文章编号:0253-9950(2009)01-0061-04

NIST 候选标准物质 RM 2703 中多元素 取样行为的中子活化分析

黄东辉,王平生,田伟之,倪邦发,刘存兄,张贵英, 肖才锦,胡 炼,吕 鹏

中国原子能科学研究院核物理研究所,北京 102413

摘要:本工作以 0.8~1.4 mg 的取样量,用仪器中子活化分析(INAA)结合 Ingamells 模型,研究了用于微分析质 控的 NIST 候选标准物质 RM 2703(海洋沉积物)和相同基体的常规有证标准物质 NIST SRM 2702 的多元素取 样行为。确认了 2 种物质中至少 12 种元素在 1 mg 取样量水平具有满意的均匀度,相对标准取样不确定度小于 1%。Dy, Hf, Lu, Sb 的取样常数在具有较细粒径分布的 RM 2703 中远比在 SRM 2702 中小,显示了粒径分布 对元素取样行为的影响。

关键词:仪器中子活化分析(INAA);Ingamells 模型;取样行为 中图分类号:O657.4 文献标志码:A

Sampling Behavior of Multielements in Candidate NIST RM 2703 by Using Neutron Activation Analysis

HUANG Dong-hui, WANG Ping-sheng, TIAN Wei-zhi, NI Bang-fa, LIU Cun-xiong, ZHANG Gui-ying, XIAO Cai-jin, HU Lian, LU Peng

Department of Nuclear Physics, China Institute of Atomic Energy, Beijing 102413, China

Abstract: Sampling behavior of multielements in candidate NIST RM 2703 and NIST SRM 2702 were characterized at sample sizes of 0.8 to 1.4 mg by instrumental neutron activation analysis (INAA) combining with Ingamells model. The two materials are the same in matrix but different in particle size distribution, the former is finer than the latter. At least 12 elements are confirmed to be homogeneous enough with relative standard sampling uncertainties smaller than 1% at 1 mg sample size level for both materials. The fact that the sampling constants of Dy, Hf, Lu and Sb in RM 2703 are much smaller than in SRM 2702 clearly indicates the influence of particle size distribution on sampling behavior.

Key words: instrumental neutron activation analysis (INAA); Ingamells model; sampling behavior

近 30 年来,痕量分析测量的长足进步,主要 得益于天然基体有证标准物质(certified reference material, CRM)的研制、认证和在分析质量 控制中的广泛使用。然而,现有的天然基体 CRM

基金项目:国家自然科学基金资助项目(10575138)

作者简介:黄东辉(1977—),男,湖南汨罗人,助理研究员,原子核物理专业

有两个局限:迄今为止,CRM 证书中给出的最小 取样量均不少于 100 mg,比典型的微分析样品量 往往高几个数量级,无法用于这些分析的质控。 此外,以一个数值(≥100 mg)表示的最小取样 量,不能反映取样行为的强烈元素依赖[1]。 田伟之^[2]在1981年提出利用 Ingamells 模型,对 天然基体 CRM 中各认证元素分别给出最小取样 量的想法。并于 1992 年以 INAA 的方法结合 Ingamells 模型^[3]将这一思想付诸于 IAEA RM SD-M-2/TM 沉积物的研究^[4]。此后,本实验室 已将这种方法用于 9 种国际和国内 RM 和 CRM 中多元素取样行为研究。但迄今为止,尚没有瓶 装的、天然基体的、对各认证元素的最小取样量分 别作出明确说明的、适用于微分析质控的 CRM 问世。由于仪器中子活化分析(INAA)对许多基 体中的多种元素测定具有小的且可量化的分析不 确定度^[5],与 Ingamells 模型相结合,极为适合在 准确可称的样品量范围内(大于几百微克)对天然 基体 CRM/RM 中的多元素取样行为进行量化表 征和研究。美国标准和技术研究所(NIST)的 天然基体有证参考物质 SRM 2702(已在 100 mg 取样量下认证)和参考物质 RM 2703(未认证)为 具有不同粒径分布的同一种基体, RM 2703 具有 更小的粒径分布,认证后可望用于微分析质量控 制。本工作拟在 $0.8 \sim 1.4 \text{ mg}$ 取样量下,用仪器 中子活化分析(INAA)结合 Ingamells 模型,研 究 SRM 2702 和 RM 2703 中的多元素取样行为。

1 实验部分

1.1 样品制备和辐照

在取样量为 0.8~1.4 mg,制备了 SRM 2702 和 RM 2703 各两批子样,每批 15 个,分别置于中 国原子能科学研究院 101 堆重水反应堆垂直孔道 (热中子注量率 $3 \times 10^{13}/(\text{cm}^2 \cdot \text{s}),$ 热/超热中子 注量率比 $f \approx 15$)和 2 # 水平孔道(跑兔)(热中子 注量率 $1 \times 10^{13}/(\text{cm}^2 \cdot \text{s}), f \approx 200$)中进行长照 和短照,照射时间分别为 51 h 和 300 s。长照中, 用于 k。法的中子注量率比监测器为高纯 Zr 片, 比较器为高纯 Fe 丝;短照中,元素 Mn 用于中子 注量率监测。长、短照中,将待测元素的化学标准 和样品 一起 照射、测量,用于相对法 INAA。 GBW 07311, GBW 07312 用于分析质量控制。

称取 25 mg RM 2703 和 SRM 2702 子样各 1 个,在 101 堆水平孔道照射 30 s,元素标准 Mn 用 于中子注量率监测。衰变 1 h 后,用感量为 1 μ g 的 Mettler Torando 天平准确称取 0.8~1.4 mg 子样各 15 份,来验证 Na, Mn 的均匀性。

RM 2703 和 SRM 2702 在取样的同时,分别 称取1g样品于称量瓶中(铺散厚度 3~4 mm), 在110 ℃烘干至恒重,进行水分测定。

1.2 测量

探测系统由 HPGe γ 探测器(Canberra, 相 对效率 35%,分辨率 1.8 keV)、Ortec Despecplus 数字化谱仪、计算机组成。计算机软件 SPAN 和 ADVNAA 分别用于γ谱峰分析和元 素含量计算。

2 结果和讨论

2.1 INAA 多元素取样常数测定原理

任何基于"随机子样"的固体样品分析中,附 于分析结果的总不确定度 U_t,总是分析不确定度 U_a和取样不确定度 U_s的合成。即,

$$U_{\rm t}^{\ 2} = U_{\rm a}^{\ 2} + U_{\rm s}^{\ 2} \,. \tag{1}$$

总不确定度 U_t 可由分析一组子样得到的相 对标准偏差 s_r 估计。因而,只有保证 U_a 尽可能 小并准确已知的情况下,对 U_s 的研究才有实际 意义。

根据 Ingamells 模型,对"很好地混合"的物质中的给定元素,取样常数 K_s 可定义为在 68%置信水平下,单次测量的取样不确定度小于 1%的最小取样量。可用方程(2)表示:

$$K_{\rm s} = R^2 \omega_{\rm o} \tag{2}$$

其中, R^2 是百分取样方差 $(R^2 \equiv U_s^2)$, w 为取样 量。方程(1)可改写为:

$$R^{2} = s_{\rm r}^{2} - U_{\rm a}^{2} \,. \tag{3}$$

其中,s_r为由一组子样得到的测定值的相对标准 偏差,U_a为相对分析不确定度。对 INAA 而言,

 $U_{a}^{2} = U_{c}^{2} + U_{w}^{2} + U_{i}^{2} + U_{g}^{2}$ 。 (4) 其中, U_{c} , U_{w} , U_{i} 和 U_{g} 分别为特征峰计数、样品 质量、中子注量率和测量几何引入的不确定度。

实验证明,INAA 研究天然基体的 CRM/RM 在可称量范围下的取样行为是一种行之有效的分 析手段,它能在不破坏样品的情况下,同时测定几 十个元素,并对其中多种元素具有小的、可量化的 分析不确定度 U_a。

2.2 Na, Mn 取样常数行为的照后取样测定

中子活化分析中,由于²⁴ Na($T_{1/2}$ = 14.96 h, γ 能量为 1 368, 2 754 keV,分支比均为 100%) 第1期

和⁵⁶ Mn ($T_{1/2} = 2.5785$ h, γ能量为 846.8, 1 810.8 keV, 分支比分别为 100%和 25%) 有合 适的能量、半衰期及生成截面,对土壤、沉积物类 基体的样品而言,⁵⁶Mn 是短照分析中容易测定 并有好的统计不确定度(好于1%)的核素;²⁴Na 在短照和长照样品中均能得到好的计数统计 (好 于1%)。这两个核素的半衰期均允许照后15个 子样分取操作,并保证以好于1%的统计不确定 度测定。若以"照后取样"法证明 Mn 具有满意 的均匀度,则可以在照前取样-照后转移的常规测 量中,利用 Mn 的数据来归一校正各子样中短照 测定的其它元素由于称重和转移损失引入的误 差。类似地,若"照后取样"证明 Na 是均匀的, Na 的数据不仅对短照、亦可对长照样品测定中各元 素由干样品称重和转移带来的误差进行归一 校正。

本工作通过对天然基体样品 SRM 2702 和 RM 2703 中照后取样,确定了在 1 mg 取样量水 平下,Na, Mn 元素的取样不确定度均小于 1% (表 1),具有满意的均匀度,解决了多元素取样行 为研究中,样品照前取样、照后转移操作可能引入 的不确定度的检验和校正问题。

2.3 NIST RM 2703 和 SRM 2702 中多元素取样 常数测定和比较

为确保取样常数的可靠性和实用性,本工作 只对 $U_a < 4\%$ 的元素进行讨论。在此前提下,取 样不确定度 $U_s = (s_r^2 - U_a^2)^{1/2}$,Ingamells 取样常 数 $K_s = U_s^2 w$ 。当分析不确定度 U_a 大于或等于 子样间的相对标准偏差 s_r (即 U_t)时, K_s 以 $U_a^2 w$ 估计。

RM 2703 和 SRM 2702 为具有不同粒径分 布的同一种基体。在 0.8~1.4 mg 取样量条件 下,两种物质中 Al, As, Ce, Fe, La, Mn, Na, Sc, Ta, Th, V, Zn 等 12 个元素的取样不确定 度 U_s 均小于或等于 1%(表 2),在此取样量水平, 具有好的均匀性,其元素含量可沿用在大取样量 下(100 mg)的认证值。与 SRM 2702(最可几粒 径约为 5 μ m,最大粒径约 100 μ m)比较,粒径分 布较细的 RM 2703(最可几粒径约为 3 μ m,最大 粒径约 10 μ m)均匀度的改善,明显地反映在元素 Dy, Hf, Lu 和 Sb 的 K_s 值上。对 SRM 2702,它 们的 K_s 分别为 150, 200, 100 和 30 mg;而对于 RM 2703,则分别为<4, <16, 8 和 1 mg。结果 示于表 3。

本工作表明, INAA 可用于 1 mg 取样量水平 下标准物质中多元素均匀度的量化表征, 从而有 可能建立推荐最小取样量低至 1 mg、并按元素分 别给出的新一代有证标准物质。

与核微束分析相结合,可望将最小取样量延 伸至纳克级水平。以 SR-XRF 为例,对于厚靶样 品,每个靶点的有效取样量可定义为以束斑面积 为上底、X 射线"射程"为高的样品"柱"的质量。 由于 X 射线强度按指数规律无限地衰减(式 (5)),可以保守地定义,样品"柱"的下底为只有 1%特征 X 射线抵达样品表面的样品深度(式 (6))。

$$I_{x}/I_{0} = \exp[-(\mu/\rho)d]_{\circ}$$
(5)
$$h = \ln 100/(\mu/\rho)_{\circ}$$
(6)

其中, I_0 和 I_x 分别为样品表面发射的特征 X 射 线强度和深度 d 处样品发射的特征 X 射线到达 样品表面的强度; μ 为给定能量的特征 X 射线在 样品基体(吸收物质)中的线性吸收系数; ρ 为样 品密度;h 为如上定义的样品"柱"高。计算结果 表明,对 1 μ m 束斑直径和各种常见单质元素以 及典型的地质、生物类基体,特征 X 射线能量小 于 20 keV (覆盖了 Na 到 Rh 的 KX 射线和 Mo 到 U 的 LX 射线)时的有效取样量均在百分之几 到几纳克的范围^[1]。

表 1 Na, Mn 取样常数的 INAA 照后取样测定结果

Table 1 Results of	sampling	constants of	Na and	Mn by	using	post-sampling	INAA

元素(Elements)	样品 (Samples)	$s_{\rm r} / \frac{0}{10}$	$U_{\mathrm{a}}/\%$	Ν	$U_{ m s}/\%$	$K_{\rm s}/{ m mg}$
Na	SRM 2702	0.85	1	15	<1	<1
	RM 2703	0.94	1	15	<1	< 1
Mn	SRM 2702	0.95	1	15	<1	<1
	RM 2703	0.95	1	15	<1	<1

第 31 卷

			0			r					
元素 (Elements)	样品 (Samples)	<i>s</i> _r / %	$U_{\mathrm{a}}/\%$	Ν	$U_{ m s}/\%$	元素 (Elements)	样品 (Samples)	<i>s</i> ₁ / ⁰ / ₀	$U_{\mathrm{a}}/\%$	Ν	$U_{ m s}/\%$
Al	SRM 2702	3.0	2.8	15	1.0	Mn	SRM 2702	1.1	1.0	15	0.5
	RM 2703	2.9	2.8	15	0.8		RM 2703	0.9	1.0	15	< 1
As	SRM 2702	2.2	2.1	15	0.6	Sc	SRM 2702	2.0	1.8	15	0.9
	RM 2703	2.2	2.1	15	0.7		RM 2703	1.0	1.8	15	< 1
Ce	SRM 2702	2.2	2.2	15	0.4	Ta	SRM 2702	2.9	2.8	15	0.9
	RM 2703	2.4	2.2	15	0.8		RM 2703	2.2	2.8	15	< 1
Fe	SRM 2702	1.8	1.5	15	0.9	Th	SRM 2702	2.8	2.7	15	0.8
	RM 2703	2.0	1.8	15	0.8		RM 2703	2.3	2.7	15	< 1
La	SRM 2702	2.1	1.8	15	1.0	V	SRM 2702	2.7	2.5	15	1.0
	RM 2703	1.1	1.8	15	<1		RM 2703	2.7	2.5	15	0.9
Na	SRM 2702	1.3	0.9	15	0.9	Zn	SRM 2702	2.6	2.4	15	0.9
	RM 2703	1.1	0.9	15	0.6		RM 2703	2.6	2.4	15	0.9

表 2 NIST RM 2703 和 SRM 2702 多元素取样行为

Table 2 Sampling behavior of multielements in NIST RM 2703 and SRM 2702

表 3 NIST RM 2703 和 SRM 2702 中 4 种元素取样常数比较

Table 3 Comparison of sampling constants for 4 elements in NIST RM 2703 and SRM 2702

元素(Elements)	样品 (Samples)	$s_{\rm r}/ \frac{0}{10}$	$U_{\rm a}/\%$	N	$U_{ m s}/\%$	$K_{ m s}/{ m mg}$
Dy	SRM 2702	14.3	4.0	15	13.7	200
	RM 2703	2.9	4.0	15	<4.0	<16
Hf	SRM 2702	12.4	2.1	15	12.22	150
	RM 2703	2.0	2.0	15	<2.0	$<\!$
Lu	SRM 2702	11.3	3.2	15	10.8	120
	RM 2703	4.2	3.2	15	2.7	8
Sb	SRM 2702	5.5	1.8	15	5.2	30
	RM 2703	2.4	1.8	15	1.1	1

参考文献:

- [1] Tian Weizhi. Nuclear Analytical Methods in Quality Control of Microanalysis[J]. Radioanal Nucl Chem, 2004, 262: 223-228.
- [2] 田伟之.反应堆中子活化分析近况(1978—1981) [J].原子能科学技术,1984,(1):113-129.
- [3] Ingamells C O, Switer P. A Proposed Sampling Constant for Use in Geochemical Analysis[J]. Talanta, 1973, (20): 547-568.
- [4] Tian Weizhi, Peng Lixin. A Study on Sampling Representativeness of IAEA RM SD-M-2/TM Marine Sediment by INAA[J]. Radioanal Nucl Chem, 1992, 162: 63-70.
- [5] Tian Weizhi, Ni Bangfa, Wang Pingsheng, et al. Metrological Role of Neutron Activation Analysis.
 IA. Inherent Characteristics of Relative INAA as a Primary Ratio Method of Measurement [J]. Acccredit Qual Assur, 2001, 6(12): 448-492.