch over phase jump of 30 picoseconds.

Besides above phase offset analysis, the frequency offset
of “HM2(steered)-HM1” has been also calculated for all test
cases, and it meets the PTF requirement that the frequency
jump shall not exceed 4e-15 over the averaging time of 100
minutes in the value of the GST(MC).

In addition, the worst cases are analysed.

(i) The PLL will be beyond the PicoStepper maximum
control range (1e + 4 steps) when the phase jump is
bigger than 5 nanoseconds, or the frequency jump is
bigger than 8e-12.

(ii) For above latter case, the phase offset “HM2steered-
HM1” is out of the specification of 30 picoseconds. To
meet this specificaion, the frequency jump is allowed
to be less than 5e-13.

6. CONCLUSION

We conclude that our steering system is capable of meeting
the Galileo specifications for keeping the backup HM close
to the primary in phase and frequency. Currently the algo-
rithm is in the detailed design phase and is passing a proto-
type phase subject to Galileo Software Standards. It will be
tested on PTF hardwares, and will be implemented into the
PTF operational software.
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