
Hindawi Publishing Corporation
Science and Technology of Nuclear Installations
Volume 2008, Article ID 681890, 10 pages
doi:10.1155/2008/681890

Research Article
Validation of Infinite Impulse Response Multilayer Perceptron
for Modelling Nuclear Dynamics

F. Cadini, E. Zio, and N. Pedroni

Department of Nuclear Engineering, Polytechnic of Milan, Via Ponzio 34/3, 20133 Milan, Italy

Correspondence should be addressed to F. Cadini, francesco.cadini@polimi.it

Received 2 May 2007; Revised 16 November 2007; Accepted 3 December 2007

Recommended by Nikola Cavlina

Artificial neural networks are powerful algorithms for constructing nonlinear empirical models from operational data. Their use is
becoming increasingly popular in the complex modeling tasks required by diagnostic, safety, and control applications in complex
technologies such as those employed in the nuclear industry. In this paper, the nonlinear modeling capabilities of an infinite im-
pulse response multilayer perceptron (IIR-MLP) for nuclear dynamics are considered in comparison to static modeling by a finite
impulse response multilayer perceptron (FIR-MLP) and a conventional static MLP. The comparison is made with respect to the
nonlinear dynamics of a nuclear reactor as investigated by IIR-MLP in a previous paper. The superior performance of the locally
recurrent scheme is demonstrated.

Copyright © 2008 F. Cadini et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

1. INTRODUCTION

Several design and verification activities in the field of nu-
clear power plant engineering rely on the simulation of the
plant dynamic response under different scenarios and condi-
tions. However, the complexity and nonlinearities of the in-
volved processes are such that analytical modelling becomes
burdensome, if at all feasible.

For this reason, empirical modelling is becoming very
popular since it does not require a detailed physical under-
standing of the processes or knowledge of the material prop-
erties, geometry, and other characteristics of the plant and its
components. The underlying dynamic model is identified by
fitting plant operational data with a procedure often referred
to as “learning.”

In this respect, artificial neural networks are powerful al-
gorithms for constructing nonlinear empirical models from
operational data. As a fact, artificial neural networks are be-
ing used with increasing frequency as an alternative to tradi-
tional models in a variety of engineering applications includ-
ing monitoring, prediction, diagnostics, control, and safety.

Whereas standard feedforward neural networks can
model only static input/output mappings [1–4], recurrent
neural networks (RNNs) have been proven to be universal
approximators of nonlinear dynamic systems [5–7].

Two main methods exist for providing a neural network
with dynamic behavior, that is, the insertion of a buffer
somewhere in the network to provide an explicit memory of
the past inputs, or the implementation of feedbacks.

As for the first method, it builds on the structure of feed-
forward networks where all input signals flow in one direc-
tion, from input to output. Since a feedforward network does
not have a dynamic memory, tapped delay lines (temporal
buffers) of the inputs are introduced. The buffers can be ap-
plied at the network inputs only, keeping the network inter-
nally static as in the buffered multilayer perceptron (MLP)
[8] or at the input of each neuron as in the MLP with fi-
nite impulse response filter synapses (FIR-MLP) [9, 10]. The
main disadvantage of the buffer approach is the limited past
history horizon which needs to be used in order to keep
the size of the network computationally manageable, thereby
preventing modelling of arbitrary long-time dependencies
between inputs and outputs [11]. It is also difficult to set the
length of the buffer given a certain application.

Regarding the second method, the most general exam-
ple of implementation of feedbacks in a neural network is
the fully recurrent neural network constituted by a single
layer of neurons fully interconnected with each other [12]
or by several such layers [13, 14]. Because of the required
large structural complexity of this network, in recent years

mailto:francesco.cadini@polimi.it

2 Science and Technology of Nuclear Installations

growing efforts have been propounded in developing meth-
ods for implementing temporal dynamic feedback connec-
tions into the widely used multilayered feedforward neural
networks. Recurrent connections can be added by using two
main types of recurrence or feedback: external or internal.
External recurrence is obtained, for example, by feeding back
the outputs to the input of the network, as in NARX networks
[15–18]; internal recurrence is obtained by feeding back the
outputs of neurons of a given layer to inputs of neurons of
the same layer, giving rise to the so-called locally recurrent
neural networks (LRNNs) [19, 20].

The major advantages of LRNNs with respect to the
buffered tapped delayed feedforward networks and to the
fully recurrent networks are [19] as follows: (1) the hierarchic
multilayer topology on which they are based is well known
and efficient; (2) the use of dynamic neurons allows to limit
the number of neurons required for modelling a given dy-
namic system, contrary to the tapped delayed networks; (3)
the training procedures for properly adjusting the network
weights are significantly simpler and faster than those for the
fully recurrent networks.

In a previous paper [21], an infinite impulse response lo-
cally recurrent neural network (IIR-LRNN) has been trained
by a recursive backpropagation (RBP) algorithm [19] to
track the nonlinear continuous time dynamics of a nuclear
reactor [22]. In the IIR-LRNN, the synapses are implemented
as infinite impulse response (IIR) digital filters, which pro-
vide the network with system state memory.

In this paper, the same case study is considered to show
the benefits gained from the use of the IIR-LRNN by mak-
ing similar comparisons as in [19] with two static networks,
namely, an FIR-MLP and a conventional static MLP.

The paper is organized as follows. For completeness and
self-consistency, in Section 2, the main features of the IIR-
LRNN architecture and forward calculation are briefly sum-
marized [19]. In Section 3, the application of the IIR-LRNN
to the reactor neutron flux dynamics made in [21] is illus-
trated and then compared to that of the two above men-
tioned static neural models. The conclusions drawn from
such comparison are proposed in Section 4.

2. LOCALLY RECURRENT NEURAL NETWORKS

2.1. The IIR-LRNN architecture and forward calculation

The following description is a brief synthesis of the illustra-
tion of the IIR-LRNN given in [19, 21].

An LRNN is a time-discrete network consisting of a
global feedforward structure of nodes interconnected by
synapses which link the nodes of the kth layer to those of
the successive (k + 1)th layer, k = 0, 1, . . . ,M, with layer
0 being the input and M being the output. Different from
the classical static feedforward networks, in an LRNN, each
synapse carries taps and feedback connections. In particu-
lar, each synapse of an IIR-LRNN contains an IIR linear filter
whose characteristic transfer function can be expressed as ra-
tio of two polynomials with poles and zeros representing the
autoregressive (AR) and moving average (MA) parts of the
model, respectively.

During the forward phase, at the generic time t =
1, 2, . . . ,T , the generic neuron j = 1, 2, . . . ,Nk belonging to
the generic layer k = 0, 1, . . . ,M receives in input the quan-
tity ykjl(t) from neuron l = 1, 2, . . . ,Nk−1 of layer (k − 1):

ykjl(t) =
Lkjl−1∑

p=0

wk
jl(p) · xk−1

l (t − p) +

Ikjl∑

p=1

vkjl(p)·ykjl(t − p).

(1)

The quantities ykjl(t), l = 1, 2, . . . ,Nk−1, are summed to ob-

tain the net input skj (t) to the nonlinear activation function

f k(·), which is typically a sigmoidal Fermi function of the jth
node, j = 1, 2, . . . ,Nk, of the kth layer, k = 1, 2, . . . ,M:

skj (t) =
Nk−1∑

l=0

ykjl(t). (2)

The output of the activation function gives the state of the jth
neuron of the kth layer xkj (t):

xkj (t) = f k
[
skj (t)

]
(= 1 for the bias node, j = 0). (3)

For simplicity of illustration, and with no loss of generality,
an example of a network constituted by only one hidden layer
(i.e., M = 2) is depicted in Figure 1.

Note that if all the synapses contain only the MA part
(i.e., Ikjl = 0 for all j, k, l), the architecture reduces to an FIR-
LRNN, and if all the synaptic filters contain no memory (i.e.,
Lkjl−1 = 0 and Ikjl = 0 for all j, k, l), the classical multilayered
feedforward static neural network is obtained.

Further details about the IIR-LRNN architecture and for-
ward calculation may be found in [19, 21].

2.2. The recursive backpropagation (RBP)
algorithm for batch training

The recursive backpropagation (RBP) training algorithm
[19] is a gradient-based minimization algorithm which
makes use of a particular chain rule expansion for the com-
putation of the necessary derivatives. When used in batch
mode, it is equivalent to real-time recurrent learning (RTRL)
[23] and backpropagation through time (BPTT) [24]. For
brevity, the RBP algorithm is not presented in this paper; the
interested reader may refer to [19, 21] for details.

3. THE LRNN MODEL FOR THE SIMULATION OF
NEUTRON FLUX DYNAMICS

In this section, we first proceed to illustrate the case study
and its development by the IIR-LRNN presented in [21] (see
Sections 3.1 and 3.2), then we proceed to the comparison of
the achieved performance with two static neural networks,
namely, an FIR-MLP and a conventional static MLP properly
devised to the scope (see Section 3.3).

3.1. The dynamic system

The neutron flux dynamics are described by a simple model
based on a one-group point kinetics equation with nonlinear

F. Cadini et al. 3

1

1

1

x0
1(t)

x0
1(t − 1)

x0
1(t − 2)

x0
2(t)

x0
2(t − 1)

x0
2(t − 2)

x0
2(t − 3)

w1
10(0)

w1
20(0)

w1
11(0)

w1
11(1)

w1
11(2)

w1
12(0)

w1
12(1)

w1
12(2)

w1
12(3)

w1
21(0)

w1
21(1)

w1
21(2)

w1
22(0)

w1
22(1)

w1
22(2)

w1
22(3)

0

1(0)

1(1)

1(2)

2(0)

2(1)

2(2)

2(3)

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

z−1

Input Hidden Output

+

+

+

+

+

+

y1
10

y1
20

y1
11

y1
21

y1
12

y1
22

v1
11(1)

v1
11(2)

v1
21(1)

v1
12(1)

v1
22(1)

v1
22(2)

v1
22(3)

vM11(1)

+

+

f 1

f 1

f M

s11

s12

x1
1(t)

x1
1(t − 1)

x1
1(t − 2)

x1
2(t)

x1
2(t − 2)

0

1(0)

1(1)

1(2)

2(0)

2(1)

z−1

z−1

z−1

z−1

+

+

+

+

wM
10(0)

wM
11(0)

wM
11(1)

wM
11(2)

wM
12(0)

wM
12(1)

yM10

yM11 sM1

yM12

xM1 (t)

Input (k = 0) Hidden (k = 1) Output (k = 2 = M)

N 0 = 2 (nodes) N 1 = 2 (nodes) N M = 1 (nodes)

L1
11 − 1 = 2, MA-synapses (taps), w1

11(p), w
1
21(p) LM11 − 1 = 2, MA-synapses (taps), wM

11(p)

L1
12 − 1 = 3, MA-synapses (taps), w1

12(p), w
1
22(p) LM12 − 1 = 1, MA-synapses (taps), wM

12(p)

I1
11 = 2, AR-synapses (feedback), v1

11(p), v
1
21(p) IM11 = 1, AR-synapses (feedback), vM11(p)

I1
12 = 2, AR-synapses (feedback), v1

12(p), v
1
22(p) IM12 = 0, AR-synapses (feedback), vM12(p)

Figure 1: Scheme of an IIR-LRNN with one hidden layer.

power reactivity feedback, combined with xenon and iodine
balance equations [22]:

Λ
dΦ(t)
dt

=
[(
ρ0 + Δρ(t)

)− σXe
cΣ f

Xe(t)− γΦ(t)
]
Φ(t),

dXe(t)
dt

= γXeΣ fΦ(t) + λII(t)− λXeXe(t)− σXeXe(t)Φ(t),

dI(t)
dt

= γIΣ fΦ(t)− λII(t),

(4)

with the usual nuclear physics meaning of the symbols em-
ployed (see Acronyms and Symbols).

The reactor evolution is assumed to start from an equi-
librium state at a nominal flux level Φ0 = 4.66·1012 n/cm2 s.
The initial reactivity needed to keep the steady state is ρ0 =
0.071, and the xenon and iodine concentrations are Xe0 =
5.73·1015 nuclei/cm3 and I0 = 5.81·1015 nuclei/cm3, respec-

tively. In what follows, the values of flux, xenon, and iodine
concentrations are normalized with respect to these steady-
state values.

The objective is to design and train an LRNN to repro-
duce the neutron flux dynamics described by the system of
differential equations (see (4)), that is, to estimate the evolu-
tion of the normalized neutron flux Φ(t), knowing the forc-
ing function ρ(t).

Notice that the estimation is based only on the current
values of reactivity. These are fed in input to the locally re-
current model at each time step t. Thanks to the MA and
AR parts of the synaptic filters, an estimate of the neutron
flux Φ̂(t) at time t is produced, which recurrently accounts
for past values of both the network inputs and the estimated
outputs, namely,

Φ̂(t) = F
(
ρ(t), ρ(t − 1), . . . , Φ̂(t − 1), Φ̂(t − 2), . . . , Θ

)
,

(5)

4 Science and Technology of Nuclear Installations

Table 1: Training parameters of the LRNN for simulating the reac-
tor neutron flux.

Principal training parameters

Number of transients in the training set 250

Number of patterns in each transient 50

μ (learning coefficient) 0.001

α (momentum coefficient) 0

Learning epochs (nepoch) 200

Consecutive repetitions of each transient (nrep) 10

Data normalization range 0.2–0.8

where Θ is the set of adjustable parameters of the network
model, that is, the synaptic weights.

On the contrary, the other nonmeasurable system state
variables, Xe(t) and I(t), are not fed in input to the LRNN;
the associated information remains distributed in the hidden
layers and connections, which renders the LRNN modelling
task quite difficult.

3.2. The LRNN training

The LRNN used in this work is characterized by three lay-
ers: the input layer with two nodes (bias included), the hid-
den layer with six nodes (bias included), and the output layer
with one node. A sigmoidal activation function has been
adopted for the hidden and output nodes.

The training set is made up of Nt = 250 transients, with
each one lasting for T = 2000 minutes and sampled with a
time step Δt of 40 minutes, thus generating np = 50 patterns.
Notice that a temporal length of 2000 minutes allows for the
development of the long-term dynamics which are affected
by the long-term Xe oscillations.

All data have been normalized in the range of 0.2–0.8.
Each transient has been created varying the reactivity

from its steady-state value according to the following step
function:

ρ(t) =
{
ρ0, t ≤ Ts,

ρ0 + Δρ, t > Ts,
(6)

where Ts is a random steady-state time interval and Δρ is a
random reactivity variation amplitude. In order to build the
250 different transients for the training, these two parame-
ters have been randomly chosen within the ranges of 0–2000
minutes and −5·10−4 + 5·10−4, respectively.

The training procedure has been carried out on the avail-
able data for nepoch = 200 learning epochs (iterations). Dur-
ing each epoch, every transient is repeatedly presented to the
LRNN for nrep = 10 consecutive times. The weight updates
are performed in batch at the end of each training sequence
of length T. Neither momentum term nor an adaptive learn-
ing rate [19] turned out to be necessary for increasing the
efficiency of the training in this case. The principal training
parameters are summarized in Table 1.

The number of delays (orders of the MA and AR parts
of the synaptic filters) has been set by trial-and-error, so as
to obtain a satisfactory performance of the LRNN, measured

Table 2: Structure of the LRNN for the simulation of the reactor
neutron flux.

LRNN structure

Input nodes (bias included) 2

Hidden nodes (bias included) 6

Output nodes 1

Type of activation functions (hidden/output nodes) Sigmoidal

Lkjl
Hidden MA (k = 1, l = 1, j = 1, 2,. . ., 5) 12

Output MA (k = M = 2, l = 1, 2,. . ., 5, j = 1) 12

Ikjl
Hidden AR (k = 1, l = 1, j = 1, 2,. . ., 5) 10

Output AR (k = M = 2, l = 1, 2, . . ., 5, j = 1) 10

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
LRNN

Test transient: ramp forcing function

Figure 2: Comparison of the model-simulated normalized flux
(circles) with the LRNN-estimated one (crosses), for one sample
ramp transient of the test set.

in terms of a small root mean square error (RMSE) on the
training set. The best LRNN structure resulting from these
tests is summarized in Table 2.

3.3. Results

The generalization capability of the LRNN is verified on test
transients generated by forcing functions’ variations quite
different from those used in the training phase (e.g., ramp,
sinusoidal, and random variations).

The evolutions of the flux, normalized with respect to
the steady-state value Φ0, corresponding to three sample
transients of the test set are reported in Figures 2, 3, and
4. The LRNN estimate of the output (crosses) is in satis-
factory agreement with the actual transient (circles), even
for dynamics quite different from those used for the net-
work training. Notice the ability of the LRNN to deal with
both the short-term dynamics governed by the instantaneous
variations of the forcing function (i.e., the reactivity step)
and the long-term dynamics governed by Xe oscillations.

F. Cadini et al. 5

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
LRNN

Test transient: sine forcing function

Figure 3: Comparison of the model-simulated normalized flux
(circles) with the LRNN-estimated one (crosses), for one sample
sinusoidal transient of the test set.

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
LRNN

Test transient: random forcing function

Figure 4: Comparison of the model-simulated normalized flux
(circles) with the LRNN-estimated one (crosses), for one sample
random transient of the test set.

Furthermore, the computing time is about 5000 times lower
than that required by the numerical solution of the underly-
ing model (4). This makes the LRNN model very attractive
for real-time applications, for example, for control or diag-
nostic purposes, and applications for which repeated evalua-
tions are required (e.g., uncertainty and sensitivity analyses).

3.3.1. Comparison with two static neural networks

Two additional static neural network models have been ex-
amined for comparison: a buffered multilayer perceptron

x(t)

x(t)

x(t − 1)

x(t − 2)

x(t − 3)

Input buffer

Static
multilayer
perceptron

y(t)

B

B

B

Figure 5: Example of buffered MLP with input buffer.

(MLP), where tapped delay lines are applied at the net-
work inputs only, keeping the network internally static (see
Figure 5) [8], and a finite impulse response multilayer per-
ceptron (FIR-MLP), where temporal buffers are applied at
the input of each neuron; that is, all connection weights are
realized by linear FIR filters (see Figure 6) [8, 10, 25–27]. In
passing, notice that the buffered MLP and FIR-MLP can be
shown to be theoretically equivalent since the internal buffers
can be implemented as an external one [27]. However, to im-
plement an FIR-MLP as a buffered MLP, the first layers’ sub-
networks must be replicated with shared weights, and this in-
creases the complexity with respect to the case of considering
the internal buffer [27]. This leads to different architectures
of the buffered MLP and FIR-MLP in their actual implemen-
tations.

For a fair comparison, the structures of the static neural
networks considered have been selected so that they contain
approximately the same number of adaptable parameters as
does the IIR-LRNN described in Section 3.2. In particular,
the buffered MLP is chosen with fourteen hidden neurons
(bias included) and fifteen input delays, whereas the FIR-
MLP is selected with ten hidden neurons (bias included) and
linear FIR filters of twelfth order.

Three different learning algorithms have been used: stan-
dard static backpropagation (BP) for the buffered MLP, tem-
poral backpropagation (TBP) for the FIR-MLP, and recur-
sive backpropagation (RBP) for the IIR-LRNN. The infor-
mation concerning the structures and learning algorithms of
the three neural networks is summarized in Table 3.

The training procedures have been carried out on the
learning dataset described in Section 3.2, and their results
have been expressed in terms of the root mean square error
(RMSE) computed after each learning epoch. From Figure 7,
it is evident that the IIR-LRNN outperforms both the static
MLP and the FIR-MLP, showing better modelling capabil-
ities, faster training, and significantly higher accuracy; the
asymptotic RMSE values are 0.081 for the static MLP, 0.075
for the FIR-MLP, and 0.007 for the IIR-LRNN.

The representation and generalization capabilities of the
three neural architectures considered have then been com-
pared on a number of different test datasets. The results are
synthesized in Table 4 in terms of root mean square error

6 Science and Technology of Nuclear Installations

Table 3: Structures and learning algorithms of the three neural networks involved in the comparison (i.e., buffered MLP, FIR-MLP, and
IIR-LRNN).

Neural architecture Network structure Learning algorithm

Buffered MLP

Hidden nodes: 14 (bias included)

Static backpropagation (BP)Input delays: 15

Feedback delays: 0

FIR-MLP

Hidden nodes: 10 (bias included)

Temporal backpropagation (TBP)Hidden MA-AR: 12-0

Output MA-AR: 12-0

IIR-LRNN

Hidden nodes: 6 (bias included)

Recursive backpropagation (RBP)Hidden MA-AR: 12-10

Output MA-AR: 12-10

In
pu

ts

FIR

FIR

FIR

...xk−1
l (t) ykjl(t)

Bias

+ f k
skj (t) xkj (t)

(a)

xk−1
l (t − 1)

xk−1
l (t − 2)

xk−1
l (t − 3)

xk−1
l (t) ykjl(t)

+

FIR filter

B

B

B

(b)

Figure 6: (a) Model of the neuron for an FIR-MLP and (b) example of an FIR filter of fourth order.

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

R
oo

t
m

ea
n

sq
u

ar
e

er
ro

r

0 50 100 150 200

Learning epochs (nepoch)

Buffered MLP
FIR-MLP
IIR-LRNN

Figure 7: Convergence performance of the buffered MLP, FIR-MLP,
and IIR-LRNN applied to the reactor neutron flux estimation.

(RMSE), mean absolute error (MAE), and mean relative er-
ror (MRE):

RMSE =

√√√√√ 1
Nt·np

·
Nt∑

n=1

np∑

o=1

(
Φ̂n,o −Φn,o

)2
,

MAE = 1
Nt·np

·
Nt∑

n=1

np∑

o=1

∣∣Φ̂n,o −Φn,o
∣∣,

MRE = 1
Nt·np

·
Nt∑

n=1

np∑

o=1

Φ̂n,o −Φn,o

Φn,o
,

(7)

whereΦn,o and Φ̂n,o are the values of the normalized flux and
its neural estimate in the oth pattern of the nth transient, re-
spectively.

Owing to the richness of the network architecture, the
IIR-LRNN model exhibits consistently better performance
compared to the static models. For instance, considering the
ramp test set of Figure 2, the IIR-LRNN for the normal-
ized neutron flux provides an RMSE of 0.0049 and an MAE

F. Cadini et al. 7

Table 4: Values of the performance indices (RMSE, MAE, MRE) calculated over different test sets for the buffered MLP, FIR-MLP, and
IIR-LRNN trained to estimate the reactor neutron flux dynamics.

Buffered MLP

Errors

Forcing function Number of sequences RMSE MAE MRE

Step 80 0.0805 0.0523 0.0051

Ramp 80 0.0751 0.0503 0.0065

Sine 80 0.0763 0.0513 −0.0041

Random 80 0.0792 0.0520 0.0047

FIR-MLP

Errors

Forcing function Number of sequences RMSE MAE MRE

Step 80 0.0753 0.0487 0.0024

Ramp 80 0.0698 0.0435 0.0050

Sine 80 0.0705 0.0450 −0.0035

Random 80 0.0748 0.0482 0.0038

IIR-LRNN

Errors

Forcing function Number of sequences RMSE MAE MRE

Validation Step 80 0.0098 0.0060 −0.0003

Ramp 80 0.0049 0.0039 0.0037

Sine 80 0.0058 0.0051 −0.0011

Random 80 0.0063 0.0054 0.0021

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
Buffered MLP

Test transient: ramp forcing function

(a)

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
FIR-MLP

Test transient: ramp forcing function

(b)

Figure 8: Comparison of the model-simulated normalized flux (circles) with the one estimated by (a) the buffered MLP (crosses) and by
(b) the FIR-MLP (crosses) for one sample ramp transient of the test set.

of 0.0039. These values are significantly (7-8 times) lower
than those provided by both the buffered MLP (0.0751 and
0.0503, resp.) and the FIR-MLP (0.0698 and 0.0435, resp.);
these results are pictorially confirmed by a comparison of
Figures 2, 3, and 4 (IIR-LRNN) with Figures 8, 9, and 10
(buffered MLP and FIR-MLP), respectively.

Figures 8, 9, and 10 point out a key disadvantage of the
buffer and FIR approaches with respect to the locally recur-
rent one, that is, the limited past history horizon which pre-
vents modelling of arbitrary long-time dependencies. In this
view, the IIR-LRNN represents a generalization of the FIR-
MLP to the infinite memory case [28].

8 Science and Technology of Nuclear Installations

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
Buffered MLP

Test transient: sine forcing function

(a)

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
FIR-MLP

Test transient: sine forcing function

(b)

Figure 9: Comparison of the model-simulated normalized flux (circles) with the one estimated by (a) the buffered MLP (crosses) and by
(b) the FIR-MLP (crosses) for one sample sinusoidal transient of the test set.

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
Buffered MLP

Test transient: random forcing function

(a)

0.7

0.8

0.9

1

1.1

1.2

1.3

N
or

m
al

iz
ed

fl
u

x

0 400 800 1200 1600 2000

Time (min)

Truth
FIR-MLP

Test transient: random forcing function

(b)

Figure 10: Comparison of the model-simulated normalized flux (circles) with the one estimated by (a) the buffered MLP (crosses) and by
(b) the FIR-MLP (crosses) for one sample random transient of the test set.

4. CONCLUSIONS

The design, operation, and control of complex industrial sys-
tems, such as the nuclear, chemical, and aerospace ones, en-
tail the capability of accurately modelling the nonlinear dy-
namics of the underlying processes.

In this respect, artificial neural networks (ANNs) have
gained popularity as valid alternatives to the lengthy and bur-
densome analytical approaches for reconstructing complex
nonlinear and multivariate dynamic mappings.

In particular, recurrent neural networks (RNNs) are at-
tracting significant attention, because of their intrinsic po-
tentials in temporal processing, for example, time series pre-
diction, system identification and control, and temporal pat-
tern recognition and classification.

In this paper, an infinite impulse response locally recur-
rent neural network (IIR-LRNN) has been compared to a
finite impulse response multilayer perceptron (FIR-MLP)
and a conventional static MLP. The comparison has been
carried out with respect to the problem of estimating the

F. Cadini et al. 9

evolution of the neutron flux in a simplified nuclear reactor
model of literature, starting from the knowledge of reactivity
evolution only.

The ability of the trained IIR-LRNN to deal with both the
short-term dynamics, governed by the instantaneous vari-
ations of the forcing function (i.e., the reactivity), and the
long-term dynamics, governed by the Xe oscillations, is very
satisfactory and turns out to be the main reason for out-
performing the static neural modelling approaches of the
buffered MLP and FIR-MLP, in terms of both estimation ac-
curacy and generalization capabilities.

ACRONYMS AND SYMBOLS

ANN: Artificial neural network
RNN: Recurrent neural network
LRNN: Locally recurrent neural network
FIR: Finite impulse response
IIR: Infinite impulse response
MLP: Multilayer perceptron
RBP: Recursive backpropagation
NARX: Nonlinear autoregression with exogenous inputs
AR: Autoregressive
MA: Moving average
RTRL: Real-time recurrent learning
BPTT: Backpropagation through time
RMSE: Root mean square error
MAE: Mean absolute error
MRE: Mean relative error
k: Layer index (in particular, k = 0 and k = M denote

the input and the output layers, resp.)
Nk: Number of neurons in the kth layer (in particular,

N0 and NM denote the numbers of input and
output neurons, resp.)

J: Neuron index
t: Continuous time index
xkj (t): Output of the jth neuron of the kth layer at time t

(in particular, j = 0 refers to the bias inputs; note
that x0

j (t), j = 1, 2,. . ., N0, are the input signals)
Lkjl − 1: Order of the MA part of the synapse of the jth

neuron of the kth layer relative to the lth output of
the (k − 1)th layer (Lkjl ≥ 1 and Lkj0 = 1)

Ikjl: Order of the AR part of the synapse of the jth
neuron of the kth layer relative to the lth output of
the (k − 1)th layer (Ikjl ≥ 1 and Ikj0 = 1)

wk
jl(p): (p = 0, 1,. . ., Lkjl − 1) coefficients of the MA part of

the corresponding synapse (if Lkjl = 1, the synapse

has no MA part, the weight notation becomes wk
jl,

and wk
j0 is the bias)

νkjl(p): (p = 1, 2,. . ., Ikjl) coefficients of the AR part of the

synapse (if Ikjl=0, the synaptic filter is purely MA)
f k(·): Nonlinear activation function relative to the kth

layer
f ′k (·): Derivative of f k(·)
ykjl(t): Synaptic filter output at time t relative to the

synapse connecting the jth neuron of the kth layer
to the lth input

skj (t): “Net” input to the activation function of the jth
neuron of the kth layer at time t

dr(t): (r = 1, 2,. . ., NM) desired target of output node
r at time t

μ: Learning coefficient
α: Momentum coefficient
nepoch: Number of learning epochs during training
nrep Number of consecutive repetitions of each

transient during training
y(t): Generic system output vector at time t
x(t): Generic forcing functions vector at time t
Θ Generic set of adjustable parameters of a model
F(·): Mapping function of a process (possibly

nonlinear)
Φ(t): Normalized neutron flux at time t
Xe(t): Normalized xenon concentration at time t
I(t): Normalized iodine concentration at time t
ρ(t): Reactivity value at time t
Φ0: Nominal normalized neutron flux
Xe0: Nominal xenon concentration
I0: Nominal iodine concentration
ρ0: Nominal reactivity value
Δρ: Reactivity amplitude variation
Σ f : Effective fission macroscopic cross-section

(cm−1)
σXe: Effective xenon microscopic cross-section

(cm2)
γXe: Xenon fission yield
γI : Iodine fission yield
λXe: Xenon decay rate (s−1)
λI : Iodine decay rate (s−1)
γ: Lumped temperature feedback coefficient

(cm2s)
C: Lumped dimensional conversion factor of

xenon concentration to reactivity
Λ: Effective neutron mean generation time (s)

Φ̂(t): Neural estimate of the normalized neutron flux
at time t

Nt : Number of transients in the
training/validation/test sets

T: Temporal length of a transient
Δt: Time step for the numerical simulation of a

transient
np: Number of patterns in a

training/validation/test transient (np = T/Δt)
n: Transient index
o: Pattern index
Ts: Steady-state time interval (in step and ramp

forcing functions)
Tv: Variation time interval (in ramp forcing

functions)
F: Oscillation frequency (in sinusoidal forcing

functions)
Φn,o: Normalized flux value in the oth pattern of the

nth transient

Φ̂n,oL: Neural estimate of the normalized flux value in
the oth pattern of the nth transient

10 Science and Technology of Nuclear Installations

REFERENCES

[1] M. Marseguerra and E. Zio, “Monte Carlo approach to PSA
for dynamic process systems,” Reliability Engineering & System
Safety, vol. 52, no. 3, pp. 227–241, 1996.

[2] R. Myung-sub, C. Se-woo, and C. Soon-heung, “Thermal
power prediction of nuclear power plant using neural network
and parity space model,” IEEE Transactions on Nuclear Science,
vol. 38, no. 2, pp. 866–872, 1991.

[3] R. Myung-sub, C. Se-woo, and C. Soon-heung, “Power predic-
tion in nuclear power plants using a back-propagation learn-
ing neural network,” Nuclear Technology, vol. 94, no. 2, pp.
270–278, 1991.

[4] A. G. Parlos, A. F. Atiya, and K. T. Chong, “Nonlinear identi-
fication of process dynamics using neural networks,” Nuclear
Technology, vol. 97, no. 1, pp. 79–96, 1992.

[5] D. R. Seidl and R. D. Lorenz, “A structure by which a recurrent
neural network can approximate a nonlinear dynamic system,”
in Proceedings of International Joint Conference on Neural Net-
works (IJCNN ’91), vol. 2, pp. 709–714, Seattle, Wash, USA,
July 1991.

[6] H. T. Siegelmann and E. D. Sontag, “On the computational
power of neural nets,” Journal of Computer and System Sci-
ences, vol. 50, no. 1, pp. 132–150, 1995.

[7] K.-I. Funahashi and Y. Nakamura, “Approximation of dynam-
ical systems by continuous time recurrent neural networks,”
Neural Networks, vol. 6, no. 6, pp. 801–806, 1993.

[8] S. Haykin, Neural Networks: A Comprehensive Foundation,
IEEE Press, New York, NY, USA, 1994.

[9] T. Adali, B. Bakal, M. K. Sonmez, R. Fakory, and C. O. Tsaoi,
“Modelling core neutronics by recurrent neural networks,” in
Proceedings of World Congress on Neural Networks (WCNN
’95), vol. 2, pp. 504–508, Washington, DC, USA, July 1995.

[10] D. Back, E. A. Wan, S. Lawrence, and A. C. Tsoi, “A unifying
view of some training algorithms for multilayer perceptrons
with FIR filter synapses,” in Proceedings of the 4th IEEE Work-
shop on Neural Networks for Signal Processing (NNSP ’94), pp.
146–154, Ermioni, Greece, September 1994.

[11] S. Hochreiter and J. Schmidhuber, “Long short-term mem-
ory,” Neural Computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[12] B. A. Pearlmutter, “Gradient calculations for dynamic recur-
rent neural networks: a survey,” IEEE Transactions on Neural
Networks, vol. 6, no. 5, pp. 1212–1228, 1995.

[13] A. G. Parlos, K. T. Chong, and A. F. Atiya, “Application of the
recurrent multi-layer perceptron in modelling complex pro-
cess dynamics,” IEEE Transactions on Neural Networks, vol. 5,
no. 2, pp. 255–266, 1994.

[14] G. V. Puskorius and L. A. Feldkamp, “Neurocontrol of non-
linear dynamical systems with kalman filter trained recurrent
networks,” IEEE Transactions on Neural Networks, vol. 5, no. 2,
pp. 279–297, 1994.

[15] M. Boroushaki, M. B. Ghofrani, and C. Lucas, “Identification
of a nuclear reactor core (VVER) using recurrent neural net-
works,” Annals of Nuclear Energy, vol. 29, no. 10, pp. 1225–
1240, 2002.

[16] M. Boroushaki, M. B. Ghofrani, C. Lucas, and M. J. Yazdan-
panah, “Identification and control of a nuclear reactor core
(VVER) using recurrent neural networks and fuzzy systems,”
IEEE Transactions on Nuclear Science, vol. 50, no. 1, pp. 159–
174, 2003.

[17] M. Boroushaki, M. B. Ghofrani, C. Lucas, and M. J. Yazdan-
panah, “An intelligent nuclear reactor core controller for load

following operations, using recurrent neural networks and
fuzzy systems,” Annals of Nuclear Energy, vol. 30, no. 1, pp.
63–80, 2003.

[18] K. S. Narendra and K. Parthasarathy, “Identification and con-
trol of dynamical systems using neural networks,” IEEE Trans-
actions on Neural Networks, vol. 1, no. 1, pp. 4–27, 1990.

[19] P. Campolucci, A. Uncini, F. Piazza, and B. D. Rao, “On-
line learning algorithms of locally recurrent neural networks,”
IEEE Transactions on Neural Networks, vol. 10, no. 2, pp. 253–
271, 1999.

[20] A. C. Tsoi and A. D. Back, “Locally recurrent globally feedfor-
ward networks: a critical review of architectures,” IEEE Trans-
actions on Neural Networks, vol. 5, no. 2, pp. 229–239, 1994.

[21] F. Cadini, E. Zio, and N. Pedroni, “Simulating the dynamics
of the neutron flux in a nuclear reactor by locally recurrent
neural networks,” Annals of Nuclear Energy, vol. 34, no. 6, pp.
483–495, 2007.

[22] J. Chernick, “The dynamics of a xenon-controlled reactor,”
Nuclear Science and Engineering, vol. 8, pp. 233–243, 1960.

[23] R. Williams and D. Zipser, “A learning algorithm for continu-
ally running fully recurrent neural networks,” Neural Compu-
tation, vol. 1, pp. 270–280, 1989.

[24] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning
internal representations by error propagation,” in Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cog-
nition, D. E. Rumelhart and J. L. McClelland, Eds., MIT Press,
Cambridge, Mass, USA, 1986.

[25] D. Back and A. C. Tsoi, “FIR and IIR synapses, a new neural
network architecture for time series modelling,” Neural Com-
putation, vol. 3, no. 3, pp. 375–350, 1991.

[26] N. Benvenuto, F. Piazza, and A. Uncini, “Comparison of
four learning algorithms for multilayer perceptron with FIR
synapses,” in Proceedings of IEEE International Conference on
Neural Networks (ICNN ’94), vol. 1, pp. 309–314, Orlando, Fla,
USA, June-July 1994.

[27] E. A. Wan, “Temporal backprogagation for FIR neural net-
works,” in Proceedings of International Joint Conference on Neu-
ral Networks (IJCNN ’90), vol. 1, pp. 575–580, San Diego, Calif,
USA, June 1990.

[28] P. Frasconi, G. Gori, and M. Soda, “Local feedback multi-
layered networks,” Neural Computation, vol. 4, pp. 120–130,
1992.

	Introduction
	Locally Recurrent Neural Networks
	The IIR-LRNN architecture and forward calculation
	The recursive backpropagation (RBP) algorithm for batch training

	The LRNN model for the simulation of neutron flux dynamics
	The dynamic system
	The LRNN training
	Results
	Comparison with two static neural networks

	Conclusions
	ACRONYMS AND SYMBOLS
	REFERENCES

