迷宫流道内沙粒-壁面碰撞模拟与 PTV 实验*

葛令行 魏正英 唐一平 吴松坡 卢秉恒 (西安交通大学机械制造系统工程国家重点实验室,西安 710049)

【摘要】 以单个沙粒为对象,研究了沙粒与灌水器流道壁面的碰撞过程。采用计算流体力学 CFD 数值模拟 方法,分析了沙粒与壁面碰撞反弹系数 R。对灌水器抗堵性能的影响。结果表明,反弹系数对灌水器抗堵性能影响 较大。利用粒子跟踪测速技术 PTV,观测了复杂迷宫流道内沙粒与壁面碰撞过程,测定了不同压力点下矩形流道 的碰撞反弹系数,为灌水器数值模拟时反弹系数的设定提供了实验依据,从而可以更加准确评估灌水器抗堵性能。 关键词:灌水器 迷宫流道 堵塞 碰撞反弹系数 粒子跟踪测速技术

中图分类号: S275.6 文献标识码: A

Simulation and Experimental Analysis on Sand-wall Collisions in Labyrinth Channel Emitter

Ge Lingxing Wei Zhengying Tang Yiping Wu Songpo Lu Bingheng (State Key Laboratory of Manufacturing System Engineering, Xian Jiaotong University, Xi' an 710049, China)

Abstract

The process of sand-wall collision was performed to analyze the relationship between the collision and clogging of labyrinth channel emitter. First, the effect of R_c on pass rate of sand was analyzed using the CFD method. It was found that R_c has a great impact on the anti-clogging characteristics of labyrinth emitter and should be determined through experiments. In order to provide the experimental basis for the setting of sand R_c in numerical simulation, experiments of PTV were carried out for the determination of R_c under various pressure and different structure of labyrinth channel emitter, so that the anti-blocking performance can be more accurately evaluated.

Key words Emitter, Labyrinth channel, Clogging, Resilience coefficients, Particle tracking velocimetry

引言

灌水器堵塞包括物理堵塞、化学堵塞及生物堵 塞^[1],大多是由固体沙粒的沉积或藻类的产生而造 成的^[2]。在研究灌水器内部流场及灌水器堵塞时, 众多学者忽略了沙粒与壁面碰撞后的能量损失。通 过可视化实验观测发现,灌溉水中的沙粒与灌水器 流道壁面发生碰撞,一部分沙粒粘附于流道壁面,也 有一部分沙粒与壁面碰撞过程中产生动量损失过 大,导致沙粒发生沉积,灌水器发生堵塞。因此,本 文对迷宫流道内沙粒-壁面碰撞状况加以研究。

目前,对于水沙两相流方面有关介质中颗粒运动的研究很不完善,已有的研究成果基本上都是针对宏观水体依靠实验手段获得的。Wang^[3]对非粘性颗粒斜槽流动实验的结果表明,颗粒在水中的碰撞弹性系数明显小于在空气中的;夏建新等^[4~5]对水沙流中离散颗粒流动应力关系进行研究,引人颗粒弹性恢复系数,但其研究对象为非粘性颗粒,而没有对粘性泥沙颗粒与流道壁面的碰撞进行研究。气固两相流颗粒碰撞方面,张文斌^[6]等利用 PTV

收稿日期: 2008-09-25 修回日期: 2009-02-16

^{*}国家自然科学基金资助项目(50675172)、全国博士学位论文作者专项资金资助项目(200740)和长江学者和创新团队发展计划资助项目 (IRT0646)

作者简介: 葛令行,硕士生,主要从事微细结构快速设计与制造研究, E-mail: gelingxing@126.com

通讯作者:魏正英,教授,博士生导师,主要从事微细结构快速设计与制造研究,E-mail: zywei@mail. xjtu. edu. cn

47

(particle tracking velocimetry)技术研究了 6 mm 左 右的钢球之间的碰撞过程,并测得钢球之间的碰撞 系数为 0.737。饶江^[7]等研究了直径在 13~58 μm 的玻璃球在一个水平直通道和三个斜通道内固体沙 粒沿着主气流的方向运动时与通道壁面发生碰撞的 特性,测得反弹系数在 0.55~0.75 之间,并且碰撞 颗粒速度越大,反弹系数越小。本文采用粒子跟踪 测速技术,对迷宫流道内沙粒-壁面碰撞反弹系数进 行测定。

1 沙粒与壁面碰撞 CFD 分析

计算流体力学(computational fluid dynamics,简 称 CFD) 数值模拟在分析、预测灌水器内部流场方 面应用非常广泛,但在对灌水器进行水-沙两相流数 值模拟时,其关键参数——沙粒与流道壁面的碰撞 反弹系数的设定无实验依据。在灌水器 CFD 数值 模拟时,跟踪一定数量的沙粒,把未发生沉积沙粒的 数量占跟踪沙粒总量的比例定义为沙粒在灌水器中 的通过率,沙粒通过率在一定程度上反映了灌水器 的抗堵能力。选择矩形、梯形、三角形流道作为数值 模拟对象,设置不同的碰撞反弹系数,观察反弹系数 对沙粒通过率的影响。由于过滤后的灌溉水中沙粒 体积分数远小于10%,因此,选择离散相模型研究 沙粒与壁面的碰撞情况。取灌水器正常工作时进口 压力 60 kPa 为计算进口压力,出口压力为零。考虑 重力作用,设离散相沙粒密度2500 kg/m3。进口处 离散相沙粒的入射速度取为进口处水流的最大流 速,收敛精度为10⁻⁴。不同结构形式灌水器的反弹 系数与沙粒通过率关系如图1所示。

由图1可以看出,3种流道中沙粒的通过率都随着碰撞反弹系数的增大而增大。其中矩形流道反 弹系数为0.5和0.8时的通过率相差大于20%。 因此,反弹系数对灌水器模拟结果影响较大。

由以上分析可知,碰撞反弹对灌水器堵塞及其 数值模拟结果影响较大,需对沙粒与流道壁面的碰 撞状况进行研究,为更加准确的评价灌水器抗堵性 能提供依据。

2 迷宫流道内沙粒与壁面碰撞理论模型

灌水器流道内的沙粒在流动过程中,会产生沙 粒间的碰撞及沙粒与壁面的碰撞。当沙粒的体积分 数小于 0.1%时,沙粒之间的相互作用可忽略^[8]。 在滴灌带的实际应用中由于前端的过滤装置已经清 除掉了灌溉水中的大部分泥沙,沙粒在水中的体积 分数小于 0.1%,在此不考虑沙粒间的相互碰撞。

沙粒在壁面发生弹性碰撞,动量发生变化,变化 量由碰撞反弹系数确定。反弹系数 R_c (resilience coefficient)又可分解为法向反弹系数 R_c 和切向反 弹系数 R_{ct} 。 R_c 反映沙粒在壁面发生碰撞后,垂直 于壁面方向的动量变化; R_c 反映沙粒在壁面发生碰 撞后,沿壁面切向方向的动量变化。沙粒在梯形和 矩形流道中与壁面碰撞过程的放大模型如图 2、图 3 所示。t时刻沙粒运动到点 $A(X_1, Y_1), t + \Delta T$ 时 刻沙粒与壁面在点 $B(X_2, Y_2)$ 发生碰撞, $t + 2\Delta T$ 时刻沙粒反弹到点 $C(X_3, Y_3)$ 。

图 2 沙粒与梯形流道壁面碰撞模型 Fig. 2 Sand-wall collision model of trapezia channel

沙粒与壁面碰撞过程中,通过 PTV 技术对沙粒 在 $t \downarrow t + \Delta T \downarrow t + 2\Delta T$ 时刻的位置进行跟踪观测。 由于实验中时间间隔 ΔT 非常小(0.5 ms),可以用 相邻两点连线近似为沙粒轨迹,则沙粒碰撞前的速 度可以近似为 $v_1 = l_{AB}/\Delta T$,沙粒碰撞后的速度近 似为 $v_2 = l_{BC}/\Delta T$ 。

对沙粒速度进行切向、法向分解,根据几何关 系,就可以得到沙粒切向反弹系数、法向反弹系数、 入射角 α 及反射角β。由几何关系得 (2)

$$l_{AB} = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$
(1)

 $l_{BC} = \sqrt{(X_3 - X_2)^2 + (Y_3 - Y_2)^2}$ 把碰撞前后沙粒的速度进行分解:

碰撞前切向速度

$$v_{1t} = v_1 \cos\alpha = \frac{l_{AB} \cos\alpha}{\Delta T} \tag{3}$$

碰撞前法向速度

$$v_{1n} = v_1 \sin \alpha = \frac{l_{AB} \sin \alpha}{\Delta T} \tag{4}$$

碰撞后切向速度

$$v_{2t} = v_2 \cos\beta = \frac{l_{BC} \cos\beta}{\Delta T} \tag{5}$$

碰撞后法向速度

$$v_{2n} = v_2 \sin\beta = \frac{l_{BC} \sin\beta}{\Delta T} \tag{6}$$

切向反弹系数

$$R_{\rm ct} = \frac{v_{2t}}{v_{1t}} = \frac{l_{BC} \cos\beta\Delta T}{l_{AB} \cos\alpha\Delta T} = \frac{\sqrt{(X_3 - X_2)^2 + (Y_3 - Y_2)^2 \cos\beta}}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2 \cos\alpha}}$$
(7)

法向反弹系数

$$R_{\rm cn} = \frac{v_{2\rm n}}{v_{1\rm n}} = \frac{l_{BC} \sin\beta\Delta T}{l_{AB} \sin\alpha\Delta T} = \frac{\sqrt{(X_3 - X_2)^2 + (Y_3 - Y_2)^2} \sin\beta}{\sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2} \sin\alpha}$$
(8)

其中
$$\sin \alpha = \frac{l_{AD}}{l_{AB}}$$
 $\sin \beta = \frac{l_{CE}}{l_{BC}}$
 $\cos \alpha = \frac{l_{BD}}{l_{AB}}$ $\cos \beta = \frac{l_{BE}}{l_{BC}}$

由以上可知,通过 PTV 实验测定沙粒碰撞前后 位置的变化,就可得到其碰撞反弹系数。

3 PTV 实验

3.1 灌水器微流道可视化实验平台

粒子跟踪测速技术(PTV)是通过跟踪流场中单 个示踪粒子的运动轨迹得到流场信息的跟踪测速技 术,示踪粒子密度较低,能够分辨出单个粒子,可以 通过对单个粒子的运动进行拍摄得到其运动信息, 分析粒子在流体中的运动特性^[9~11]。单个粒子的 运动 PTV 技术得到了越来越多的应用。本研究利 用 PTV 技术,从单个沙粒的角度分析沙粒与灌水器 微流道壁面发生碰撞的过程,从而得到沙粒碰撞反 弹系数。

PTV 可视化系统如图 4 所示。实验台主要由 高压球形氙灯、高速摄像仪、灌水器实验件、测量设 备及动力设备组成。根据灌水器结构及 PTV 实验 特点,利用数控雕刻加工出 1:1 的有机玻璃实验件, 如图 5 所示依次为梯形、三角形、矩形结构形式的微 流道实验件。利用日本生产的高精密光学显微镜 VH-8000 对实验件的加工精度进行了检测,结果 表明,3 种形式的灌水器实验件各尺寸的加工误差 均小于 5%,符合实验要求。

图 4 微流道 PTV 可视化实验台示意图

Fig. 4 Schematic diagram of PTV visual experiments 1. 压力表 2. 高压球形氙灯 3. 实验件 4. 电子秤 5. 高速摄 像仪 6. 计算机 7. 自吸泵 8. 水箱

图 5 不同结构形式灌水器微流道实验件示意图 Fig. 5 Specimens of microchannel with different structures

在可视化 PTV 技术中,图像处理是获得准确数 据的关键环节。合理的图像处理方法可以很好地解 决背景噪声对测量结果的影响,更好地提取沙粒的 运动信息。为了减小沙粒轨迹跟踪过程中发生的目 标丢失或辨认错误,需要对拍摄得到的实验图像进 行预处理。

用 Matlab 编写了 PTV 实验图像预处理程序。 图像预处理步骤如下:首先把实验拍摄得到的彩色 图进行灰度处理,然后通过做差去除两幅图片相同 的部分,得到运动信息;利用阈值法将图片二值化, 并膨大示踪粒子以利于观测;提取碰撞壁面,并和二 值图进行与运算,就可以得到沙粒在灌水器中的运 动碰撞轨迹。将 PTV 实验拍摄得到的沙粒与壁面 碰撞图片进行叠加,得到沙粒碰撞运动轨迹图如 图 6 所示,预处理后的示踪图如图 7 所示。可以看 出,经过处理后的图片更加清晰,从而提高了数据处 理的准确性和效率。

3.2 矩形流道沙粒与壁面碰撞反弹系数测定

在沙粒与灌水器流道壁面碰撞理论研究的基础 上,针对西北干旱、半干旱地区所用的含粘性泥沙的 灌溉水(尤其是黄河水),利用实验平台观测沙粒在 矩形流道灌水器中的流动特性,并测量粘性泥沙与 流道内壁的碰撞反弹系数。由于过滤后的灌溉水中

图 7 预处理后沙粒轨迹图

Fig. 7 Sand particle trajectory after processing

所含沙粒粒径大多小于 70 μm,因此实验中选择粒 径小于 70 μm 的粘性沙粒,密度为2 500 kg/m³。实 验件入口压力分为 20、30、40、50、60、70 kPa 6 个等 级。

矩形流道结构尺寸如图 8 所示,通过实验得到 矩形流道灌水器压力与流量的关系如图 9 所示。

通过灌水器微流道可视化实验平台,对沙粒与

Fig. 9 Relationship between pressure and flowrate

矩形流道壁面的碰撞反弹系数进行了观测,同一压 力点下,测定 300 个沙粒的碰撞反弹系数,取其平均 值作为该压力点下的碰撞反弹系数。反弹系数与压 力的关系如图 10、图 11 所示。由图可以看出,矩形 流道灌水器的切向反弹系数在 0.65~0.83 之间;法 向反弹系数在 0.43~0.49 之间,随着压力的升高, 法向反弹系数逐渐减小,并趋于 0.44。压力为 60 kPa时,切向反弹系数在 0.7 左右,法向反弹系数 在 0.45 左右。

Fig. 10 Relationship between tangential R_c and pressure

Fig. 11 Relationship between normal R_c and pressure

由实验分析可知,在灌水器正常工作压力下 (60 kPa),矩形流道灌水器的切向反弹系数在0.7 左右,法向反弹系数在0.45 左右。以实验结果为依 据,对沙粒在矩形流道灌水器中的通过率进行 CFD 数值模拟,结果如表1所示。

表 1 反弹系数与通过率的关系 Tab.1 Relationship between R_c and pass rate of sand

参数	$R_{\rm ct}$	$R_{\rm cn}$	通过率
通常设定值	0.8	0.80	0.744
实验值	0.7	0.45	0.481

由表1可知,按照通常设置的反弹系数0.8 得 到的通过率为0.744,而以实验数据为依据设置反 弹系数,沙粒通过率为0.481,两者相差20%以上。 故此,在灌水器数值模拟时,反弹系数的设定要以实 验为依据,以更加准确地评价灌水器抗堵性能。

4 结论

(1)在进行灌水器 CFD 模拟时,反弹系数对灌 水器抗堵性能影响较大。在对灌水器进行 CFD 数 值模拟时,碰撞反弹系数的设定要以实验测定值为 依据。 0.83之间。法向反弹系数在 0.43~0.49 之间,随着 压力的升高,法向反弹系数逐渐减小,并趋于 0.44。

(2)矩形流道灌水器的切向反弹系数在 0.65~

参考文献

- 魏正英.迷宫型滴灌灌水器结构设计与快速开发技术研究[D].西安:西安交通大学,2003.
 Wei Zhengying. Structural design and rapid development of labyrinth drip irrigation emitters[D]. Xi'an: Xian Jiaotong University,2003. (in Chinese)
- 2 赵万华.滴灌系统关键技术研究[J].中国农业科技导报,2007,9(1): 21~25. Zhao Wanhua. The key technology of drip irrigation system[J]. Review of China Agricultural Science and Technology,2007, 9(1): 21~25. (in Chinese)
- 3 Wang S Y, Jia Y. Computational modeling and hydro-science research. Advances in hydro-science and engineering [C] // Proceedings of 2nd International Conference on Hydro-science and Engineering, Tsinghua Unversity Press, 1995: 2147~2157.
- 4 夏建新,倪晋仁,黄家桢.粗颗粒物料在垂直管流中的滞留效应[J].矿冶工程,2002,22(3):37~40. Xia Jianxin,Ni Jinren,Huang Jiazhen. Lagging effect of coarse materials in vertical pipe flow[J]. Mining and Metallurgical Engineering, 2002,22(3):37~40. (in Chinese)
- 5 夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J]. 泥沙研究,2002(2):23~28. Xia Jianxin,Ni Jinren,Huang Jiazhen. Pressure loss in solid-liquid flow with coarse manganese nodules in vertical pipeline[J]. Journal of Sediment Research, 2002(2):23~28. (in Chinese)
- 6 张文斌,祁海鹰,程旭,等.应用 PTV 技术对沙粒碰撞规律的研究[J].工程热物理学报,2002,23(6):193~196. Zhang Wenbin, Qi Haiying, Cheng Xu, et al. Research on particle collision applying PTV technology[J]. Journal of Engineering Thermophysics, 2002,23(6):193~196. (in Chinese)
- 7 饶江,葛满初,徐建中,等.固体沙粒与通道壁面相互作用的实验研究[J].工程热物理学报,2003,24(1):134~136. Rao Jiang, Ge Manchu, Xu Jianzhong, et al. Experimental investigation on interaction between solid particle and wall surface[J]. Journal of Engineering Thermophysics, 2003,24(1):134~136. (in Chinese)
- 8 Fluent Inc. Fluent user's guide[M]. Fluent Inc., 2003.

9 禹明忠.PTV 技术和沙粒三维运动规律的研究[D].北京:清华大学,2002. Yu Mingzhong. Study on the PTV technique and 3D movement of particles[D]. Beijing: Tsinghua University, 2002. (in Chinese)

- 10 王希麟,张大力,常辙,等.两相流场粒子成像测速技术(PTV-PIV)初探[J].力学学报,1998,30(1):121~125.
 Wang Xilin,Zhang Dali,Chang Zhe, et al. Preliminary investigation of particle image velogimetry(PTV-PIV) technique in two-phase flow[J]. Acta Mechanica Sinica,1998,30(1):121~125.(in Chinese)
- 11 喻黎明,吴普特,牛文全,等.迷宫流道内固体颗粒运动的 CFD 模拟及 PIV 验证[J].农业机械学报,2009,40(5): 45~51.

Yu Liming, Wu Pute, Niu Wenquan, et al. CFD numerical simulation and PIV verification about the movement of solid particles in labyrinth channel[J]. Transactions of the Chinese Society for Agricultural Machinery, $2009, 40(5): 45 \sim 51$. (in Chinese)