
Bayesian Analysis (2007) 2, Number 3, pp. 591–610

Bayesian Hierarchical Multiresolution Hazard

Model for the Study of Time-Dependent

Failure Patterns in Early Stage Breast Cancer

Vanja Dukić∗ and James Dignam†

Abstract. The multiresolution estimator, developed originally in engineering ap-
plications as a wavelet-based method for density estimation, has been recently ex-
tended and adapted for estimation of hazard functions (Bouman et al. 2005, 2007).
Using the multiresolution hazard (MRH) estimator in the Bayesian framework, we
are able to incorporate any a priori desired shape and amount of smoothness in
the hazard function. The MRH method’s main appeal is in its relatively simple
estimation and inference procedures, making it possible to obtain simultaneous
confidence bands on the hazard function over the entire time span of interest.
Moreover, these confidence bands properly reflect the multiple sources of uncer-
tainty, such as multiple centers or heterogeneity in the patient population. Also,
rather than the commonly employed approach of estimating covariate effects and
the hazard function separately, the Bayesian MRH method estimates all of these
parameters jointly, thus resulting in properly adjusted inference about any of the
quantities.

In this paper, we extend the previously proposed MRH methods (Bouman et al.
2005, 2007) into the hierarchical multiresolution hazard setting (HMRH), to ac-
commodate the case of separate hazard rate functions within each of several strata
as well as some common covariate effects across all strata while accounting for
within-stratum correlation. We apply this method to examine patterns of tu-
mor recurrence after treatment for early stage breast cancer, using data from
two large-scale randomized clinical trials that have substantially influenced breast
cancer treatment standards. We implement the proposed model to estimate the
recurrence hazard and explore how the shape differs between patients grouped
by a key tumor characteristic (estrogen receptor status) and treatment types, af-
ter adjusting for other important patient characteristics such as age, tumor size
and progesterone level. We also comment on whether the hazards exhibit non-
monotonic patterns consistent with recent hypotheses suggesting multiple hazard
change-points at specific time landmarks.
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1 Introduction

In survival analysis, because the hazard function h(t) often exhibits unstable behavior
making it difficult to reliably discern patterns of change or make comparisons between
groups, aggregates of the hazard over time are more frequently used. The cumulative
hazard H(t), or more commonly, functions of H(t) such as survival or cumulative in-
cidence functions, are used for summary and inference on failure risk. While useful
and easy to interpret for most purposes, these summaries can partially obscure im-
portant patterns in the hazard of failure over time. Alternatively, examination of the
hazard function itself in detail can reveal important properties of the failure process
(Aalen and Gjessing 2001). Generally, some type of smoothed estimate of the hazard
function is used to characterize its shape, which is indicative of how failure risk (in the
population) changes with respect to some time origin. While a variety of approaches
toward hazard estimation have been proposed, methodological challenges remain for
both estimation and associated statistical inferential procedures. In particular, flexi-
ble estimation and modeling approaches are needed, because in contrast to the hazard
functional form in most parametric survival models, the hazard may exhibit complex
non-unimodal shape with ‘change-points’ that may reveal important information about
the process under study.

In this article, we investigate the hazard of disease recurrence among women treated
for breast cancer and followed over several years. The data originate from large multi-
center randomized clinical trials evaluating the effect of hormonal or cytotoxic chemother-
apy treatment agents administered after surgery (referred to generally as adjuvant ther-
apy) in women with early stage breast cancer. As we describe in the next section,
there is considerable interest in the patterns of recurrence hazards after breast cancer
diagnosis and initial treatment, both to gain biological insights and to better manage
the disease in a clinical setting. We accommodate the biologically plausible situation
whereby different subgroups of women with specific disease features may have distinct
functional forms of failure hazard that are non-proportional to each other, by construct-
ing a joint model for all separate subgroup hazards, while keeping the effects of some
factors (such as age or tumor size) common across all strata and proportional within
each stratum.

To model the recurrence hazards, we apply the semiparametric multi-resolution haz-
ard (MRH) estimator recently presented in work by Bouman and colleagues
(Bouman et al. 2005, 2007). Employing a piece-wise constant prior for the hazard rate
which is constructed in a tree-based and self-consistent manner, the MRH approach
permits flexible modeling with the ability to incorporate a variety of a priori assump-
tions about the shape and smoothness of hazard functions in each of several defined
strata. Furthermore, Bayesian modeling allows us to easily address specific hypotheses
concerning the timing of peaks in the risk of failure and how these may differ with
respect to key biologic and clinical parameters in breast cancer.

In the next section, we describe some of the key questions of interest in modeling of
the breast cancer recurrence hazard, and the data source for this study. In Section 3 we
review the basics of the multiresolution hazard model, and present the extension to the
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hierarchical multiresolution (HMRH) setting. In Section 4 we provide technical details
of the Markov chain Monte Carlo (MCMC) model implementation. Section 5 presents
the analysis. We conclude with a discussion of the findings in relation to the broader
literature on breast cancer hazards as well as plans for future work on this problem.

2 Recurrence Risk after Surgery for Early Stage Breast

Cancer

Over the past few decades, there has been appreciable progress in therapeutic strategies
for early stage (i.e., localized and operable, as opposed to metastatic) breast cancer,
with a well-developed array of treatment options. Due to increased screening vigilance
and disease awareness, currently over 75% of women diagnosed have early stage tumors.
Despite this progress, the clinical course of breast cancer after diagnosis remains hetero-
geneous from patient to patient and thus highly unpredictable for individuals. Thus, a
significant clinical challenge is deciding which and how much adjuvant therapy is needed,
and determining the magnitude of recurrence risk over extended post-treatment follow-
up. Characteristics that prospectively identify which women are at greater or lesser
risk of treatment failure are needed to aid in individually tailoring therapy for optimal
disease management. Answers may also lie partly in gaining a better understanding of
the intermediate and long-term clinical course of the disease, identifying patterns that
can portend time periods of increased recurrence risk.

Apparent patterns in breast cancer recurrence hazard are readily observable from
large cohorts of patients systematically followed over time. It is well known that risk of
recurrence remains elevated for a long period of time after initial diagnosis and tumor
removal, and there is longstanding interest in the the prospect of “cure” after sufficient
time tumor-free has been achieved (Berg and Robbins 1966). Some long-term follow-up
studies have suggested that a finite but lengthy“dormancy period” exists (possibly over
20 years), whereby tumor recurrences may still appear (Gordon 1990; Demicheli et al.
1996; Karrison et al. 1999). Studies examining the shape of the recurrence hazard con-
sistently show a sharp peak 12-24 months after initial diagnosis and treatment, fol-
lowed by a decline over time, although the hazard remains persistently elevated relative
to individuals in the population never having had breast cancer (Saphner et al. 1996;
Hess et al. 2003). This pattern stands in sharp contrast to the recurrence hazard for
several other major cancers (e.g., colon, lung), where most recurrences appear within
the first five years after discovery and removal of the primary tumor, followed by a
period in which the hazard of recurrence and death from the disease resemble that of
the population at large.

2.1 Data: Randomized Clinical Trials for Early Stage Breast Cancer

The National Surgical Adjuvant Breast and Bowel Project (NSABP) is a U.S. National
Cancer Institute sponsored and funded multi-center cancer clinical trials group that
has investigated a spectrum of treatments for breast and colorectal cancers since the
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late 1950s. The group consists of more than 5,000 participating physicians, nurses,
and other research specialists located at over 1,000 medical centers, university and
community hospitals, oncology practice groups, and health maintenance organizations
in North America. The group has enrolled more than 60,000 women and men in clinical
trials for breast and colorectal cancer.

While use of systemic adjuvant therapy began in the mid 1970s for women with
tumors that had spread to the axillary lymph nodes, those with so-called lymph node
negative breast cancer continued to be treated by surgery only, as they were considered
at sufficiently favorable prognosis so as not to require further interventions. Because
a significant fraction of such women do suffer recurrence and eventually die from the
disease, beginning in the 1980’s the NSABP began a series of clinical trials among
patients with axillary lymph node negative breast cancer. These trials were serially
designed, beginning with comparisons surgery alone to post-surgical hormonal or cyto-
toxic adjuvant therapy regimens, and following benefits seen for the latter, subsequently
comparing different adjuvant therapy regimens. These studies provide a unique view to
the long-term prognosis of women with early stage breast cancer, and are an ideal data
source for examining factors influencing the hazard of disease recurrence.

A key determinant of both expected prognosis and potential choice of adjuvant
therapy type is the presence and quantity of estrogen receptors (ER) on the tumor. From
1982-1988, patients were accrued according to ER status into one of two trials conducted
in parallel: Protocol B-13 randomized 760 patients with ER-negative (ER-) tumors to
no further treatment after surgery (384) or to 12 cycles of cytotoxic chemotherapy
treatment with methotrexate and 5-fluorouracil (376). Protocol B-14 randomized 2,892
patients with ER-positive (ER+) tumors to placebo (1,453) or the estrogen antagonist
drug tamoxifen (1,439) after surgery. Primary findings were first obtained in 1989,
showing a significant reduction in breast cancer recurrence risk for patients receiving the
adjuvant therapy regimens (Fisher et al. 1989b,a). Longer follow-up eventually revealed
a survival advantage for those who received adjuvant therapy (Fisher et al. 1996b,a).
Further details of the trial designs and findings can be found in the published primary
reports. Follow-up continues to date, with mean follow-up of over 15 years and over 900
recurrence events observed.

Primary endpoints for the trial were overall survival, defined as time from surgery
to death from any cause, and disease-free survival, defined as time to first breast cancer
recurrence at any local, regional, or distant anatomic site, occurrence of a tumor in
the opposite breast, occurrence of other second primary cancers, or death prior to
these events (that is, time to first event of any kind). In this study, we model the
cause-specific hazard for breast recurrence, defined as time to breast cancer recurrence,
treating the other event types as censored observations. We do this because modeling
the cause-specific hazard for breast cancer events only may have more clinical relevance,
and furthermore, with the exception of endometrial cancer, which occurs in less than
1.5% of patients but is more frequent among women taking tamoxifen, hazard rates
for non-breast cancer events are essentially equal between the two treatment groups.
As in previous studies modeling these data (Fisher et al. 1989c; Bryant et al. 1997), we
examine tumor size, tumor progesterone receptor level, menopausal status, and age as
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covariates potentially associated with the recurrence hazard.

3 The Multiresolution Hazard Model

In this section, we review the multiresolution approach to modeling hazard rate in a
semiparametric Bayesian context developed and described in more detail in Bouman et
al. (Bouman et al. 2005, 2007). As will be explained below, the method relies on the
clever tree-based construction of the prior for the hazard rate, that ultimately yields a
resolution-invariant and self-consistent prior for an arbitrarily fine piece-wise constant
approximation to the hazard rate. The parameterization of the prior tree uniquely
defines not only the prior expectations of the hazard rate in each of the intervals, but
it also determines the amount of correlation and smoothness in hazard between the
intervals.

3.1 Approaches to Hazard Modeling

One of the most common approaches to assessing the impact of factors on the hazard of
failure is the Cox proportional hazard model. In this model individual covariates X af-
fect baseline hazard hbase(t) via exp(X′β) (Cox 1972). This approach is readily adapted
to modeling the cause-specific hazard (Prentice et al. 1978). In the typical application
of the Cox model, covariate effects for the relative hazard are the primary focus, with
the baseline hazard function treated as a nuisance parameter. As we have indicated,
however, interest in our particular study here lies precisely in the estimation of the
hazard functions. Specifically, we are interested in the estimation of a separate hazard
rate function within certain strata based on treatment type and tumor characteristics,
so that we might compare the shape of the hazards, while simultaneously estimating
and performing inference about other covariate effects that are reasonably assumed to
be common over strata.

Non-parametric methods for extracting hazard function estimates have been pro-
posed for the Cox model (Gray 1990, 1992), primarily for the purpose of performing
model diagnostics (e.g., changes in the effects of covariates over time) and correct func-
tional forms for covariates in relation to failure hazard. A more general hazard regression
approach that involves partitioning the time axis more specifically focused on hazard
estimation within covariate strata (Gray 1996). There are many other approaches and
variations (see Andersen et al. (1993) for detailed review), many of which provide esti-
mates of functionals (S(t), etc.) after the model is fit, but most still focus on covariates
and model checking, rather than on efficient hazard function estimation per se. We
discuss the properties and justify the MRH approach to hazard modeling more in the
next section.
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3.2 Multiresolution Model for the Baseline Hazard

Multiscale models for estimation of a discretized intensity function were developed for
astrophysics applications by Kolaczyk (Kolaczyk 1999; Nowak and Kolaczyk 2000). De-
tails of how this methodology has been adapted to hazard estimation are summarized
in the following, while a more extensive discussion of its theoretical properties can be
found in Bouman et al. (2005, 2007).

In summary, the multiresolution hazard (MRH) approach yields an estimate of the
baseline (i.e., estimate from which covariate-specific curves can be generated) survival
function based on the multiresolution baseline hazard estimate. It consists of first choos-
ing the “time resolution” – a set of time points {t0, t1, ..., tJ} – and then estimating the
underlying baseline survival at those points, Sbase(tj), based on the the cumulative haz-

ard Hbase(t) and its discrete increments dj ≡ Hbase(tj)−Hbase(tj−1) =
∫ tj

tj−1

hbase(s)ds,

where hbase(t) represents the baseline hazard rate at time t. For those times t such that
tj−1 < t < tj , j = 1, . . . , J , a piecewise-constant hazard rate is assumed.

The MRH model is thus a semiparametric model which is able to estimate the
baseline hazard rate hbase(t) at the resolution times tj , along with covariate effects β.
For convenience, we set the number of time intervals J equal to 2M , where M > 0. In
general, these intervals need not be of equal length – one can choose any resolution,
though in practice we would recommend one such that there are multiple failure times
observed in almost all intervals. Furthermore, the resolution should be chosen so that the
average (or total) hazard rates within its intervals are clinically meaningful. However,
in cases when prior information and clinical input about the resolution are vague, the
optimal number of intervals could be chosen via model selection criteria, such as the DIC
(Spiegelhalter et al. 2002). Note that the failure times after tJ become right-censored
at tJ ; hence, J should also be chosen so that a relatively small fraction of failure times
is censored as a result.

After fixing the resolution, the discretized hazard is modeled in a way that allows
us to incorporate the prior belief about the shape and smoothness of the true under-
lying hazard function. Following the notation in Bouman et al. (Bouman et al. 2005,
2007), we denote the total cumulative baseline hazard H(tJ ) as H0,0, and the haz-
ard increments d1 as HM,0, d2 as HM,1, . . . , and dJ as HM,2M−1. We then build the
multiresolution hazard tree by recursively defining Hm−1,p = Hm,2p + Hm,2p+1, for
m = 1, . . . , M , and p = 0, . . . , 2m−1 − 1. We refer to m as the level of resolution
and p as the position within that level. Thus, at the top of this hazard tree we have
the total cumulative hazard H(tJ ), which we split into finer components with each
additional level of the tree, until we finally end at the the bottom of the tree (the
highest level of resolution) with the hazard increments d1, . . . , dJ . If we further de-
fine Rm,p ≡ Hm,2p/Hm−1,p, we can parametrize the hazard increments by H0,0 and
the “splits” R1,0, . . . , RM,2M−1−1 (denoted Rm,p). For example, when M = 3 (imply-
ing J = 8) we have: d1 = H0,0R1,0R2,0R3,0, d2 = H0,0R1,0R2,0(1 − R3,0), . . . , d8 =
H0,0(1 − R1,0)(1 − R2,1)(1 − R3,3).

It is important to note that the piecewise-constant hazard assumption has been em-
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ployed multiple times in the literature (for example, Walker and Mallick (1997). How-
ever, the uniqueness of the MRH model lies in its clever construction of the tree-based
prior for a piece-wise constant function, so that the prior essentially does not depend on
the final resolution level M (i.e., it is invariant to the height of the tree). More precisely,
integrating out higher-level parameters, one would obtain the exact same prior as if that
level and its parameters had simply not been considered in the first place. To aid with
the understanding of the MRH model, a simple diagram of the two-level multiresolution
prior is given in Figure 1.

Figure 1: Diagram illustrating the multiresolution prior for the hazard rate function,
with 2 levels (i.e., with resolution 2).

As in Nowak and Kolaczyk (Nowak and Kolaczyk 2000), we place a beta prior on
each Rm,p and a gamma prior on H . The shape parameters of each of these beta
priors and the hyperparameters for H determine the prior expectations of the hazard
increments, d∗

j , j = 1, . . . , J . Furthermore, to allow for extra smoothness in the mul-
tiresolution prior, Bouman et al. (2007) introduce a multiplier for the shape parameters
of the beta priors at each additional level of the hierarchy, denoted by k. Proceeding in
this fashion, the priors for H and each Rm,p when M = 3 and J = 8 are:

H ∼ Ga(a, λ),

R1,0 ∼ Be(2γ1,0ka, 2(1 − γ1,0)ka),

R2,p ∼ Be(2γ2,pk
2a, 2(1 − γ2,p)k

2a), p = 0, 1

R3,p ∼ Be(2γ3,pk
3a, 2(1 − γ3,p)k

3a), p = 0, 1, 2, 3.

Note that under this prior structure, E(Rm,p) = γm,p, which, because H and Rm,p

are independent a priori, easily allows one to choose γm,p, λ and a so that the prior
expectation of the baseline hazard in each time interval j is any value d∗

j desired. This
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particular formulation of the gamma-beta tree also determines the prior correlation of
the dj as a function (among other things) of k and a. Specifically, when k = 0.5,
the baseline hazard increments dj are a priori independent gamma random variables.
Choosing k less or greater than 0.5 yields, respectively, negative (rougher hazard) or
positive (smoother hazard) prior correlation among the dj ’s (Bouman et al. 2005, 2007).
Smoother hazard may in particular be employed in problems with much censoring.
It is also possible to treat k as a hyperparameter and estimate it jointly with other
parameters.

It is well known that MRH models, because they are based on a tree-like structure,
may have a blocky correlation pattern; for example, it is possible that two neighboring
hazard increments are less correlated than those further apart which happen to share
more ancestral split parameters. Bouman et al. (Bouman et al. 2005) propose placing a
hyperprior on the hazard H shape parameter a to even out the prior correlations among
hazard increments and bypass this rather counterintuitive property.

3.3 Hierarchical Multiresolution Hazard Model

It may sometimes be of interest or necessity to relax the proportional hazards assump-
tion, permitting different baseline hazards in particular groups. These strata-specific
hazards may be treated as fixed, or as random (infinite dimensional) strata-specific pa-
rameters. This could be desirable in particular when we have data from multiple centers
or multiple studies, when one needs to allow for differences in baseline hazards due to
unobserved covariate processes, or to account for correlation within subjects from the
same strata.

In breast cancer, it is well-known that women with ER- and ER+ tumors have differ-
ent expected prognosis due to association of ER with both tumor pathology and clinical
characteristics such as patient age (Hess et al. 2003). Because we are primarily inter-
ested in estimating the hazard shapes, we wish to avoid imposing any proportionality
constraint on ER in the model. In any case, Figure 2, showing recurrence-free survival
curves by ER and treatment, clearly illustrates deviation from proportional hazards
between ER- and ER+ patients. While proportionality appears to hold better between
treatment groups within ER categories (Fig. 2), we also wish to permit a different
hazard shape according to treatment type, as biologic hypotheses concerning the action
of adjuvant therapy would suggest the possibility of different shapes (Skipper 1971).
Thus, we define strata defined by the ER by treatment group combinations (i.e., ER-
surgery only, ER- chemotherapy, ER+ surgery only (placebo), ER+ tamoxifen).

More specifically, in this model we allow the hazard for each of the strata to be
a priori an independent and identically distributed random MRH variable. For each
stratum s, s ∈ {1, 2, 3, 4}, we draw the stratum cumulative hazard Hs from a Ga(as, λs),
and then draw the stratum set of splits Rm,p,s. For this reason we will call this model
the hierarchical MRH or the HMRH for short.

To complete the prior for the hazard rate, we place a zero-truncated Poisson (ZTP)
hyperprior with mean µa on each as: e−µaµa

a/[a!(1 − e−µa)], and we allow each scale
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Figure 2: Kaplan-Meier estimates of recurrence-free survival among early stage breast
cancer patients from NSABP clinical trials. Failures continue to occur in all groups
many years after initial diagnosis and surgery.

parameter λs, the parameter of the total cumulative hazards Hs(tJ ), to follow an ex-
ponential distribution with mean µλ. The parameters ks can be also given exponential
priors with mean µk, but they could also be fixed if specific smoothness (positive or
negative correlation) is desired a priori.

The continuous-time complete-data likelihood is based on the proportional-hazards
model: hs(t|X, β) = exp(X′β)hbase,s(t), where s denotes the stratum group. For a
patient i in stratum s, if the failure time Ti,s ∈ [0, tJ ] is observed without censoring, the
likelihood function is:

Li,s(β | Ti,s,Xi,s) = exp(X′
i,sβ)hbase,s(Ti,s)Sbase,s(Ti,s)

exp(X′

i,sβ). (1)

When an observation is right-censored, i.e., Ti,s > tcens for some tcens ≤ tJ , we have:

Li,s(β | Ti,s,Xi,s) = Ss(tcens|Xi,s, β) = Sbase,s(tcens)
exp(X′

i,sβ). (2)
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Here, each hs is a priori distributed as an MRH variable, with independent total
hazard and split parameters. The vector of covariates Xi,s contains patient and disease
characteristics (age, tumor size, tumor progesterone receptor level, etc.) for patient i in
stratum s.

4 Markov chain Monte Carlo

The Gibbs sampling algorithm used to simulate the parameter posterior and its sequence
of full conditional posterior distributions for parameters from all strata is outlined below.
The details of the simpler model are provided in Bouman et al. (2005, 2007).

The likelihood for patient i in stratum s, whose failure (or censoring) time is Ti,s,
the censoring indicator δi,s, and the covariates Xi,s, is

L(Ti,s | δi,s, β, Hs,Rm,p,s,Xi,s) =
[
exp(X′

i,sβ)hbase,s(Ti,s)
]δi,s

exp(− exp(X′
i,sβ)Hbase,s(min(Ti,s, tJ))). (3)

The log-likelihood for all N =
∑4

s=1 Ns patients is thus:

δ′
[
Xβ + FsΠR̃

]
−

4∑

s=1

Ns∑

i=1

exp(X′
i,sβ)Hbase,s(min(Ti,s, tJ)) (4)

where δ is the vector of censoring indicators for all patients, X is the N × L ma-
trix of covariates and Π is the 2M × (2M+1 − 1) multiresolution tree matrix. In
that matrix, the (i, j) element is 1 when j = 1 or i ∈ [1 + (j mod 2m), . . . , 2M−m +
(j mod 2m)], m = blog2(j)c, and 0 otherwise. R̃ is the multiresolution log-parameter
vector (log(H), log(R1,0), log(1 − R1,0), . . . , log(RM,2M−1), log(1 − RM,2M−1)). F is an
N × 2M matrix for which the (i, j) element is 1 if the ith patient (among all patients in
all strata put together) has Ti ∈ (tj−1, tj ], and 0 otherwise; patients with Ti > tJ have
Fi,j = 0, j = 1, . . . , J (see Bouman et al. (2005, 2007) for details).

The Gibbs sampler steps (Geman and Geman 1984) for the parameters Hs, Rm,p,s,
λs, as, and ks, for all strata s are the same:

1. Sample Hs from its full conditional density:

π(Hs|λs, as,Rm,p,s) = Ga
(
(as +

∑Ns

i=1 δi,s), 1/
[
(1/λs) +

∑Ns

i=1 F(Ti,s)
])

,

with mean µ = (as +
∑Ns

i=1 δi,s)/
[
(1/λs) +

∑Ns

i=1 F(Ti,s)
]

,

where F(Ti,s) = Hs(min(Ti,s, tJ))/Hs(tJ) is a function of the Ti,s and Rm,p,s.

2. Sample each Rm,p,s from the full conditional π(Rm,p,s|ks, as, Hs)

3. Sample k from π(ks|as,Rm,p,s, β), λs from π(λs|Hs, as, β), and
as from π(as|Hs,Rm,p,s, λs, β).

4. Sample β from π(β|Hs,Rm,p,s).
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Similarly as in Bouman et al. (2005, 2007), the full conditional posterior distributions
for Hs are gamma, while the full conditional distributions for each Rm,p,s and β are log-
concave and therefore easy to sample from (using Gilks and Wild (1992) algorithm, for
example). On the other hand, the full conditional distributions for hyperparameters λs,
as, and ks are in general more difficult to sample from as they are not log-concave. We
recommend following Bouman et al. (2005) who use the rejection Metropolis sampling
(see Gilks et al. (1995)).

5 Analysis of the Recurrence Hazard after Breast Cancer

5.1 Covariate Effect Estimation

The 16- and 32-bin multiresolution model with the “flat” prior hazard rate for each
stratum (with all γm,p,s and all ks set to 0.5), was fit using output from Gibbs sampler
chains with 12,000 iterations each, with the first 2,000 iterations of each chain discarded
as burn-in. Every 5th iteration was retained to reduce correlation between adjacent
draws. The Gelman-Rubin diagnostics, performed separately for each parameter, were
used to establish convergence.

Table 1: Posterior Credible Intervals for Predictor Effects, 16-bin model

Tumor Size Standardized PGR Standardized Age

2.5% 0.0148 −0.151 −0.281
50% 0.0199 −0.066 −0.217

97.5% 0.0251 0.007 −0.149

Table 1 gives marginal 95% posterior credible intervals for covariates considered.
Tumor size was measured in millimeters (mm), ranging from 0 to 60mm. Progesterone
receptor concentration (PGR) was standardized using the sample mean of 139.17 and
standard deviation of 294.59. Age was standardized using the sample mean of 53.27 and
standard deviation of 10.42 years. Larger tumor size and younger age at diagnosis were
found associated with increased recurrence hazard: within each stratum, an increase of
10.42 years (1 standard deviation) in age resulted approximately in 20% reduction, while
an increase of 1mm in tumor size resulted in approximately 2% increase in recurrence
hazard. A higher concentration of progesterone receptors on the tumor is weakly indica-
tive of lesser failure risk. While menopausal status is generally an important factor in
breast cancer prognosis, here it was only marginally associated with recurrence hazard
after stratification by estrogen receptor status and inclusion of age at diagnosis in the
model, and so was omitted from further consideration. The direction and magnitude of
these covariate effects are essentially consistent with other prognostic factor studies of
these patients.
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5.2 Hazard Function Estimation

Figure 3 displays by treatment/ER strata the median posterior estimates for the 16-
bin baseline hazard increments (corresponding to constant 11.3-month hazard function
values). This 16-dimensional vector is a discrete approximation to the baseline hazard

rate h(t), estimated via the hazard increments dj =
∫ tj

tj−1

h(s)ds. In Figure 4, we

show a smoothed version of the same hazard estimates. Smoothing was performed via
the median-spline method, with a hazard value of zero included at time zero for each
stratum, to reflect the fact that patients are considered cancer-free immediately after
surgery and essentially do not fail until some time has elapsed.

0
.0

02
.0

04
.0

06
.0

08
ha

za
rd

0 4 8 12 16
Time from Surgery in 11−month Increments

surgery only, ER− chemotherapy, ER−
surgery only, ER+ tamoxifen, ER+

covariate values: age=53.3, pgr=139.2, tumor size= 20 mm

Figure 3: Discrete recurrence hazard increments for the 16-bin HMRH model. Horizon-
tal sections represent the hazard value within the approximate 11-month increment in
time from surgery.

Several notable features are seen. First, all four groups have the distinctive hazard
peak around 12-24 months after surgery, with the ER- groups experiencing the peak a
bit earlier. This pattern is similar to that noted by Hess et al. (2003) in their study
of recurrence hazards by ER status. Second, the peak is greatest for the ER- patients
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Figure 4: Smoothed recurrence hazards for the 16-bin model.

receiving surgery only, and is substantially reduced by chemotherapy, being lower than
untreated patients from the more favorable ER+ group. The lowest peak is among ER+
patients randomized to tamoxifen. Interestingly however, at longer follow-up times the
hazard in this group is no lower than that of chemotherapy treated and even untreated
ER- patient groups, both of which have smaller hazard than untreated ER+ patients.
Ultimately, the ER- chemotherapy treated group has the lowest recurrence hazard.

Figure 5 shows pointwise posterior credible intervals, based on 2.5% and 97.5% es-
timated posterior percentiles, for the four strata. With the exception of time points
around the hazard peak, credible intervals for the four hazard estimates tend to over-
lap, particularly at longer follow-up times. Thus, we currently cannot reliably conclude
whether there is a crossover of failure hazard among the groups at later time points.
We should note that in other analyses collapsing across one or the other stratification
factors (ER or treatment) and treating ER or treatment as covariates in modeling, large
treatment effects within ER groups were apparent, while differences between ER groups
within treatment modalities (surgery, adjuvant) were large initially but attenuated over
time, substantively violating the proportional hazards assumption, as is evident in Fig-
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ure 2.

Figure 5: Credible intervals for the recurrence hazards from Figure 4 by ER and treat-
ment strata.

5.3 Sensitivity Analysis

We now turn to the question of robustness of our model results. An alternate model was
based on 32 time intervals of length just under 6 months each, instead of the 16 intervals
of approximate length of 1 year. The purpose of this sensitivity check was twofold: first,
to compare the estimates of the hazard rates for each of the four groups under these
alternative resolutions; and second, to assess the impact of additional resolution level
onto the estimates of the covariates (age, tumor progesterone receptor level, and tumor
size). Note that in this data set, we could not reasonably use a finer resolution than the
32-bin choice for two reasons: 1) although this is a large cohort of patients, prognosis is
relatively favorable and so failures are few if the intervals (bins) are very small, and 2)
follow-up visits do not happen more frequently than once every 3 to 6 months, and while
recurrence events can occur in continuous time, recurrence events that are not clinically
apparent will be detected at these visits, causing clustering of events (and consequently
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artificial periodicity in the hazard function estimate) if very small time bins are used.

Table 2: Posterior Credible Intervals for Predictor Effects, 32-bin model

Tumor Size Standardized PGR Standardized Age

2.5% 0.0150 −0.147 −0.281
50% 0.0200 −0.066 −0.215

97.5% 0.0250 0.009 −0.147

Based on the invariance properties of the MRH prior, one can expect that some
of that invariance is preserved in the posterior as well; and we observe this to a large
degree. For example, a 16-bin hazard estimate obtained by fitting the 32-bin model and
then aggregating the neighboring hazard increments is almost indistinguishable from
the original 16-bin model hazard estimate. In addition, hazard rate plots using the
32-bin model and the 16-bin model are very similar as well; as expected, the 32-bin
estimates are slightly more variable, but all hazard shapes are very similar (not shown).

With respect to covariate effect estimates, the effects of increasing the resolution
is minimal. Compared to Table 1, the effects shown in Table 2 differ by a negligible
amount.

6 Discussion

We have illustrated the application of a flexible extension of the familiar Cox pro-
portional hazards model to jointly estimate covariate effects and separate hazard rate
functions for several patient strata. This approach allows us to incorporate covariate
effects and perform inference related to shapes and change-points in the hazard over
time, our primary interest in the problem of recurrence after early stage breast can-
cer. The estimation and examination of the hazard functions directly reveals important
patterns not readily apparent from quantities such as the survival functions. However,
the hazard function remains a difficult quantity to draw robust inference from, as even
in this large dataset, estimates suggest potentially important differences in shape, but
variability estimates preclude any definitive conclusions pending additional analyses, as
discussed below.

The observation that among those patients with initially higher risk disease (i.e.,
those with ER- tumors), the fraction escaping the early failure risk go on to have sub-
stantially lower long-term failure risk than those with initially more favorable prognosis
(ER+ tumors), has significant implications in both clinical management and consider-
ations regarding further developments of adjuvant therapies. In fact, there has been
much recent interest in the development of ‘switching’ strategies whereby women with
ER+ tumors discontinue tamoxifen and begin use of other hormonal treatments, in or-
der to extend and improve on the benefit of this treatment modality. Currently, little
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is known about what factors might be key to optimizing the switching strategy. For
ER- patients, newer chemotherapy and molecularly targeted agents that act on specific
tumor vulnerabilities may offer the best opportunity for a bona fide cure once early
failure is avoided.

In addition to the well-known initial wave of failures following surgery, in recent
years investigators have suggested that additional reproducible patterns are manifest in
the recurrence hazard in the intermediate to long-term follow-up period. The notion
of a bimodal or “double-peaked” recurrence hazard has been proposed, where after the
first period of increased failure risk at 1-5.3.0 years post-surgery, the decline in failure
hazard is followed by a second peak centered roughly around 8 years (Demicheli et al.
1996, 2001; Baum et al. 2005). A number of cancer biologic hypotheses have been
put forth regarding the meaning and cause of a possible double-peaked failure pattern.
For example, it has been conjectured that growth kinetics perturbed by surgery may
contribute to the first wave in failure hazard, while heterogeneous disseminated tumor
cells that require more time to become established may account for the latter peak in
failure (Demicheli et al. 2001; Baum et al. 2005). This idea may seem to harken back
to the naive concept that cancer surgery “spreads” cancer, but the influence of surgery
on growth kinetics does have foundation in substantive biologic theory (Fisher et al.
1983). However, before any such interpretations of the hazard shape can be made or
gain further credibility, more rigorous analytic methods such as those proposed here
must be applied. Furthermore, it may be difficult to uniquely ascribe such a pattern
to specific biologic phenomena, because other circumstances, such as the existence of
patient mixtures due to unrecognized factors present at diagnosis or apparent hazard
spikes caused by clustering of failures in time due to discovery of subclinical disease
around certain time landmarks (e.g., mandatory 5-year post-diagnosis screen) would
be expected to produce similar patterns. Nonetheless, this intriguing concept merits
further investigation.

Our future work on this problem will involve the inclusion of data from trials con-
ducted subsequent to those included here. As the trials are designed in a hierarchical
fashion, these studies share some treatment arms in common with the current data, but
also include newer treatment regimens. Extension of the model to more data sources will
involve incorporation of ‘trial’ effects to allow for heterogeneity among common treat-
ment arms. The inclusion of additional data will permit a more thorough exploration
of changes in the hazard over time and more robust inference (including “collapsibility”
of neighboring intervals in some regions), due to the considerably larger sample size
that will result in narrower bounds on estimated hazards. This analysis will also have
greater biologic and clinical relevance as we explore more recent drug regimens designed
to reduce recurrence risk in women with breast cancer.

References

Aalen, O. and Gjessing, H. (2001). “Understanding the shape of the hazard rate: A
process point of view.” Statistical Science, 16: 1–22. 592
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