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Abstract — The aim of this paper is to 

propose a new algorithm for multilevel stabilizer 
of large scale systems. In two level stabilizer 
method, a set of locally stabilizers for the 
individual subsystems in a completely 
decentralized environment is designed. The 
solution of the control problem involves 
designing of a global controller on a higher 
hierarchical level that provides corrective signals 
to account for interconnections effect. The 
principle feature of this paper is to reduce 
conservativeness in global controller design. 
Here the key point is to reduce the effect of 
interactions instead of neutralized them. In fact 
our idea unlike prior methods does not ignore the 
possible beneficial aspects of the interactions and 
does not try to neutralize them.  

 
I. INTRODUCTION 

There are different methods for control of 
large scale systems such as two-level method, 
decentralized and centralized control and etc. In 
this paper we have focused on the two-level 
method. The idea of this method that introduced 
by Siljack [1] is shown in Fig. 1  

In present method, each control signal 
consists of two segments: local and global 
controller signals. Local controllers are used to 
control each subsystem, ignoring the interactions. 
A global controller may be applied to minimize 
the effect of interactions and improve the 
performance of the overall system. 

Multilevel control offers advantages in the 
following situations. 

1) A decentralized approach will be effective 
if the large scale system is composed of weakly 
coupled subsystems [2]-[4], or a decomposition 
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Fig. 1. A multi-level structure. 
 
and rearrangement of variables are used to 
achieve weak coupling as is the case of sparse 
systems [5]. In situations when the subsystems 
are strongly connected and cannot be simply 
reconstituted to reduce the strength of the 
couplings, the assumption of weak coupling may 
produce gross inaccuracies of the obtained 
results. 

2) Since a large-scale system will invariably 
be an interconnection of several subunits, one of 
the important phenomena that must be accounted 
for in the design of controllers and estimators is 
the occurrence of structural perturbations, i.e., 
changes in the interconnection pattern within the 
system during operation [6]. When a system is 
expected to undergo structural perturbations, the 
classical control techniques do not provide a 
satisfactory solution of the control problem and 
may results in a closed-loop system which is 
unstable. 

3) Dealing with large systems, centralized 
controller design methods are either 
uneconomical because of an excessive 
computation time required, or impossible due to 
excessive computer storage needed. 

4) Hierarchical coordinating methods, 
though conceptually very simple, require iterative 
solution procedures, which often lead to 
convergence difficulties [7]. 



 

2 
 

Most of the researches adopting the 
philosophy that interactions are non beneficial 
(all of the interactions are toward deteriorating 
system objectives). Then the global controller is 
designed to neutralize all of them [8], [9]. Indeed 
it is assumed that: 

10 ( )T TH BM M B B B H      

where H, B and M are representing 
interaction matrix, system input and global 
controller respectively. By selecting this structure 
for global controller there will be some problems. 
 The ideal effect of two level control 

(neutralizing the effect of interactions) can’t 
be obtained unless the rank of the composite 
matrix [ | ]B H  is equal to the rank of the 
matrix B itself. In case of inequality some 
performance criteria may not be satisfied. 

 Even in case of rank equality, is it necessary 
to neutralize the effect of interactions 
completely? Is there a way not to neutralize 
the interactions? Are all of them non 
beneficial? Maybe there is an interaction that 
is helping system through its objectives. And 
maybe we can achieve the goals and desired 
performances or also improving them by 
assuming another structure for matrix M (see 
e.g. [10]). 

 Also not trying to neutralize all of the 
interactions would lead to less 
conservativeness in global controller design.  

 
As we mentioned although the idea of multi-

level control appeared very early, no significant 
development has been made in this research area 
for a long time. Recently, Duan et al. presented a 
series of significant results on cooperative control 
of linear and nonlinear systems [11-14], and 
shown that unstable subsystems can form a stable 
large-scale system through appropriate 
interaction and cooperation feedback controllers. 

In this paper, two new algorithms to design a 
global controller for large scale system are 
developed. We shall make use of different idea to 
develop an alternative multilevel scheme, which 
unlike prior methods, does not ignore the 
possible beneficial aspects of the 
interconnections and does not try to neutralize 
them. Therefore the design will not be much 

conservative. Furthermore all of these problems 
which are explained earlier will be solved by 
using these algorithms. Also it could be possible 
to use this idea for innovation in control design 
for systems which is including subsystems 
interaction. 

This paper is organized as follows. In section 
II system description, required definition and 
lemmas are described. Algorithms for designing 
two-level stabilizer are introduced in section III. 
The application of design methods in three-
region energy resources system and simulation 
results will be presented in section IV. Finally 
Concluding remarks follow in Section V. 
 

II. SYSTEM DESCRIPTION AND 
PRELIMINARIES 

Let a discrete large scale system that 
contains two subsystems be described as follow: 

1 12 1
1

21 2 2

0
,

0i i i

A A B
x x u

A A B

   
    
   

 
 

(1) 

 

1 1( , )A B  and 2 2( , )A B  are respectively state-space 

matrices of subsystems (1) and (2), 12A  and 21A  

are their interaction matrices.  
Throughout this paper, following assumptions 

are made. 
Assumption 1. Both subsystems are controllable. 
Assumption 2. Each subsystem is stabilized with 
a local controller (i.e. 1A  and 2A  are stable). We 

will stabilize the system using a state-feedback 
(i.e. i gu k x ). 

We will refer to existing several methods to 
design local stabilizers and do not go further 
discus on this subject.  

The objective of this work is to design the 
two-level stabilizer such that: 
Objective 1. Overall closed loop system is 
stable. According to assumptions, we know two 
above subsystems are stable but the system (1) 
may be unstable because of being interacted. 
Objective 2. Despite of prior methods, we don’t 
want the global controller neutralize the effect of 
interactions and to consider the possible 
beneficial aspects of the interconnections effect. 
 
Definition1: Polynomial: 

2
0 1 2 ,( ) ... n

nP z d d z d z d z      
(2) 
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is Schur stable, if and only if [15] 

(1) 0,P   
( 1) ( 1) 0,n P    
det( ( )) 0.F d   

 
(3)

Where ( )F d  is a ( 1) ( 1)n n    matrix such as: 

1 3 2 0

4 0 3 1

0 4 1 3

0 1 3 2

0

( ) .

0

n n

n

n n n n

n n n

d d d d d

d d d d d

F d

d d d d d

d d d d d



  

 

 
   
 
    
     




   



 

 
 

(4)

 
Lemma 1: Given any real matrices , ,A B C  

and D of appropriate dimensions. Then the 
following inequality holds 

-1

-1

det det( ) det( -  )

det( ) det( -  ).

A B
A D CA B

C D

D A BD C

 
  

 
 

 

 
 

(5) 

Lemma 2. Given a real matrix A. if A is 
Schur stable then [14] 

det( - ) 0.I A   (6) 

Lemma 3. Let 1 12

21 2

A A
A

A A
 
 
  

 . If there are 

two matrixes such 12A  and 21A  in order to 

decompose 12A  and 21A  like below 

'
12 12 2( - ),A A I A  

'
21 21 1( - ),A A I A  

(7) 
(8) 

Then the below equality is hold: 

' '
1 2 21 12

det( - )

det( -  ) det( - ) det( -  ).

I A

I A I A I A A  
 

 
(9) 

Proof: considering lemma 1, the following 
equation is obtained: 

1
1 2 21 1 12det( - ) det( -  ) det( - - ( -  )  ),I A I A I A A I A A 

by substituting (7) and (8) in above equation we 
have: 

1

' 1 '
2 21 1 1 12 2

det( - ) det( -  )

det( - -  ( -  ) ( -  )   ( - )),

I A I A

I A A I A I A A I A

 

 

From simple calculation:  

' '
1 2 21 12

det( - )

det( -  ) det( - ) det( -  ),

I A

I A I A I A A    
That the proof is achieved completely. 

 
III. MAIN RESULTS 

According to lemma 3 if large scale system 
(1) is Schur stable, then det( - ) 0I A  . From 

assumption 2 the two subsystems 1A  and 2A  are 

stabilized therefore 1det( -  ) 0I A   and 

2det( -  ) 0I A  . Thus, it should be 
' '
21 12det( -  ) 0I A A   to guaranty stability of (1) 

logically. This condition is a necessary but 
insufficient condition. 

Now by replacing nonzero interactions 
(nonzero elements of 12A  and 21A  matrices) with 

parameters such as 1 2, ,...a a  , and using (7) and 

(8), we have the following equation: 
' '
21 i 12( ) det( - (a ) ( )) 0 , 1,2,...i ia I A A a i   

 

(10)

By solving equation (10), some constraints 
on interactions can be obtained. In this step, in 
order to satisfy attained constraints and finally 
stabilizing closed loop system, we have to design 
an suitable global controller. 
The global controller is obtained such as: 

, - .gBK F F H H    (11) 

Where gK  is the global controller gain matrix, 

1

2

0

0

B
B

B

 
  
 

 is the global input matrix, 

12

21

0

0

A
H

A

 
  
 

 represents interaction matrix and 

H  is the modified interaction matrix. In fact, H  
is obtained with replacing the nonzero elements 
of H  with values calculated from (10). We can 
calculate the global controller from the below set 
of LMIs: 

( )
0,

( )

T

g

g

S BK F

BK F I

 




 
 
 

 
 

(12) 
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0,
I S

S I


 
 
 

 
 

(13) 
 

Where β is a sufficiently small positive scalar and 

S  is a positive definite matrix. 
 

 
As a conclusion, we can use following 

algorithm for designing the global controller.  
 
Algorithm 1: Designing the global 

controller for time-discontinuous large scale 
systems. 

Step 1. Replace the nonzero elements of 12A  

and 21A  matrices with some parameters such as 

1 2, ,...a a  

Step 2. Calculate 12A  and 21A  Matrices using 

(7) and (8), in form of a function of 1 2, ,...a a   

Step 3. Identify 1 2, ,...a a  in coordinate with 

equation (10). 
Step 4. Compute the global controller from 

(11).  
Step 5. Make closed loop system by 

replacing (11) with (1) and then test its stability. 
 

Remark 1. Lemma 3 introduces a necessary but 
insufficient condition; in fact if det( - ) 0I A   we 
can’t result stability, because this determinant is 
larger than zero when all system eigenvalues are 
in the unit circle or even number of eigenvalues 
are out of the unit circle. Therefore, due to being 
algorithm 1 in basis of this lemma, it is always 
impossible to attain solution from that and we 
must apply it when large scale system has odd 
number of unstable poles before designing global 
controller.  
 
Remark 2. 12A  and 21A  exist if 1( - )I A  and 

2( - )I A  are nonsingular. 

 
Remark 3. Algorithm 1 has been proposed for 
the large scale systems with two subsystems. 
This algorithm is applicable for systems with 
more than two subsystems considering of special 
structure for main system. For instance, in case of 
following three subsystems and every similar 
system with larger number of subsystems. 

1 12 1

1 21 2 2

3 3

0 0 0

0 0 0 .

0 0 0 0
i i i

A A B

x A A x B u

A B


   
       
      

 

 
 

(14) 
 

In fact if the main system has two dependent and 
some independent subsystems, we can apply this 
algorithm. 
Remark 4. Let’s now consider the system 
 

1 12 13 1

1 21 2 23 2

31 32 3 3

0 0

0 0 ,

0 0
i i i

A A A B

x A A A x B u

A A A B


   
       
      

 

 
(15) 

 

 
To stabilize it, one can use algorithm 2. The 

aim is to design a global controller to stabilize 
the closed-loop system. 

 
Algorithm 2 
Step 1: consider subsystem 

 

1 12 1
1

21 2 2

0
,

0i i i

A A B
x x u

A A B

   
    
   

    
 

(16) 

From algorithm 1 calculate the necessary 
conditions for the stability of subsystem (16). 

Step 2: Calculate the modified interaction 
matrices 12H  and 21H  for subsystem (16) and 

create below system. 

1 12 13 1

1 21 2 23 2

31 32 3 3

0 0

0 0 ,

0 0
i i i

A H A B

x H A A x B u

A A A B


   
       
     




 
(17) 

 
 

Assume that system (17) is composed of two 
independent subsystems like: 

1

11 1 11 12

221 2

0
,

0i i i

BA H
x x u

BH A

   
    

  


  

 
(18) 

2 2 2
1 3 3 ,i i ix A x B u    (19) 

Systems (18) and (19) are stable, then any 
instability in (17) is because of 13 23 31, ,A A A  and 

32A  interaction matrices. Go to step 3. 

Step 3: calculate stability conditions on 

13 23 31, ,A A A  and 32A  using algorithm 1. 

Step 4: Compose the global controller from 
modified interactions as in the following: 
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12 13 12 13

21 23 21 23

31 32 31 32

, -

0 0

0 0 .

0 0

gBK F F H H

H H A A

H H A A

H H A A

 

   
       
     



 
 
 

 

 
 
 

(20) 
 

Now test the stability of closed-loop global 
system. 

 
IV. SIMULATION RESULTS 

In this section the algorithm 1 is simulated to 
demonstrate its performance. Consider a three-
region energy resources system as shown in Fig 2 
[16].  

This system can be described by following 
discrete state space: 

1 12 1

1 21 2 2

3 3

0 0 0

0 0 0 ,

0 0 0 0
i i i

A A B

x A A x B u

A B


   
       
      

 
(21) 

where 

1 1

1 1 1 1

A 0 .5 .75 , 0 ,

.75 .5 1 1

B

   
       
        

2 2

1 .5 .25 0 0

0 .5 0 .2 1
, ,

.5 0 .5 .25 1

0 .2 .25 .25 0

A B

   
   
    
   
   
     

3 3

1 0.5 0.2 0

A 0.5 0.25 0.2 , 1 ,

0.3 0.2 0.5 1

B

   
       
      

 

12 21

0 0 1
0 0 0 0

0 .5 0
0 .5 0 0 , ,

0 0 0
1.5 0 0 0

0 0 0

A A

 
   
       
    

 
 

 
 
 
 
 
 
 
 
 

(22)
 

It’s composed of three coupled subsystems. 
Here the aim is to stabilize it, using proposed 
algorithm 1. 
Step 1: By computing eigenvalues of each 
subsystem, we can observe that all of them are 
unstable. First we should set interactions to zero 
and stabilize every subsystem with local 

controllers. This part is not presented in 
algorithm 1 because of stability assumption 2. 
 

REGION
3

REGION
1

REGION
2

RESERVOIR

OIL

COAL

GAZ

URANIUM

RIVER

Fig. 2. A three-region energy resources system. 
 
Stabilizing subsystems 

The open loop eigenvalues of Subsystems are:  

1

2

3
i

2.1622,0.1689 0.3406 ,   

1.2207, -0.0324,0.5309  0.1364 ,

1.3618 ,0.3975,0.0092,

i

i

i

i







 

 



 

(23) 

where j
i  represents eigenvalues of jth 

subsystem. Since they are unstable, we can 
stabilize them with static state feedback: 

1 1 [0.7419 0.7715 1.2425] ,u K x x 

2 2 [0.7381    0.5462    0.3468    0.22] ,u K x x 

3 3 [ 1.1280    0.5911    0.5055] .u K x x   

 
(24)

Now substitute 1 2,A A  and 3A  for each 

subsystem closed-loop matrices 1 2,
clclA A  and 3cl

A

and compose below matrix: 

1 12

21 2

3

0

0 ,

0 0

cl

cl

cl

A A

A A

A

 
 
 
 
  

 

 
(25)

Where 
cljA  is the closed-loop matrix of each 

subsystem i.e. 
clj j j jA A B K   and ( ) 1

cli jA  . 

The eigenvalues of the new system (25) are: 
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1.5889 , -0.7902 ,0.7795 , -0.3920 ,0.2960 ,

       0.2539,0.1364 ,0.6284,-0.0098 ,0.0348
i 

 
 

where we can infer that it is unstable. 
Therefore source of instability is interactions. 
Since there is no connection between subsystem 
(3) and set of subsystems (1) and (2), this 
subsystem doesn’t affect the overall stability and 
we can use Algorithm 1. 

 
Step 2: Replace the nonzero elements of 12A  

and 21A  matrices with some parameters such as 

1 2, ,...a a  : 

3

4
12 1 21

2

0 0
0 0 0 0

0 0
0 0 0 ,  ,

0 0 0
0 0 0

0 0 0

a

a
A a A

a

 
   
       
    

 

 

 
 

(26) 

 
Step 3: Calculate 12A  and 21A  Matrices 

using (7) and (8), in form of a function of 

1 2, ,...a a  : 

'
12 1 1 1 1

2 2 2 2

0 0 0 0

2.3193 0.2588 0.8022 0.039

2.9984 1.234 0.3745 0.0179

A a a a a

a a a a

 
     
  

3 3 3

4 4 4'
21

.0066 .3263 .6066

.0099 1.5105 .9098
,

0 0 0

0 0 0

a a a

a a a
A

 
 
 
 
 
 

 

 
(27) 

 
 

(28) 

 
Step 4: Identify a1, a2,… in coordinate with 

equation (10). To satisfy equation (10), first we 
should calculate: 

21 12

1 4 2 4 1 3

2
2 3 1 2 3 4 1 4 3

2
2 3 4

det( )

1 0.3909 1.1227 0.7566

1.8188 4.4128 0.0001

.0002 ,

I A A

a a a a a a

a a a a a a a a a

a a a

  
  

  



 

 
(29) 

There are different choices to meet (10). One 
of them e.g. is 1 2 4 30.5, 1a a a a    . Then we 

can form H  as: 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0.5 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0.5 0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

H

 
 
 
 
 
 
 

  
 
 
 
 
 
 
  


 

 
 
 

 
(30) 

 
Step 5: Computing the global controller 

from (11). Where: 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 1.5 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

F H H

 
 
 
 
 
 
 

    
 
 
 
 
 
 
  



 

 
 
 
 
(31) 

 
Step 6: We can now form closed-loop 

system and then test its stability. 
Note that all of its eigenvalues are in unit 

circle. 
As we expected this controller reduces 

conservativeness. Other previous methods ideally 
lead to a controller with 4 nonzero elements in 
their F matrix as it is illustrated in the following 
matrix: 

0 0 0 0 0 0 0 0 0 0

0 0 0 0 .5 0 0 0 0 0

0 0 0 1.5 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 .5 0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

F

 
  
 
  
 

  
 
 
 
 
 
 
  

 

 
 
 
 

(32) 

 
It leads to neutralizing all the interactions. It 

is worth mentioning that selected values for 
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, 1,...,4ia i   are not optimal. As it is mentioned 

later there are different choices for 1 2, ,...a a  . Fig. 

3, shows possible values of a2, a3 and a4 by 
initializing parameter a1 with several values. 

 

a) 1 0a   

b) 
1 1a   

c) 
1 2a   

d) 
1 3a   

Fig. 3. Different choices of 
2 3 4, ,a a a  in return of 

1a . 

 
 

V. CONCLUSION 
In this paper, we addressed stabilizing two-level 
control for discrete time linear large scale 
systems. Then we developed two new algorithms 
to design a global controller for these systems. 
This approach led to conservatism reduction. As 
it is stated, there is different solution for 
algorithms. One can select a solution by 
optimality criteria that are not presented in this 
paper. We exploit one of these solutions and 
applied to a three-region energy resources 
system. The effectiveness of the design was 
shown in design results. Our future work intends 
considering conservatism reduction in H∞ control 
of large scale systems.  
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