文章编号:0253-9950(2007)02-0071-04

芬顿氧化法预处理放射性废离子交换树脂

梁志荣¹,吴玉生²,刘学军¹

1. 中国工程物理研究院,四川 绵阳 621900; 2. 山西省环境保护局,山西太原 030024

摘要:为了对放射性废树脂进行预处理,使用芬顿试剂对其进行了氧化降解预处理实验研究。通过正交试验 获得了实验操作的合理条件:当过氧化氢的初始浓度为 4.0 mol/L、亚铁离子的初始浓度为 20 mmol/L、反应 时间为 4 h、反应温度为 95 °C、溶液的初始 pH 值为 2.5 时,该法对 3 种不同的含铀废湿树脂(50 g)均有理想 的降解效果。反应进行 2 h 后废树脂被完全分解,残液中化学需氧量(COD)的去除率达 97%以上,由 8.0 ~ 10.0 g/L 降至 0.2~0.3 g/L,且吸收液中铀含量无明显增加。实验结果表明,芬顿试剂对放射性废离子交换 树脂有较好的氧化降解效果。

关键词:芬顿试剂;氧化降解;放射性废物;废树脂 中图分类号:O614.35;O615.45 文献标识码:A

Pre-Treatment of Radioactive Spent Ion Exchange Resin by Fenton Process

LIANG Zhi-rong¹, WU Yu-sheng², LIU Xue-jun¹

China Academy of Engineering Physics, P. O. Box 919(71), Mianyang 621900, China;
Province Environment Protection Agency, Taiyuan 030024, China

Abstract: Fenton reagent oxidation experiments were conducted to test its feasibility in pretreatment of radioactive spent ion exchange resin. The effects of reaction conditions such as the dosage of H_2O_2 and Fe^{2+} , reaction time(t) and reaction temperature(θ) were studied in term of chemical oxygen demand (COD) removal efficiency. The optimum operating conditions determined by the orthogonal experiments are as follows: $c_0 (H_2O_2) = 4.0 \text{ mol/L}$, $c_0 (Fe^{2+}) = 20 \text{ mmol/L}$, $\theta = 95$ °C and t = 4 h at pH=2.5. Under optimum operating conditions, approximately 100% decomposition efficiencies can be achieved for three 50 g uranium-containing wet resin samples. The COD is reduced from 8.0-10.0 g/L in the initial solution to 0.2-0.3 g/L in the residual solution. At the same time, the concentration of uranium in the tail-gas absorption solution don't remarkably increase. The study results show that the pre-treatment of industrially generated radioactive spent ion exchange resin by Fenton's reagent can entail very effective degradation of the resin.

Key words: Fenton reagent; oxidation degradation; radioactive waste; spent resin

离子交换树脂在同位素制备、放射化学研究和放射性废水处理中被广泛应用。但久置的废树

收稿日期:2006-11-29; 修订日期:2007-01-09

作者简介:梁志荣(1976—),男,山西孝义人,硕士,工程师,放射化学专业。

脂会辐解产生 H₂,CH₄ 等气体,焚烧处理会产生 腐蚀性污染气体,并且由于吸水溶胀产生极大的 静压力,致使固化体破裂。故目前尚未找到理想 的处理技术与工艺,多数放射性废树脂主要贮存 在不锈钢桶中或进行简单的固化处理^[1]。

芬顿试剂是过氧化氢和亚铁离子组成的氧化 体系。过氧化氢在亚铁离子的催化作用下通过链 式反应产生氧化性极强的羟基自由基,是一种很 强的高级氧化体系(advanced oxidation technologies, AOTs)^[2:4]。该氧化体系近年来得到国内 外环保工作者的普遍关注,广泛应用在废水中难 降解有毒有害有机物的处理与处置中,实现对有 机物的矿化,取得理想的处理效果^[5:11],但用于废 树脂氧化降解预处理的相关报道甚少。目前用于 废树脂氧化降解预处理的技术有 2 种湿氧化法: $H_2SO_4-H_2O_2$ 和 $H_2SO_4-HNO_3$ 。这 2 种方法的氧 化性相对较弱,操作较复杂且不易控制。

将废树脂氧化降解预处理后再进行固化处理,与直接进行固化相比有诸多好处:极大的减容,克服因树脂吸水而造成的固化体龟裂现象,消除产生 H₂,CH₄ 等易燃易爆气体的潜在危害,提高固化体的包容量。

为了对废树脂进行有效的氧化降解,本工作 拟采用芬顿氧化体系进行废树脂的氧化处理,以 建立芬顿试剂氧化降解废树脂的实验方法。

1 实验部分

1.1 主要试剂与仪器

过氧化氢、硫酸亚铁、氢氧化钠、硫酸等均为 市售分析纯;树脂:717型,201×4型,201×7型 含铀废树脂。

DR/890 型 COD 测定仪,美国,HACH 公 司,测量精度为 1 mg/L;PHSJ-4A 型 pH 计,上 海精密科学仪器有限公司,测量精度为 0.01;WO 201 型温控数显水浴锅,上海申顺生物科技有限 公司,测量精度为 0.1 C_{\circ}

1.2 实验方法

取 50 g 湿含铀废树脂置于反应器中,加入一 定量的蒸馏水,调节 pH 到一定值,搅拌(120 r/min),同时在设定温度下加热,当溶液温度达到 预定值后加入过氧化氢和亚铁离子,记录反应时 间,通过反应前后残液中化学需氧量(COD)的变 化来确定氧化降解效果,同时测量吸收液中铀含 量的变化,实验装置示于图 1。

5----吸收液(Absorbent)

2 结果和讨论

2.1 反应条件的正交试验

为寻求合理的氧化降解操作条件,初步实验 表明芬顿试剂在 pH \approx 2.5 时氧化性能最好,因此 初步选定溶液 pH=2.5。综合考虑各种影响因 素,设计了以 c_0 (H₂O₂), c_0 (Fe²⁺),反应时间(t) 和反应温度(θ)为因素的正交试验,实验以 717 型 含铀废树脂为研究对象,正交试验结果列入表 1。

对表 1 中的试验数据进行直观分析,可得出 如下初步结论:在所选定的影响因素中, H_2O_2 的 初始浓度对 COD 去除率的影响最大,其次是 Fe²⁺的初始浓度,再次是反应时间,最后是反应 温度。合理的操作工艺条件为: c_0 (H_2O_2) = 4.0 mol/L, c_0 (Fe²⁺) = 20 mmol/L,反应时间 4 h,反 应温度 95 °C。该工艺条件下的实验结果表明,芬 顿氧化法对 717 型、201×4 型和 201×7 型含铀 废树脂均有理想的降解效果。反应过程中产生大 量 CO₂ 气体,反应进行 2 h 后废树脂被完全分解, 残液中 COD 由 8.0~10.0 g/L 降至 0.2~0.3 g/L,去除率达 97%以上,反应完成后吸收液中铀 含量在 3.2 μ g/L 以下,无明显增加。

2.2 主要影响因素的分析和讨论

以 201×7 型含铀废树脂为例,研究树脂被完 全分解后残液中初始 COD 为 9.2 g/L 时,各种因 素对 COD 去除率的影响及作用机制。

2.2.1 过氧化氢初始浓度 过氧化氢初始浓度 对 COD 去除率的影响示于图 2。从图 2 看出,随 残液中过氧化氢初始浓度的增加,COD 去除率先 增加而后趋于稳定。当残液中过氧化氢的初始浓 度提高时,促进反应的进行,反应体系中羟基自由 基产生量增加,COD 去除率随之增加,但当残液 中过氧化氢的初始浓度过高时,反应刚开始就产 生大量的羟基自由基,由于副反应等因素造成羟 基自由基损失较大,COD 去除率呈下降趋势。 2.2.2 亚铁离子初始浓度 亚铁离子初始浓度 对 COD 去除率的影响示于图 3。亚铁离子是反 应产生羟基自由基的必要条件,当残液中亚铁离 子的初始浓度过低时,反应产生的羟基自由基较 少,COD 去除率较低;随亚铁离子初始浓度的增 加,COD 去除率提高,但当初始浓度过高时,反应 刚开始便产生大量的羟基自由基,由于副反应等 因素造成羟基自由基损失较大,使 COD 去除率 呈下降趋势。

表1 正交试验结果

Table 1 R	esults of	orthogona.	l experiments

No.	$c_0(H_2O_2) / (mol \cdot L^{-1}) c_0(Fe^{2+}) / (mmol \cdot L^{-1})$		t/\min	$\theta / ^{\circ} C$	Y(COD) /%
1	2.0	10	150	80	69
2	2.0	20	180	90	74
3	2.0	30	210	95	73
4	2.0	40	240	100	74
5	3.0	10	180	95	87
6	3.0	20	150	100	83
7	3.0	30	240	80	84
8	3.0	40	210	90	84
9	4.0	10	210	100	87
10	4.0	20	240	95	94
11	4.0	30	150	90	93
12	4.0	40	180	80	84
13	5.0	10	240	90	93
14	5.0	20	210	80	92
15	5.0	30	180	100	85
16	5.0	40	150	95	84
$(K_{1j}, \%)$	(72.50)	(84.00)	(82.25)	(82.25)	
$(K_{2j}$, $\%$)	(84.50)	(85.75)	(82.50)	(86.00)	
$(K_{3j}, \%)$	(89.50)	(83.75)	(84.00)	(84.50)	
$(K_{4j}$, $\%$)	(88.50)	(81.50)	(86.25)	(82.25)	
$(R_i, \%)$	(17.00)	(4.25)	(4.00)	(3.75)	

 Ξ (Note): $R_j = \max(K_{1j}, K_{2j}, K_{3j}, K_{4j}) - \min(K_{1j}, K_{2j}, K_{3j}, K_{4j})$

图 2 COD 去除率随过氧化氢初始浓度的变化 Fig. 2 COD removal efficiencies vs

the initial concentration of $H_2 O_2$

2.2.3 反应温度 温度对 COD 去除率的影响示 于图 4。从图 4 看出,当反应温度在 90 ℃以下时, COD 去除率随温度上升而增加,当温度超过 90 ℃时,随着温度的继续升高,残液中 COD 的去除 率反而下降,这是由于温度升高一方面加速了反 应速度,部分羟基自由基未参与有机物的降解反

图 4 COD 去除率随反应温度的变化

3 结 论

芬顿试剂对放射性废离子交换树脂有较好的 氧化降解效果,可实现对 717 型、 201×4 型、 201×7 型 3 种常见含铀放射性废树脂的完全分 解,残液中 COD 的去除率达 97%以上,由 8.0~ 10.0 g/L降至 $0.2 \sim 0.3 \text{ g/L}$,且吸收液中铀含量 无明显增加。

芬顿氧化法具有设备和操作简单、氧化性强 等特点,为放射性废离子交换树脂固化处理的前 处理提供了一种新思路。

参考文献:

- [1] 罗上庚. 放射性废物处理概论[M]. 北京: 原子能 出版社, 2002.
- [2] Andreozzi R, Apuzzo A D, Marotta R. A Kinetic Model for the Degradation of Benzothiazole by Fe³⁺ Photoassisted Fenton Process in a Completely Mixed Bath Reactor[J]. J Hazard Mater, 2000, 80: 241-257.
- [3] Ravina M, Campanella L, Kiwi J. Accelerated Mineralization of the Drug Diclofenac via Fenton Reaction in a Concentric Photo-Reactor [J]. Water Res, 2002, 36: 3 553-3 560.
- [4] Herrera F, Pulgarin C, Nadtochenko V, et al. Ac-

应便在副反应中消耗掉,另一方面温度升高加速 了过氧化氢的自身分解,使过氧化氢利用率降低。 2.2.4 反应时间 反应时间对 COD 去除率的影 响示于图 5。从图 5 看出,随着反应的进行,残液 中 COD 去除率随反应时间的延长而增大,当反应 进行 120 min 后去除率基本稳定。

图 5 COD 去除率随反应时间的变化

Fig. 5 COD removal efficiencies vs reaction time

celerated Photo-Oxidation of Concentrated Coumaric Acid in Homogneous Solution[J]. Appl Catal B: Environ, 1998, 17: 141-156.

- [5] 陈传好,谢 波,任 源,等. Fenton 试剂处理废 水中各影响因子的作用机制[J].环境科学,2000, 3:93-96.
- [6] 雷乐成. 光助 Fenton 氧化处理 PVA 退浆废水的研究[J]. 环境科学学报, 2000, 2: 139-144.
- [7] 李太友,刘琼玉.光助 Fenton 法氧化降解苯胺的研 究[J]. 江汉大学学报, 2001, 6: 13-17.
- [8] Fongsatitkul P, Elefsiniotis P, Yamasmit A, et al. Use of Sequencing Batch Reactors and Fenton's Reagent to Treat Wastewater From a Textile Industry [J]. J Biochem Eng, 2004, 21: 212-219.
- [9] Peres J A , Beltrán de Heredia J, Domíguez J R. Integrated Fenton Reagent-Coagulation/Flocculation Process for the Treatment of Cork Processing Wastewaters[J]. J Hazard Mater, 2004, B107: 115-121.
- [10] Rivas F J, Beltrán F J, Gimeno O, et al. Treatment of Olive Oil Mill Wastewater by Fenton's Reagent
 [J]. J Agric Food Chem, 2001, 49: 1 873-1 880.
- [11] Muruganandham M, Swaminathan M. Decolourisation of Reactive Orange 4 by Fenton and Photo-Fenton Oxidation Technology [J]. Dyes Pigments, 2004, 63: 315-321.