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COMPUTING HILBERT CLASS POLYNOMIALS WITH THE
CHINESE REMAINDER THEOREM

ANDREW V. SUTHERLAND

Abstract. We present a space-efficient algorithm to compute the Hilbert class

polynomial HD(X) modulo a positive integer P , based on an explicit form of
the Chinese Remainder Theorem. Under the Generalized Riemann Hypothesis,

the algorithm uses O(|D|1/2+ε log P ) space and has an expected running time

of O(|D|1+ε). We describe practical optimizations that allow us to handle
larger discriminants than other methods, with |D| as large as 1013 and h(D)

up to 106. We apply these results to construct pairing-friendly elliptic curves

of prime order, using the CM method.

1. Introduction

Elliptic curves with a prescribed number of points have many applications, in-
cluding elliptic curve primality proving [2] and pairing-based cryptography [31].
The number of points on an elliptic curve E/Fq is of the form N = q+ 1− t, where
|t| ≤ 2

√
q. For an ordinary elliptic curve, we additionally require t 6≡ 0 mod p, where

p is the characteristic of Fq. We may construct such a curve via the CM method.
To illustrate, let us suppose D < −4 is a quadratic discriminant satisfying

(1) 4q = t2 − v2D,

for some integer v, and let O denote the order of discriminant D. The j-invariant of
the elliptic curve C/O is an algebraic integer, and its minimal polynomial HD(X)
is the Hilbert class polynomial for the discriminant D. This polynomial splits com-
pletely in Fq, and its roots are the j-invariants of elliptic curves with endomorphism
ring isomorphic to O. To construct such a curve, we reduce HD mod p, compute
a root in Fq, and define an elliptic curve E/Fq with this j-invariant. Either E or
its quadratic twist has N points, and we may easily determine which. For more
details on constructing elliptic curves with the CM method, see [2, 13, 50].

The most difficult step in this process is obtaining HD, an integer polynomial
of degree h(D) (the class number) and total size O(|D|1+ε) bits. There are several
algorithms that, under reasonable heuristic assumptions, can compute HD in quasi-
linear time [5, 12, 22, 27], but its size severely restricts the feasible range of D. The
bound |D| < 1010 is commonly cited as a practical upper limit for the CM method
[31, 43, 44, 68], and this already assumes the use of alternative class polynomials
that are smaller (and less general) than HD. As noted in [27], space is the limiting
factor in these computations, not running time. But the CM method only uses
HD mod p, which is typically much smaller than HD.
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We present here an algorithm to compute HD mod P , for any positive integer P ,
using O(|D|1/2+ε logP ) space. This includes the case where P is larger than the
coefficients of HD (for which we have accurate bounds), hence it may be used to
determine HD over Z. Our algorithm is based on the CRT approach [1, 5, 17],
which computes the coefficients of HD modulo many “small” primes p and then
applies the Chinese Remainder Theorem (CRT). As in [1], we use the explicit
CRT [8, Thm. 3.1] to obtain HD mod P , and we modify the algorithm in [5] to
compute HD mod p more efficiently. Implementing the CRT computation as an
online algorithm reduces the space required. We obtain a probabilistic algorithm
to compute HD mod P whose output is always correct (a Las Vegas algorithm).

Under the Generalized Riemann Hypothesis (GRH), its expected running time
is O(|D|1+ε). More precisely, we prove the following theorem.

Theorem 1. Under the GRH, Algorithm 2 computes HD mod P in expected time
O
(
|D| log5 |D|(log log |D|)4

)
, using O

(
|D|1/2(log |D|+ logP ) log log |D|

)
space.

In addition to the new space bound, this improves the best rigorously proven time
bound for computing HD, under the GRH [5, Thm. 1], by a factor of log2 |D|.
Heuristically, the time complexity is O(|D|1/2 log3+ε |D|). We also describe prac-
tical improvements that make the algorithm substantially faster than alternative
methods when |D| is large, and provide computational results for |D| up to 1013

and h(D) up to 106. In our largest examples the total size of HD is many terabytes,
but less than 200 megabytes are used to compute HD modulo a 256-bit prime.

2. Overview

Let O be a quadratic order with discriminant D < −4. With the CRT approach,
we must compute HD mod p for many primes p. We shall use primes in the set

(2) PD = {p > 3 prime : 4p = t2 − v2D for some t, v ∈ Z>0}.

These primes split completely in the ring class field KO of O, split into principal
ideals in Q[

√
D], and are norms of elements in O, see [2, Prop. 2.3, Thm. 3.2]. For

each p ∈ PD, the positive integers t = t(p) and v = v(p) are uniquely determined.
We first describe how to compute HD mod p for a prime p ∈ PD, and then

explain how to obtain HD mod P for an arbitrary positive integer P . Let us begin
by recalling a few pertinent facts from the theory of complex multiplication.

For any field F , we define the set

(3) EllO(F ) = {j(E/F ) : End(E) ∼= O},

the j-invariants of elliptic curves defined over F with endomorphism ring isomorphic
to O. There are two possibilities for the isomorphism in (3), but as in [5] we make
a canonical choice and henceforth identify End(E) with O. For j(E) ∈ EllO(F )
and an invertible ideal a in O, let E[a] denote the group of a-torsion points, those
points annihilated by every z ∈ a ⊆ O ∼= End(E). We then define

j(E)a = j(E/E[a]).

The map j(E) 7→ j(E)a corresponds to an isogeny with kernel E[a] and degree
equal to the norm of a. This yields a group action of the ideal group of O on the
set EllO(KO), and this action factors through the class group cl(O) = cl(D).
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For a prime p ∈ PD, a bijection between EllO(Fp) and EllO(KO) arises from the
Deuring lifting theorem, see [49, Thms. 13.12-14]. The following proposition then
follows from the theory of complex multiplication.

Proposition 1. For each prime p ∈ PD:

1. HD(X) splits completely over Fp. It has h(D) roots, which form EllO(Fp).
2. The map j(E) 7→ j(E)a defines a free transitive action of cl(D) on EllO(Fp).

For further background, we recommend the expositions in [23] and [60], and also
the material in [49, Ch. 10] and [62, Ch. II].

Let p be a prime in PD. Our plan is to compute HD mod p by determining its
roots and forming the product of the corresponding linear factors. By Proposition 1,
we can obtain the roots by enumerating the set EllO(Fp) via the action of cl(D).
All that is required is an element of EllO(Fp) to serve as a starting point. Thus we
seek an elliptic curve E/Fp with End(E) ∼= O. Now it may be that very few elliptic
curves E/Fp have this endomorphism ring. Our task is made easier if we first look
for an elliptic curve that at least has the desired Frobenius endomorphism, even if
its endomorphism ring might not be isomorphic to O.

For j(E) ∈ EllO(Fp), the Frobenius endomorphism πE ∈ End(E) ∼= O corre-
sponds to an element of O with norm p and trace t. Let us consider the set

(4) Ellt(Fp) = {j(E/Fp) : tr(πE) = t},

the j-invariants of all elliptic curves E/Fp with trace t. We may regard j ∈ Ellt(Fp)
as identifying a particular elliptic curve E/Fp satisfying j(E) = j and tr(πE) = t,
since such an E is determined up to isomorphism [23, Prop. 14.19]. We have
EllO(Fp) ⊆ Ellt(Fp), and note that Ellt(Fp) = Ell−t(Fp).

Recall that elliptic curves E/Fp and E′/Fp are isogenous over Fp if and only if
tr(πE) = tr(π′E), see [39, Thm. 13.8.4]. Given j(E) ∈ Ellt(Fp), we can efficiently
obtain an isogenous j(E′) ∈ EllO(Fp), provided v has no large prime factors.

This yields Algorithm 1. Its structure matches [5, Alg. 2], but we significantly
modify the implementation of Steps 1, 2, and 3.

Algorithm 1. Given p ∈ PD, compute HD mod p as follows:

1. Search for a curve E with j(E) ∈ Ellt(Fp) (Algorithm 1.1).
2. Find an isogenous E′ with j(E′) ∈ EllO(Fp) (Algorithm 1.2).
3. Enumerate EllO(Fp) from j(E′) via the action of cl(D) (Algorithm 1.3).
4. Compute HD mod p as HD(X) =

∏
j∈EllO(Fp)(X − j).

Algorithm 1.1 searches for j(E) ∈ Ellt(Fp) by sampling random curves and
testing whether they have trace t (or −t). To accelerate this process, we sample a
family of curves whose orders are divisible by m, for some suitable m|(p + 1 ± t).
We select p ∈ PD to ensure that such an m exists, and also to maximize the size of
Ellt(Fp) relative to Fp (with substantial benefit).

To compute the isogenies required by Algorithms 1.2 and 1.3 we use the classical
modular polynomial ΦN ∈ Z[X,Y ], which parametrizes elliptic curves connected
by a cyclic isogeny of degree N . For a prime ` 6= p and an elliptic curve E/Fp,
the roots of Φ`(X, j(E)) over Fp are the j-invariants of all curves E′/Fp connected
to E via an isogeny of degree ` (an `-isogeny) [71, Thm. 12.19]. This gives us a
computationally explicit way to define the graph of `-isogenies on the set Ellt(Fp).
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As shown by Kohel [46], the connected components of this graph all have a
particular shape, aptly described in [29] as a volcano (see Figure 1 in Section 4).
The curves in an isogeny volcano are naturally partitioned into one or more levels,
according to their endomorphism rings, with the curves at the top level forming a
cycle. Given an element of Ellt(Fp), Algorithm 1.2 finds an element of EllO(Fp) by
climbing a series of isogeny volcanoes. Given an element of EllO(Fp), Algorithm 1.3
enumerates the entire set by walking along isogeny cycles for various values of `.

We now suppose we have computed HD modulo primes p1, . . . , pn and consider
how to compute HD mod P for an arbitrary positive integer P , using the Chinese
Remainder Theorem. In order to do so, we need an explicit bound B on the largest
coefficient of HD (in absolute value). Lemma 8 of Appendix 1 provides such a B,
and it satisfies logB = O(|D|1/2+ε).

Let M =
∏
pi, Mi = M/pi and ai ≡M−1

i mod pi. Suppose c ∈ Z is a coefficient
of HD. We know the values ci ≡ c mod pi and wish to compute c mod P for some
positive integer P . We have

(5) c ≡
∑

ciaiMi mod M,

and if M > 2B we can uniquely determine c. This is the usual CRT approach.
Alternatively, if M is slightly larger, say M > 4B, we may apply the explicit

CRT (mod P ) [8, Thm. 3.1], and compute c mod P directly via

(6) c ≡
∑

ciaiMi − rM mod P.

Here r is the nearest integer to
∑
ciai/pi. When computing r it suffices to approx-

imate each rational number ciai/pi to within 1/(4n).
As noted in [27], even when P is small one still has to compute HD mod pi for

enough primes to determine HD over Z, so the work required is essentially the
same. The total size of the ci over all the coefficients is necessarily as big as HD.

However, instead of applying the explicit CRT at the end of the computation,
we update the sums

∑
ciaiMi mod P and

∑
ciai/pi as each ci is computed and

immediately discard ci. This online approach reduces the space required.
We now give the complete algorithm to compute HD mod P . When P is large

we alter the CRT approach slightly as described in Section 7. This allows us to
efficiently treat all P , including P = M , which is used to compute HD over Z.

Algorithm 2. Compute HD mod P as follows:

1. Select primes p1, . . . , pn ∈ PD with
∏
pi > 4B (Algorithm 2.1).

2. Compute suitable presentations of cl(D) (Algorithm 2.2).
3. Perform CRT precomputation (Algorithm 2.3).
4. For each pi:

a. Compute the coefficients of HD mod pi (Algorithm 1).
b. Update CRT sums for each coefficient of HD (Algorithm 2.4).

5. Recover the coefficients of HD mod P (Algorithm 2.5).

The presentations computed by Algorithm 2.2 are used by Algorithm 1.3 to
realize the action of the class group. The optimal presentation may vary with pi
(more precisely, v(pi)), but often the same presentation is used for every pi. Each
presentation specifies a sequence of primes `1, . . . , `k corresponding to a sequence
α1, . . . , αk of generators for cl(D) in which each αi contains an ideal of norm `i.
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There is an associated sequence of integers r1, . . . , rk with the property that every
β ∈ cl(D) can be expressed uniquely in the form

β = αx1
1 · · ·α

xk

k ,

with 0 ≤ xi < ri. Algorithm 1.3 uses isogenies of degrees `1, . . . , `k to enumerate
EllO(Fp). Given the large size of Φ`(X,Y ), roughly O(`3 log `) bits [21], it is critical
that the `i are as small as possible. We achieve this by computing an optimal
polycyclic presentation for cl(D), derived from a sequence of generators for cl(D).
Under the Extended Reimann Hypothesis (ERH) we have `i ≤ 6 log2 |D|, by [4].
This approach corrects an error in [5] which relies on a basis for cl(D) and fails to
achieve such a bound (see Section 5.3 for a counterexample).

The rest of this paper is organized as follows:

• Section 3 describes how we find a curve with trace ±t (Algorithm 1.1),
and how the primes p1, . . . , pn are selected (Algorithm 2.1).

• Section 4 discusses isogeny volcanoes (Algorithms 1.2 and 1.3).
• Section 5 defines an optimal polycyclic presentation of cl(D),

and gives an algorithm to compute one (Algorithm 2.2).
• Section 6 addresses the CRT computations (Algorithms 2.3, 2.4, and 2.5).
• Section 7 contains a complexity analysis and proves Theorem 1.
• Section 8 provides computational results.

Included in Section 8 are timings obtained while constructing pairing-friendly curves
of prime order over finite fields of cryptographic size.

3. Finding an Elliptic Curve With a Given Number of Points

Given a prime p and a positive integer t < 2
√
p, we seek an element of Ellt(Fp),

equivalently, an elliptic curve E/Fp with either N0 = p + 1 − t or N1 = p + 1 + t
points. This is essentially the problem considered in the introduction, but since we
do not yet know HD, we cannot apply the CM method.

Instead, we generate curves at random and test whether #E ∈ {N0, N1}, where
#E is the cardinality of the group E(Fp). This test takes very little time, given the
prime factorizations of N0 and N1, and does not require computing #E. However,
in the absence of any optimizations we expect to test many curves: 2

√
p+O(1), on

average, for fixed p and varying t. Factoring N0 and N1 is easy by comparison.
For the CRT-based algorithm in [5], searching for elements of Ellt(Fp) dominates

the computation. In the example given there, this single step takes more than 50
times as long as the entire computation of HD using the floating-point method
of [27]. We address this problem here in detail, giving both asymptotic and constant
factor improvements. In aggregate, the improvements we suggest can reduce the
time to find an element of Ellt(Fp) by a factor of over 100; under the heuristic
analysis of Section 7.1 this is no longer the asymptotically dominant step.

These improvements are enabled by a careful selection of primes p ∈ PD, which
is described in Section 3.3. Contrary to what one might assume, the smallest primes
in PD are not necessarily the best choices. The expected time to find an element
of Ellt(Fp) can vary dramatically from one prime to the next, especially when one
considers optimizations whose applicability may depend on N0 and N1. In order
to motivate our selection criteria, we first consider how we may narrow the search
by our choice of p, which determines t = t(p) and therefore N0 and N1.
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3.1. The density of curves with trace ±t. We may compute the density of
Ellt(Fp) as a subset of Fp via a formula of Deuring [26]. For convenience we define

(7) ρ(p, t) =
H(4p− t2)

p
≈ # Ellt(Fp)

#Fp
,

where H(4p− t2) is the Hurwitz class number (as in [18, Def. 5.3.6] or [23, p. 319]).
A more precise formula uses weighted cardinalities, but the difference is negligible,
see [23, Thm. 14.18] or [51] for further details.

We expect to sample approximately 1/ρ(p, t) random curves over Fp in order to
find one with trace ±t. When selecting primes p ∈ PD, we may give preference to
primes with larger ρ-values. Doing so typically increase the average density by a
factor of 3 or 4, compared to simply using the smallest primes in PD. It also makes
N0 and N1 more likely to be divisible by small primes, which interacts favorably
with the optimizations of the next section.

Using primes with large ρ-values improves the asymptotic results of Section 7
by an O(log |D|) factor. Effectively, we force the size of Ellt(Fp) to increase with p,
even though the size of EllO(Fp) is fixed at h(D). This process tends to favor primes
in PD for which v(p) has many small factors, something we must consider when
enumerating EllO(Fp) in Algorithm 1.3.

3.2. Families with prescribed torsion. In addition to increasing the density of
Ellt(Fp) relative to Fp, we can further accelerate our random search by sampling a
subset of Fp in which Ellt(Fp) has even greater density. Specifically, we may restrict
our search to a family of curves whose order is divisible by m, for some small m
dividing N0 or N1 (ideally both). We have some control over N0 and N1 via our
choice of p ∈ PD, and in practice we find we can easily arrange for N0 or N1 to be
divisible by a suitable m, discarding only a constant fraction of the primes in PD
we might otherwise consider (making the primes we do use slightly larger).

To generate a curve whose order is divisible by m, we select a random point on
Y1(m)/Fp and construct the corresponding elliptic curve. Here Y1(m) is the affine
subcurve of the modular curve X1(m), which parametrizes elliptic curves with a
point of order m. We do this using plane models Fm(r, s) = 0 that have been
optimized for this purpose, see [65]. For m in the set {2, 3, 4, 5, 6, 7, 8, 9, 10, 12}, the
curve X1(m) has genus 0, and we obtain Kubert’s parametrizations [47] of elliptic
curves with a prescribed (cyclic) torsion subgroup over Q. Working in Fp, we may
use any m not divisible p, although we typically use m ≤ 40, due to the cost of
finding points on Fm(r, s) = 0.

We augment this approach with additional torsion constraints that can be quickly
computed. For example, to generate a curve containing a point of order 132, it is
much faster to generate several curves using X1(11) and apply tests for 3 and 4 tor-
sion to each than it is to use X1(132). A table of particularly effective combinations
of torsion constraints, ranked by cost/benefit ratio, appears in Appendix 2.

The cost of finding points on Fm(r, s) = 0 is negligible when m is small, but
grows with the genus (more precisely, the gonality) of X1(m), which is O(m2), by
[42, Thm. 1.1]. For m < 23 the gonality is at most 4 (see Table 5 in [65]), and
points on Fm(r, s) can be found quite quickly (especially when the genus is 0 or 1).

Provided that we select suitable primes from PD, generating curves with pre-
scribed torsion typically improves performance by a factor of 10 to 20.
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3.3. Selecting suitable primes. We wish to select primes in PD that maximize
the benefit of the optimizations considered in Sections 3.1 and 3.2. Our strategy is
to enumerate a set of primes

(8) Sz = {p ∈ PD : 1/ρ(p, t(p)) ≤ z}
that is larger than we need, and to then select a subset S ⊂ Sz of the “best” primes.
We require that S be large enough to satisfy∑

p∈S
lg p > b = lgB + 2,

where B is a bound on the coefficients of HD(X), obtained via Lemma 8, and “lg”
denotes the binary logarithm. We typically seek to make Sz roughly 2 to 4 times
the size of S, starting with a nominal value for z and increasing it as required.

To enumerate Sz we first note that if 4p = t2 − v2D for some p ∈ Sz, then
1

ρ(p, t)
=

p

H(4p− t2)
=

p

H(−v2D)
≤ z.

Hence for a given v, we may bound the p ∈ Sz with v(p) = v by

(9) p ≤ zH(−v2D).

To find such primes, we seek t for which p = (t2− v2D)/4 is a prime satisfying (9).
This is efficiently accomplished by sieving the polynomial t2−v2D, see [24, §3.2.6].
To bound v = v(p) for p ∈ Sz, we note that p > −v2D/4, hence

(10) −v2D < 4zH(−v2D).

For fixed z, this inequality will fail once v becomes too large. If we have

(11)
v

(log log(v + 4))2
≥ 44zH(−D)

−D
,

then (10) cannot hold, by Lemma 9 of Appendix 1.

Example. Consider the construction of Sz for D = −108708, for which we have
H(−D) = h(D) = 100. We initially set z to −D/(2H(−D)) ≈ 543. For v = 1 this
yields the interval [−v2D/4, zH(−v2D)] = [−D/4,−D/2] = [27177, 54354], which
we search for primes of the form (t2 − D)/4 by sieving t2 − D with t ≤

√
−2D,

finding 17 such primes. For v = 2 we have H(−v2D) = 300 and search the interval
[−D,−3D/2] = [108708, 163062] for primes of the form (t2 − 4D)/4, finding 24 of
them. For v = 3 we have H(−v2D) = 400 and the interval [−9D/4,−2D] is empty.
The interval is also empty for 3 < v < 39, and (11) applies to all v ≥ 39.

At this point Sz is not sufficiently large, so we increase z, say by 50%, obtaining
z ≈ 814. This expands the intervals for v = 1, 2 and gives nonempty intervals
for v = 3, 4, and we find an additional 74 primes. Increasing z twice more, we
eventually reach z ≈ 1831, at which point Sz contains 598 primes with total size
around 11911 bits. This is more than twice b = lgB + 2 ≈ 5943, so we stop. The
largest prime in Sz is p = 5121289, with v(p) = 12.

Once Sz has been computed, we select S ⊂ Sz by ranking the primes p ∈ Sz
according to their cost/benefit ratio. The cost is the expected time to find a curve
in Ellt(Fp), taking into account the density ρ(p, t) and the m-torsion constraints
applicable to N0 and N1, and the benefit is lg p, the number of bits in p. Only a
small set of torsion constraints are worth considering, and a table of these may be
precomputed. See Appendix 2 for further details.
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The procedure for selecting primes is summarized below. We assume that h(D)
has been obtained in the process of determining B and b = lgB + 2, which allows
H(−D) and ρ(p, t) to be easily computed (see (26) and (27) in Appendix 1).
Algorithm 2.1. Given D, b, and parameters k > 1, δ > 0, select S ⊂ PD:

1. Let z = −D/(2H(−D)).
2. Compute Sz = {p ∈ PD : 1/ρ(p, t(p)) ≤ z}.
3. If

∑
p∈Sz

lg p ≤ kb, then set z ← (1 + δ)z and go to Step 2.
4. Rank the primes in Sz by increasing cost/benefit ratio as p1, . . . , pnz .
5. Let S = {p1, . . . , pn}, with n ≤ nz minimal subject to

∑
p∈S lg p > b.

In Step 3 we typically use k = 2 or k = 4 (a larger k may find better primes),
and δ = 1/2. The complexity of Algorithm 2.1 is analyzed in Section 7, where it
is shown to run in expected time O(|D|1/2+ε), under the GRH (Lemma 4). This is
negligible compared to the total complexity of O(|D|1+ε) and very fast in practice.

In the D = −108708 example above, Algorithm 2.1 selects 313 primes in Sz, the
largest of which is p = 4382713, with v = 12 and t = 1370. This largest prime is
actually a rather good choice, due to the torsion constraints that may be applied
to N0 = p+ 1− t, which is divisible by 3, 4, and 11. We expect to test the orders
of fewer than 40 curves for this prime, and on average need to test about 60 curves
for each prime in S, fewer than 20,000 in all.

For comparison, the example in [5, p. 294] uses the least 324 primes in PD, the
largest of which is only 956929, but nearly 500,000 curves are tested, over 1500
per prime. The difference in running times is even greater, 0.2 seconds versus 18.5
seconds, due to optimizations in the testing algorithm of the next section.

3.4. Testing curves. When p is large, the vast majority of the random curves we
generate will not have trace ±t, even after applying the optimizations above. To
quickly filter a batch of, say, 50 or 100 curves, we pick a random point P on each
curve and simultaneously compute (p+1)P and tP . Here we apply standard multi-
exponentiation techniques to scalar multiplication in E(Fp), using a precomputed
NAF representation, see [20, Ch. 9]. We perform the group operations in parallel
to minimize the cost of field inversions, using affine coordinates as in [45, §4.1]. We
then test whether (p+ 1)P = ±tP , as suggested in [5], and if this fails to hold we
reject the curve, since its order cannot be p+ 1± t.

To each curve that passes this test, we apply the algorithm TestCurveOrder.
In the description below, Hp = [p+1−2

√
p, p+1+2

√
p] denotes the Hasse interval,

and the index s ∈ {0, 1} is used to alternate between E and its quadratic twist Ẽ.
Algorithm TestCurveOrder. Given an elliptic curve E/Fp and factored inte-
gers N0, N1 ∈ Hp with N0 < N1 and N0 +N1 = 2p+ 2:

1. If p ≤ 11, return true if #E ∈ {N0, N1} and false otherwise.
2. Set E0 ← E, E1 ← Ẽ, m0 ← 1, m1 ← 1, and s← 0.
3. Select a random point P ∈ Es.
4. Use FastOrder to compute the order ns of the point Q = msP , assuming
ns divides Ns/ms. If this succeeds, set ms ← msns and proceed to Step 5.
If not, provided that m0|N1, m1|N0, and N0 < N1, swap N0 and N1 and go
to Step 3, but otherwise return false.

5. Set a1 ← 2p+2 mod m1 and N ← {m0x : x ∈ Z}∩{m1x+a1 : x ∈ Z}∩Hp.
If N ⊆ {N0, N1} return true, otherwise set s← 1− s and go to Step 3.
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TestCurveOrder computes integers ms dividing #Es by alternately comput-
ing the orders of random points on E and Ẽ. If an order computation fails (this
happens when ns - Ns/ms), it rules out Ns as a possibility for #E. If both N0

and N1 are eliminated, the algorithm returns false. Otherwise a divisor ns of Ns is
obtained and the algorithm continues until it narrows the possibilities for #E to a
nonempty subset of {N0, N1} (it need not determine which). The set N computed
in Step 6 must contain #E, since m0 divides #E and m1 divides #Ẽ (the latter
implies #E ≡ 2p + 2 mod m1, since #E + #Ẽ = 2p + 2). The complexity of the
algorithm (and a proof that it terminates) is given by Lemma 6 of Section 7.

A simple implementation of FastOrder appears below, based on a recursive al-
gorithm to compute the order of a generic group element due to Celler and Leedham-
Green [16]. By convention, generic groups are written multiplicatively and we do
so here, although we apply FastOrder to the additive groups E(Fp) and Ẽ(Fp).
The function ω(N) counts the distinct prime factors of N .

Algorithm FastOrder. Given an element α of a generic group G and a factored
integer N , compute the function A(α,N), defined to be the factored integer M = |α|
when M divides N , and 0 otherwise.

1. If N is a prime power pn, compute αp
i

for increasing i until the identity is
reached (in which case return pi), or i = n (in which case return 0).

2. Let N = N1N2 with N1 and N2 coprime and |ω(N1)− ω(N2)| ≤ 1.
Recursively compute M = A(αN2 , N1) · A(αN1 , N2) and return M .

This algorithm uses O(logN log logN) multiplications (and identity tests) in G. A
slightly faster algorithm [64, Alg. 7.4] is used in the proof of Theorem 1. In practice,
the implementation of TestCurveOrder and FastOrder is not critical, since
most of the time is actually spent performing the scalar multiplications discussed
above (these occur in Step 3 of Algorithm 1.1 below).

We now give the complete algorithm to find an element of Ellt(Fp). For reasons
discussed in the next section, we exclude the j-invariants 0 and 1728.

Algorithm 1.1. Given p ∈ PD, find j ∈ Ellt(Fp)− {0, 1728}.

1. Factor N0 = p+ 1− t and N1 = p+ 1 + t, and choose torsion constraints.
2. Generate a batch of random elliptic curves Ei/Fp with j(Ei) /∈ {0, 1728}

that satisfy these constraints and pick a random point Pi on each curve.
3. For each i with (p + 1)Pi = ±tPi, test whether #Ei ∈ {N0, N1} by calling

TestCurveOrder, using the factorizations of N0 and N1.
4. If #Ei ∈ {N0, N1} for some i, output j(Ei), otherwise return to Step 2.

The torsion constraints chosen in Step 1 may be precomputed by Algorithm 2.1
in the process of selecting S ⊂ PD. In Step 2 we may generate Ei with m-torsion
as described in Section 3.2; as a practical optimization, if X1(m) has genus 0 we
generate both Ei and Pi using the parametrizations in [3]. In Step 3 the point Pi
can also be used as the first random point chosen in TestCurveOrder. The
condition (p+1)Pi = ±tPi is tested by performing scalar multiplications in parallel,
as described above; when torsion constraints determine the sign of t, we instead
test whether (p+ 1− t)Pi = 0 or (p+ 1 + t)Pi = 0, as appropriate.
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4. Isogeny Volcanoes

The previous section addressed the first step in computing HD mod p: finding
an element of Ellt(Fp). In this section we address the next two steps: finding an
element of EllO(Fp) and enumerating EllO(Fp). This yields the roots of HD mod p.

We utilize the graph of `-isogenies defined on Ellt(Fp). We regard this as an
undirected graph, noting that the dual isogeny [61, §III.6] lets us traverse edges in
either direction. We permit self-loops in our graphs but not multiple edges.

Definition 1. Let ` be prime. An `-volcano is an undirected graph with vertices
partitioned into levels V0, . . . , Vd, in which the subgraph on V0 (the surface) is a
regular connected graph of degree at most 2, and also:

1. For i > 0, each vertex in Vi has exactly one edge leading to a vertex in Vi−1,
and every edge not on the surface is of this form.

2. For i < d, each vertex in Vi has degree `+ 1.

The surface V0 of an `-volcano is either a single vertex (possibly with a self-loop),
two vertices connected by an edge, or a (simple) cycle on more than two vertices,
which is the typical case. We call Vd the floor of the volcano, which coincides with
the surface when d = 0. For d > 0 the vertices on the floor have degree 1, and in
every case their degree is at most 2; all other vertices have degree `+ 1 > 2.

We refer to d as the depth of the `-volcano. The term “height” is also used [54],
but “depth” better suits our indexing of the levels Vi and is consistent with [46].

Figure 1. A 3-volcano of depth 2, with a 4-cycle on the surface.

Definition 2. For a prime ` 6= p, let Γ`,t(Fp) be the undirected graph with vertex
set Ellt(Fp) that contains the edge (j1, j2) if and only if Φ`(j1, j2) = 0.

Here Φ` denotes the classical modular polynomial. With two exceptions, the
components of Γ`,t(Fp) are `-volcanoes. The level at which j(E) ∈ Ellt(Fp) resides
in its `-volcano is determined by the power of ` dividing the conductor of End(E).

The discriminant D may be written as D = u2DK , where DK is the discriminant
of the maximal order OK containing O, and u = [OK : O] is the conductor of O.
We also have the discriminant

(12) Dπ = t2 − 4p = v2D = w2DK

of the order Z[π] ⊆ OK with conductor w = uv, generated by the Frobenius
endomorphism π with trace t (note π = πE for all j(E) ∈ Ellt(Fp)). The order
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O contains Z[π], and for any j(E) ∈ Ellt(Fp) we have Z[π] ⊆ End(E) ⊆ OK .
Curves with End(E) ∼= Z[π] lie on the floor of their `-volcano, while those with
End(E) ∼= OK lie on the surface. More generally, the following proposition holds.

Proposition 2. Let p ∈ PD and let ` 6= p be a prime. The components of Γ`,t(Fp)
that do not contain j = 0, 1728 are `-volcanoes of depth d = ν`(w). Each has an
associated order O0, with Z[π] ⊆ O0 ⊆ OK and ` - [OK : O0], for which

j(E) ∈ Vi ⇐⇒ End(E) ∼= Oi,

where Oi is the order of index `i in O0.

Here ν` denotes the `-adic valuation (so `d|w but `d+1 - w). The proposition
follows essentially from [46, Prop. 23]. See [29, Lemmas 2.1-6] for additional details
and [71, Thm. 1.19, Prop. 12.20] for properties of Φ`.

We have excluded j = 0, 1728 (which can arise only when DK = −3,−4) for
technical reasons, see [71, Rem. 12.21]. However a nearly equivalent statement
holds; only the degrees of the vertices 0 and 1728 are affected.

4.1. Obtaining an element of EllO(Fp). Given j(E) ∈ Ellt(Fp)−{0, 1728}, we
may apply Proposition 2 to obtain an element of EllO(Fp). Let u and uE be the
conductors of O and End(E) respectively; both u and uE divide w, the conductor of
Dπ = t2− 4p. Suppose ν`(uE) 6= ν`(u) for some prime `. If we replace j = j(E) by
a vertex at level ν`(u) in j’s `-volcano, we then have ν`(uE) = ν`(u). Proposition 2
assures us that this “adjustment” only affects the power of ` dividing uE . Repeating
this for each prime `|w, we eventually have uE = u and j(E) ∈ EllO(Fp).

To change location in an `-volcano we walk a path, which we define to be a
sequence of vertices j0, . . . , jn connected by edges (jk, jk+1), such that jk−1 6= jk+1

for all 0 < k < n (this condition is enforced by never taking a backward step).
Paths in Γ`,t(Fp) are computed by choosing an initial edge (j0, j1), and for k > 0

extending the path j0, . . . , jk by picking a root jk+1 of the polynomial

f(X) = Φ`(X, jk)/(X − jk−1)e ∈ Fp[x].

Here e is the multiplicity of the root jk−1 in Φ`(X, jk), equal to one in all but a
few special cases (see [29, Lemma 2.6 and Thm. 2.2]). If f(X) has no roots in Fp,
then jk has no neighbors other than jk−1 and the path must end at jk.

When a path has jk ∈ Vi and jk+1 ∈ Vi+1, we say the path descends at k. Once
a path starts descending, it must continue to do so. If a path descends at every
step and terminates at the floor, we call it a descending path, as in [29, Def. 4.1].

We now present an algorithm to determine the level of a vertex j in an `-volcano,
following Kohel [46, p. 46]. When walking a path, we suppose neighbors are picked
uniformly at random whenever there is a choice to be made.
Algorithm FindLevel. Compute the level of j in an `-volcano of depth d:

1. If deg(j) 6= `+ 1 then return d, otherwise let j1 6= j2 be neighbors of j.
2. Walk a path of length k1 ≤ d extending (j, j1).
3. Walk a path of length k2 ≤ k1 extending (j, j2).
4. Return d− k2.

If FindLevel terminates in Step 1, then j is on the floor at level d. The paths
walked in Steps 2 and 3 are extended as far as possible, up to the specified bound.
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If j is on the surface, then these paths both have length d, and otherwise at least
one of them is a descending path of length k2. In both cases, j is on level d− k2.

We use the algorithms below to change levels in an `-volcano of depth d > 0.

Algorithm Descend. Given j ∈ Vk 6= Vd, return j′ ∈ Vk+1:

1. If k = 0, walk a path (j = j0, . . . , jn) to the floor and return j′ = jn−d+1.
2. Otherwise, let j1 and j2 be distinct neighbors of j.
3. Walk a path of length d− k extending (j, j1) and ending in j∗.
4. If deg(j∗) = 1 then return j′ = j1, otherwise return j′ = j2.

Algorithm Ascend. Given j ∈ Vk 6= V0, return j′ ∈ Vk−1:

1. If deg(j) = 1 then let j′ be the neighbor of j and return j′,
otherwise let j1, . . . , j`+1 be the neighbors of j.

2. For each i from 1 to `:
a. Walk a path of length d− k extending (j, ji) and ending in j∗.
b. If deg(j∗) > 1 then return j′ = ji.

3. Return j′ = j`+1.

The correctness of Descend and Ascend is easily verified. We note that if k = 0
in Step 1 of Descend, then the expected value of n is at most d+ 2 (for any `).

We now give the algorithm to find an element j′ ∈ EllO(Fp), given j ∈ Ellt(Fp).
We use a bound L on the primes `|w, reverting to a computation of the endomor-
phism ring to address ` > L, as discussed below. This is never necessary when D
is fundamental, but may arise when the conductor of D has a large prime factor.

Algorithm 1.2. Let p ∈ PD, let u be the conductor of D, and let w = uv, where
v = v(p). Given j ∈ Ellt(Fp)− {0, 1728}, find j′ ∈ EllO(Fp):

1. For each prime `|w with ` ≤ L = max(log |D|, v):
a. Use FindLevel to determine the level of j in its `-volcano.
b. Use Descend and Ascend to obtain j′ at level ν`(u) and set j ← j′.

2. If u is not L-smooth, verify that j ∈ EllO(Fp) and abort if not.
3. Return j′ = j.

The verification in Step 2 involves computing End(E) for an elliptic curve E/Fp
with j(E) = j. Here we may use the algorithm in [10], or Kohel’s algorithm [46].
The former is faster in practice (with a heuristically subexponential running time)
but for the proof of Theorem 1 we use the O(p1/3) complexity bound of Kohel’s
algorithm, which depends only on the GRH.

For p ∈ S, we expect v to be small, O(log3+ε |D|) under the GRH, and heuristi-
cally O(log1/2 |D|). Provided u does not contain a prime larger than L, the running
time of Algorithm 1.2 is polynomial in log |D|, under the GRH.

However, if u is divisible by a prime ` > L, we want to avoid the cost of computing
`-isogenies. Such an ` cannot divide v (since L ≥ v), so our desired j′ must lie on
the floor of its `-volcano. When ` is large, it is highly probable that our initial j is
already on the floor (this is where most of the vertices in an `-volcano lie), and this
will still hold in Step 2. Since L ≥ log |D| is asymptotically larger than the number
of prime factors of u, the probability of a failure in Step 2 is o(1). If Algorithm 1.2
aborts, we call Algorithm 1.1 again and retry.
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If DK is −3 or −4, then j may lie in a component of Γ`,t(Fp) containing 0 or 1728.
However, provided we never pick 0 or 1728 when choosing a neighbor, FindLevel,
Descend, and Ascend will correctly handle this case.

4.2. Enumerating EllO(Fp). Having obtained j0 ∈ EllO(Fp), we now wish to
enumerate the rest of EllO(Fp). We assume h(D) > 1 and apply the group action
of cl(D) to the set EllO(Fp). Let ` be a prime not dividing the conductor u of D
with (D` ) 6= −1. Then ` can be uniquely factored in O into conjugate prime ideals
as (`) = aā, where a and ā both have norm `. The ideals a and ā are distinct when
(D` ) = 1, and in any case the ideal classes [a] and [ā] are inverses. The orders of
[a] and [ā] in cl(D) are equal, and we denote their common value by ordD(`). The
following proposition follows immediately from Propositions 1 and 2.

Proposition 3. Let ` 6= p be a prime such that ` - u and (D` ) 6= −1. Then every
element of EllO(Fp) lies on the surface V0 of its `-volcano and #V0 = ordD(`).

If ordD(`) = h(D), then EllO(Fp) is equal to the surface of the `-volcano contain-
ing j0, but in general we must traverse several volcanoes to enumerate EllO(Fp).
We first describe how to walk a path along the surface of a single `-volcano.

When ` does not divide v, every `-volcano in Γ`,t(Fp) has depth zero. In this
case walking a path on the surface is trivial: for #V0 > 2 we choose one of the two
roots of Φ`(X, j0), and every subsequent step is determined by the single root of
the polynomial f(X) = Φ`(X, ji)/(X − ji−1). The cost of each step is then

(13) O(`2 + M(`) log p)

operations in Fp, where M(n) is the complexity of multiplication (the first term is
the time to evaluate Φ`(X, ji), the second term is the time to compute Xp mod f).

While it is simpler to restrict ourselves to primes ` - v (there are infinitely many `
we might use), as a practical matter, the time spent enumerating EllO(Fp) depends
critically on `. Consider ` = 2 versus ` = 7. The cost of finding a root of f(X)
when f has degree 7 may be 10 or 20 times the cost when f has degree 2. We much
prefer ` = 2, even when the 2-volcano has depth d > 0 (necessarily the case when
(D2 ) = 1). The following algorithm allows us to handle `-volcanoes of any depth.

Algorithm WalkSurfacePath. Given j0 ∈ V0 in an `-volcano of depth d and a
positive integer n < #V0, return a path j0, j1 . . . , jn contained in V0:

1. If deg(j0) = 1 then return the path j0, j1, where j1 is the neighbor of j0.
Otherwise, walk a path j0, . . . , jd and set i← 0.

2. While deg(ji+d) = 1, replace ji+1, . . . , ji+d by extending the path j0, . . . , ji
by d steps, starting from a random unvisited neighbor j′i+1 of ji.

3. Extend the path j0, . . . , ji+d to j0, . . . , ji+d+1, then set i← i+ 1.
4. If i = n then return j0, . . . , jn, otherwise go to Step 2.

When d = 0 the algorithm necessarily returns a path that is contained in V0.
Otherwise, the path extending d+ 1 steps beyond ji ∈ V0 in Step 3 guarantees that
ji+1 ∈ V0. The algorithm maintains (for the current value of i) a list of visited
neighbors of ji to facilitate the choice of an unvisited neighbor in Step 2.

To bound the expected running time, we count the vertices examined during its
execution, that is, the number of vertices whose neighbors are computed.
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Proposition 4. Let the random variable X be the number of vertices examined by
WalkSurfacePath. If #V0 = 2 then E[X] = d+ 1 + ld/2, and otherwise

E[X] ≤ d+ (1 + (`− 1)d/2)n.

Proof. If d = 0 then WalkSurfacePath examines exactly n vertices and the
proposition holds, so we assume d > 0 and note that deg(j0) > 1 in this case. We
partition the execution of the algorithm into phases, with phase -1 consisting of
Step 1, and the remaining phases corresponding to the value of i. At the start of
phase i ≥ 0 we have ji ∈ V0 and the path j0, . . . , ji+d. Let the random variable Xi

be the number of vertices examined in phase i, so that X = X−1 +X0 + · · ·+Xn.
We have X−1 = d and Xn = 0. For 0 ≤ i < n we have Xi = 1 + md, where m
counts the number of incorrect choices of ji+1 (those not in V0).

We first suppose #V0 = 2. In this case exactly one of the ` + 1 neighbors of j0
lies in V0. Conditioning on m we obtain

E[X0] =
∑̀
m=0

(
1 +md

) 1
`+ 1−m

m−1∏
k=0

(
`− k

`+ 1− k

)
=
∑̀
m=0

1 +md

`+ 1
= 1 + ld/2.

This yields

E[X] = E[X−1] + E[X0] + E[X1] = d+ 1 + ld/2,

as desired. We now assume #V0 > 2. Then two of j0’s neighbors lie in V0 and we
find that E[X0] = 1 + (`− 1)d/3. For i > 1 we exclude the neighbor ji−1 of ji and
obtain E[Xi] = 1 + (`− 1)d/2. Summing expectations completes the proof. �

Using an estimate of the time to find the roots of a polynomial of degree ` in
Fp[X], we may apply Proposition 4 to optimize the choice of the primes ` that we
use when enumerating EllO(Fp), as discussed in the next section. As an example,
if (D2 ) = 1 and ν2(v) = 2, then we need to solve an average of roughly 2 quadratic
equations for each vertex when we walk a path along the surface of a 2-volcano in
Γ`,t(Fp). This is preferable to using any ` > 2, even when ` - v. On the other hand,
if (D5 ) = (D7 ) = 1 and 5|v but 7 - v, we likely prefer ` = 7 to ` = 5.

We now present Algorithm 1.3, which, given j0 ∈ EllO(Fp) and suitable lists of
primes `i and integers ri, outputs the elements of EllO(Fp)−{j0}. It may be viewed
as a generalization of WalkSurfacePath to k dimensions.

Algorithm 1.3. Given j0 ∈ EllO(Fp), primes `1, . . . , `k with `i - u and (D`i ) 6= −1,
and integers r1, . . . , rk, with 1 < ri ≤ ordD(`i):

1. Use WalkSurfacePath to compute a path j0, j1, . . . , jrk−1 of length rk−1
on the surface of the `k-volcano containing j0, and output j1, . . . , jrk−1.

2. If k > 1 then for i from 0 to rk − 1 recursively call Algorithm 1.3 using ji,
the primes `1, . . . , `k−1, and the integers r1, . . . , rk−1.

Proposition 2 implies that Algorithm 1.3 outputs a subset of EllO(Fp), since
j0, j1, . . . , jrk−1 all lie on the surface of the same `k-volcano (and this applies recur-
sively). To ensure that Algorithm 1.3 outputs all the elements of EllO(Fp)− {j0},
we use a polycyclic presentation for cl(D), as defined in the next section.
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5. Polycyclic Presentations of Finite Abelian Groups

To obtain suitable sequences `1, . . . , `k and r1 . . . , rk for use with Algorithm 1.3,
we apply the theory of polycyclic presentations [37, Ch. 8]. Of course cl(D) is a
finite abelian group, but the concepts we need have been fully developed in the
setting of polycyclic groups, and conveniently specialize to the finite abelian case.

Let α = (α1, . . . , αk) be a sequence of generators for a finite abelian group G,
and let Gi = 〈α1, . . . , αi〉 be the subgroup generated by α1, . . . , αi. The series

1 = G0 ≤ G1 ≤ · · · ≤ Gk−1 ≤ Gk = G,

is necessarily a polycyclic series, that is, a subnormal series in which each quotient
Gi/Gi−1 is a cyclic group. Indeed, Gi/Gi−1 = 〈αiGi−1〉, and α is a polycyclic
sequence for G. We say that α is minimal if none of the quotients are trivial.

When G =
∏
〈αi〉, we have Gi/Gi−1

∼= 〈αi〉 and call α a basis for G, but this
is a special case. For abelian groups, Gi/Gi−1 is isomorphic to a subgroup of 〈αi〉,
but it may be a proper subgroup, even when α is minimal.

The sequence r(α) = (r1, . . . , rk) of relative orders for α is defined by

ri = |Gi : Gi−1|.
We necessarily have

∏
ri = |G|, and if α is minimal then each ri > 1. The sequences

α and r(α) allow us to uniquely represent every element β ∈ G in the form

β = αx = αx1
1 · · ·α

xk

k .

Lemma 1. Let α = (α1, . . . , αk) be a sequence of generators for a finite abelian
group G, let r(α) = (r1, . . . , rk), and let X(α) = {x ∈ Zk : 0 ≤ xi < ri}.

1. For each β ∈ G there is a unique x ∈ X(α) such that β = αx.
2. The vector x such that αri

i = αx has xj = 0 for j ≥ i.

Proof. See Lemmas 8.3 and 8.6 in [37]. �

The vector x is the discrete logarithm (exponent vector) of β with respect to α.
The relations αri

i = αx are called power relations, and may be used to define a
(consistent) polycyclic presentation for an abelian group G, as in [37, Def. 8.7].

We now show that a minimal polycyclic sequence for cl(D) provides suitable
inputs for Algorithm 1.3.

Proposition 5. Let α = (α1, . . . , αk) be a minimal polycyclic sequence for cl(D)
with relative orders r(α) = (r1, . . . , rk), and let `1, . . . , `k be primes for which αi
contains an invertible ideal of norm `i. Given j0 ∈ EllO(Fp), the primes `i, and the
integers ri, Algorithm 1.3 outputs each element of EllO(Fp)− {j0} exactly once.

Proof. As previously noted, Proposition 2 implies that the outputs of Algorithm 1.3
are elements of EllO(Fp). Since

∏
ri = # cl(D) = # EllO(Fp), by Proposition 1,

we need only show that the outputs are distinct (and not equal to j0).
To each vertex of the isogeny graph output by Algorithm 1.3 we associate a

vector x ∈ X(α) that identifies its position relative to j0 in the sequence of paths
computed. The vector (x1, . . . , xk) identifies the vertex reached from j0 via a path
of length xk on the surface of the `k-volcano, followed by a path of length xk−1 on
the surface of the `k−1-volcano, and so forth. We associate the zero vector to j0.

Propositions 1 and 2 imply that the vector x = (x1, . . . , xk) corresponds to the
action of some βx ∈ cl(D). For each integer tk in the interval [0, rk), the set of
vectors of the form (∗, . . . , ∗, tk) corresponds to a coset of Gk−1 in the polycyclic
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series for G = cl(D). These cosets are distinct, regardless of the direction chosen
by Algorithm 1.3 when starting its path on the `k-volcano (note that αk and α−1

k

have the same relative order rk). Proceeding inductively, for each choice of inte-
gers ti, ti+1, . . . , tk with tj ∈ [0, rj) for i ≤ j ≤ k, the set of vectors of the form
(∗, . . . , ∗, ti, ti+1, . . . , tk) corresponds to a distinct coset of Gi−1, regardless of the
direction chosen by Algorithm 1.3 on the surface of the `i-volcano. Each coset of G0

corresponds to an element of G = cl(D), and it follows that the βx are all distinct.
The action of cl(D) is faithful, hence the outputs of Algorithm 1.3 are distinct. �

5.1. Computing an optimal polycyclic presentation. Let γ = (γ1, . . . , γn) be
a sequence of generators for a finite abelian group G, ordered by increasing cost
(according to some cost function). Then γ is a polycyclic sequence, and we may
compute r(γ) = (r1, . . . , rn). If we remove from γ each γi for which ri = 1 and let
α = (α1, . . . , αk) denote the remaining subsequence, then α is a minimal polycyclic
sequence for G. We call α the optimal polycyclic sequence derived from γ. It has
α1 = γ1 with minimal cost, and for i > 1 each αi is the least-cost element not
already contained in Gi−1 = 〈α1, . . . , αi−1〉.

We now give a generic algorithm to compute r(γ) and a vector s(γ) that encodes
the power relations. From r(γ) and s(γ), we can easily derive α, r(α), and s(α).
We define s(γ) using a bijection X(γ)→ {z ∈ Z : 0 ≤ z < |G|} given by:

(14) Z(x) =
∑

1≤j≤n

Njxj , where Nj =
∏

1≤i<j

ri.

For each power relation γri
i = γx, we set si = Z(x). The formula

(15) xj = bsi/Njc mod rj

recovers the component xj of the vector x for which si = Z(x).
Algorithm 2.2. Given γ = (γ1, . . . , γn) generating a finite abelian group G:

1. Let T be an empty table and call TableInsert(T, 1G) (so T [0] = 1G).
2. For i from 1 to n:
3. Set β ← γi, ri ← 1, and N ← TableSize(T ).
4. Until si ← TableLookup(T, β) succeeds:
5. For j from 0 to N − 1: TableInsert(T, β · T [j]).
6. Set β ← βγi and ri ← ri + 1.
7. Output r(γ) = (r1, . . . , rn) and s(γ) = (s1, . . . , sn).

The table T stores elements of G in an array, placing each inserted element in
the next available entry. The function TableLookup(T, β) returns an integer j
for which T [j] = β or fails if no such j exists (when j exists it is unique). In
practice lookups are supported by an auxiliary data structure, such as a hash table,
maintained by TableInsert. When group elements are uniquely identified, as with
cl(D), the cost of table operations is typically negligible.

Proposition 6. Algorithm 2.2 is correct. It uses |G| non-trivial group operations,
makes |G| calls to TableInsert, and makes

∑
ri calls to TableLookup.

Proof. We will prove inductively that T [Z(x)] = γx, and that each time the loop
in Step 4 terminates, the values of ri and si are correct and T holds Gi.

When i = 1 the algorithm computes T [r1] = γr11 T [0] for r1 = 1, 2, . . ., until
γr11 = T [0] = 1, at which point r1 = |γi|, s1 = 0, and T holds G1, as desired.
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For i > 1 we have N = Ni−1 and T holds Gi−1 with T [Z(x)] = γx, by the
inductive hypothesis. For ri = 1, 2, . . ., if β = γri

i is not in T , the algorithm
computes T [riN + j] = γri

i T [j], for 0 ≤ j < N , placing the coset γri
i Gi−1 in T .

When it finds γri
i = T [si], the table T contains all cosets of the form γri

i Gi−1 (since
G is abelian), hence T holds Gi. It follows that ri = |Gi : Gi−1| and si is correct.

When the algorithm terminates, T holds Gn = G, and every element of G is in-
serted exactly once. A group operation is performed for each call to TableInsert,
but in each execution of Step 5 the first of these is trivial, and we instead count
the non-trivial group operation in Step 6. The number of calls to TableLookup
is clearly the sum of the ri, which completes the proof. �

The complexity of Algorithm 2.2 is largely independent of γ. When γ contains
every element of G, Algorithm 2.2 is essentially optimal. However, if γ has size
n = o(|G|1/2), we can do asymptotically better with an O(n|G|1/2) algorithm.
This is achieved by computing a basis α for G via a generic algorithm (as in
[14, 64, 66, 67]), and then determining the representation of each γi = αx in this
basis using a vector discrete logarithm algorithm (such as [64, Alg. 9.3]). It is then
straightforward to compute |Gi| for each i and from this obtain ri = |Gi : Gi−1|.
The power relations can then be computed using discrete logarithms with respect
to γ. In the specific case G = cl(D), one may go further and use a non-generic
algorithm to compute a basis α in subexponential time (under the ERH) [34], and
apply a vector form of the discrete logarithm algorithm in [69].

5.2. Application to cl(D). For the practical range of D, the group G = cl(D) is
relatively small (typically |G| ≤ 107), and the constant factors make Algorithm 2.2
faster than alternative approaches; even in the largest examples of Section 8 it
takes only a few seconds. Asymptotically, Algorithm 2.2 uses O(|D|1/2+ε) time and
O(|D|1/2 log2 |D|) space to compute an optimal polycyclic sequence for cl(D). In
fact, under the GRH, we can compute a separate polycyclic sequence for every v(p)
arising among the primes p ∈ S that are selected by Algorithm 2.1 (Section 3.3)
within the same complexity bound, by Lemma 3 (Section 7).

We uniquely represent elements of cl(D) with primitive, reduced, binary qua-
dratic forms ax2 + bxy + cy2, where a corresponds to the norm of a reduced ideal
representing its class. For the sequence γ we use forms with a = ` prime, con-
structed as in [15, Alg. 3.3]. Under the ERH, restricting to ` ≤ 6 log2 |D| yields
a sequence of generators for cl(D), by [4]. To obtain an unconditional result, we
precompute h(D) and extend γ dynamically until Algorithm 2.2 reaches N = h(D).

We initially order the elements γi of γ by their norm `i, assuming that this
reflects the cost of using the action of γi to enumerate EllO(Fp) via Algorithm 1.3
(Section 4.2). However, for those `i that divide v(p) we may wish to adjust the
relative position of γi, since walking the surface of an `i-volcano with nonzero
depth increases the average cost per step. We use Proposition 4 to estimate this
cost, which may or may not cause us to change the position of γi in γ. In practice
just a few (perhaps one) distinct orderings suffice to optimally address every v(p).

Note that we need not consider the relative orders ri when ordering γ. If i is less
than j, then Algorithm 1.3 always takes at least as many steps using `i as it does
using `j . Indeed, the running time of Algorithm 1.3 is typically determined by the
choice of α1: at least half of the steps will be taken on the surface of an `1-volcano,
and if (D`1 ) = 1, almost all of them will (heuristically).
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5.3. Why not use a basis? Using a basis to enumerate EllO(Fp) is rarely optimal,
and in the worst case it can be a very poor choice. The ERH does imply that cl(D)
is generated by the classes of ideals with prime norm ` ≤ 6 log2 |D|, but this set of
generators need not contain a basis. As a typical counterexample, consider

D1 = −10007 · 10009 · 10037,

the product of the first three primes greater than 10000. The class group has order
h(D1) = 22 ·44029, where 44029 is prime, and its 2-Sylow subgroup H is isomorphic
to Z/2Z × Z/2Z. Every basis for cl(D1) must contain a non-trivial element of H,
and these classes have reduced representatives with norms 10007, 10009, and 10037,
all of which are greater than 6 log2 |D1| ≈ 4583.

By comparison, Algorithm 2.2 computes an optimal polycyclic sequence for
cl(D1) with `1 = 5 and `2 = 37 (and relative orders r1 = 88058 and r2 = 2).

6. Chinese Remaindering

As described in Section 2, for each coefficient c of the Hilbert class polynomial
we may derive the value of c mod P (for any positive integer P ) from the values
ci ≡ c mod pi appearing in HD mod pi (for pi ∈ S), using an explicit form of the
Chinese Remainder Theorem (CRT). We apply

(6) c ≡
∑

ciaiMi − rM mod P,

where M =
∏
pi, Mi = M/pi, ai = M−1

i mod pi, and r is the closest integer to
s =

∑
ciai/pi. Recall that S ⊂ PD is chosen so that M > 4B, where B bounds

the coefficients of HD, via Lemma 8. It suffices to approximate each term in the
sum s to within 1/(4n), where n = #S. If pM denotes the largest pi, we need
O
(
log(n(pM + log n))

)
= O(log pM) bits of precision to compute r.

To minimize the space required, we accumulate C =
∑
ciaiMi mod P and an

approximation of s as the ci are computed. This uses O(logP + log pM) space per
coefficient. We have h(D) coefficients to compute, yielding

(16) O
(
h(D)(logP + log pM)

)
as our desired space bound.

To achieve this goal without increasing the time complexity of our algorithm, we
consider two cases: one in which P is small, which we take to mean

(17) logP ≤ µ log3 |D|,

for some absolute constant µ, and another in which P is large (not small). The
former case is typical when applying the CM method; P may be a cryptographic-
size prime, but it is not unreasonably large. The latter case most often arises when
we actually want to compute HD over Z. When P ≥M there is no need to use the
explicit CRT and we apply a standard CRT computation. To treat the intermediate
case, where P is large but smaller than M , we use a hybrid approach.

Choosing a suitable value for µ depends on the relative cost of performing h(D)
multiplications modulo P versus the cost of computing HD mod pi; we want the
former to be small compared to the latter. In practice, the constant factors allow
us to make µ quite large and the intermediate case rarely arises.
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6.1. Fast Chinese remaindering in linear space. Standard algorithms for fast
Chinese remaindering can be found in [70, §10.3]. We apply similar techniques, but
use a time/space trade-off to achieve the space bound in (16). These computations
involve a product tree built from coprime moduli. In our setting these are the primes
pi ∈ S, which we index here as p0, . . . , pn−1.

We define a product tree as a leveled binary tree in which each vertex at level k is
either a leaf or the product of its two children at level k+1 (we require levels to have
an even number of vertices and add a leaf to levels that need one). It is convenient
to label the vertices by bit-strings of length k, where the root at level 0 is labeled
by the empty string and all other vertices are uniquely labeled by appending the
string “0” or “1” to the label of their parent.

Let d = blg(n− 1)c+ 1 be the number of bits in the positive integer n− 1. For
integers i from 0 to n− 1, we let b(i) ∈ {0, 1}d denote the bit-string corresponding
to the binary representation of i. The products mx are defined by placing the
moduli in leaves as mb(i) = pi, setting mx = 1 for all other leaves, and defining
mx = mx0mx1 for all internal vertices.

The modular complements mx = m/mx mod mx are then obtained by setting
m0 = m1 mod m0 and m1 = m0 mod m1, and defining

mx0 = mxmx1 mod mx0 and mx1 = mxmx0 mod mx1.

In terms of Mi = M/pi, we then have m = M and mb(i) = Mi mod pi.
Let Ik denote the labels at level k, for 1 ≤ k ≤ d (and otherwise Ik is empty).

One way to compute md is as follows:

1. For k from d to 1, compute mx for x ∈ Ik.
2. For k from 1 to d, compute mx for x ∈ Ik.

This uses O(M(logM) log n) and O(logM log n) space. Alternatively:

1. For k from 1 to d:
2. For j from d to k, compute mx for x ∈ Ij (discard my for y ∈ Ij+1).
3. Compute mx for x ∈ Ik (discard my for y ∈ Ik and mz for z ∈ Ik−1).

This uses O(M(logM) log2 n) time and O(logM) space. In general, storing dlogω ne
levels uses O(M(logM) log2−ω n) time and O(logM logω n) space, for 0 ≤ ω ≤ 1.

6.2. Applying the explicit CRT when P is small. Assume logP ≤ µ log3 |D|.
We index the set S ⊂ PD as S = {p0, . . . , pn−1} and let M =

∏
pi and Mi = M/pi.

As above, we define products mx and modular complements mx = m/mx mod mx,
and similarly define modular complements m′x = m/mx mod P .
Algorithm 2.3 (precompute). Given S = {p0, . . . , pn−1} and P :

1. Compute mx and m′x. Save M mod P .
2. Use mb(i) ≡Mi mod pi to set ai ←M−1

i mod pi.
3. Use m′b(i) ≡Mi mod P to set di ← aiMi mod P .
4. Set Cj ← 0 and sj ← 0 for j from 0 to h(D).

Using the time/space trade-off described above, Algorithm 2.3 has a running time
of O(M(logM) log2 n), using O(logM + n logP ) space.

We now set δ = dlg ne+2, which determines the precision of the integer sj ≈ 2δr
we use to approximate the rational number r in (6).
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Algorithm 2.4 (update). Given HD mod pi with coefficients cj:

1. For j from 0 to h(D):
2. Set Cj ← Cj + cjdi mod P .
3. Set sj ← sj + b2δcjai/pic.

The total running time of Algorithm 2.4 over all pi ∈ S may be bounded by

(18) O
(
nh(D)M(logP ) + h(D)M(logM + n log n)

)
.

Typically the first term dominates, and it is here that we need logP = O(log3 |D|).
The space complexity is O(h(D)(logP + log pM + log n)).
Algorithm 2.5 (postcompute). After computing HD mod pi for all pi ∈ S:

1. For j from 0 to h(D):
2. Set Cj ← Cj − b3/4 + 2−δsjcM mod P .
3. Output HD mod P with coefficients Cj .

Algorithm 2.5 uses O(h(D)M(logP )) time and O(h(D) logP ) space. The formulas
used by Algorithms 2.4 and 2.5 are taken from [8, Thm. 2.2] (also see [7]).

6.3. Applying the CRT when P is large. When P is larger than M , we simply
compute HD ∈ Z[X] using a standard application of the CRT. That is, we compute
HD mod pi for pi ∈ S, and then apply

(5) c ≡
∑

ciaiMi mod M

to compute each coefficient of HD using fast Chinese remaindering [70, §10.3].
Since M > 2B, this determines HD ∈ Z[X]. Its coefficients lie in the interval
(−P/2, P/2), so we regard this as effectively computing HD mod P . The total
time spent applying the CRT is then O(h(D)M(logM) log n), and the space needed
to compute (5) is O(logM log n), which is easily smaller than the O(h(D) logM)
bound on the size of HD (so no time/space trade-off is required).

When P is smaller than M but logP > µ log3 |D|, we combine the two CRT
approaches. We group the primes p0, . . . , pn−1 into products q0, . . . , qk−1 so that
log qj ≈ logP (or qj > logP is prime). We compute HD mod qj by applying the
usual CRT to the coefficients of HD mod pi, after processing all the pi dividing qj .
If qj is prime no work is involved, and otherwise this takes O(M(logP ) log n) time
per coefficient. We then apply the explicit CRT to the coefficients of HD mod qj ,
as in Section 6.2, discarding the coefficients of HD mod qj after they have been
processed by Algorithm 2.4. This hybrid approach has a time complexity of

(19) O(h(D)(logM/ logP )M(logP ) log n) = O(h(D)M(logM) log n),

and uses O
(
h(D)(logP + log pM)

)
space.

7. Complexity Analysis

We now analyze the complexity of Algorithms 1 and 2, proving Theorem 1
through a series of lemmas. To do so, we apply various number-theoretic bounds
that depend on some instance of the extended or generalized Riemann hypothesis.
We use the generic label “GRH” to identify all statements that depend (directly or
indirectly) on one or more of these hypotheses. As noted in the introduction, the
GRH is used only to obtain complexity bounds, the outputs of Algorithms 1 and 2
are unconditionally correct.
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Let M(n) denote the cost of multiplication, as defined in [70, Ch. 8]. We have

(20) M(n) = O(n log n llog n),

by [57], where llog(n) denotes log log n (and we use lllog(n) to denote log log log n).
We focus here on asymptotic results and apply (20) throughout, and note that the
larger computations in Section 8 make extensive use of algorithms that realize this
bound. See Section 7.1 for a further discussion of bounds on M(n).

Let us recall some key parameters. For a discriminant D < −4, we define

(2) PD = {p > 3 prime : 4p = t2 − v2D for some t, v ∈ Z>0},

where t = t(p) and v = v(p) are uniquely determined by p. We select a subset

S ⊆ Sz = {p ∈ PD : p/H(−v(p)2D) ≤ z},

that satisfies
∏
p∈S p > 4B, where B bounds the absolute values of the coefficients

of HD. We also utilize prime norms `1, . . . , `k arising in a polycyclic presentation
of cl(D) that is derived from a set of generators.

(GRH) For convenient reference, we note the following bounds:

(i) h = h(D) = O(|D|1/2 llog |D|) (see [52]).

(ii) b = lgB + 2 = O(|D|1/2 log |D| llog |D|) (Lemma 8).

(iii) n = #S = O(|D|1/2 llog |D|) (follows from (ii)).

(iv) `M = max{`1, . . . , `k} = O(log2 |D|) (see [4]).

(v) z = O(|D|1/2 log3 |D| llog |D|) (Lemma 2).

(vi) pM = maxS = O(|D| log6 |D| llog8 |D|) (Lemma 3).

(vii) vM = max{v(p) : p ∈ S} = O(log3 |D| llog4 |D|) (Lemma 3).

The first three parameters have unconditional bounds that are only slightly larger
(see [5, §5.1]), but the last four depend critically on either the ERH or GRH.
Heuristic bounds are discussed in Section 7.1.

To prove (v) we use an effective form of the Chebotarev density theorem [48].
Recall that PD is the set of primes (greater than 3) that split completely in the ring
class field KO of O. For a positive real number x, let π1(x,KO/Q) count the primes
p ≤ x that split completely in KO. Equivalently, π1(x,KO/Q) counts primes whose
image in Gal(KO/Q) under the Artin map is the identity element [23, Cor. 5.21].
Applying Theorem 1.1 of [48] then yields

(21)
∣∣∣∣π1(x,KO/Q)− Li(x)

2h(D)

∣∣∣∣ ≤ c1
(
x1/2 log

(
|D|h(D)x2h(D)

)
2h(D)

+ log(|D|h(D))

)
,

as in [5, Eq. 3], where the constant c1 is effectively computable.

Lemma 2 (GRH). For any real constant c3 there is an effectively computable
constant c2 such that z ≥ c2h(D) log3 |D| implies #Sz ≥ c3h(D) log3 |D|.

Proof. Let h = h(D). We apply (21) to x = c0h
2 log4 |D|, with c0 to be determined.

We assume D < −4 and log c0 ≥ 2, which implies log x < 4 log c0 log |D| (using
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h < |D| and log |D| < |D|1/2), and Li(x) > x/ log x, for all x ≥ 1. Negating the
expression within the absolute value, we obtain from (21) the inequality

π1(x,KO/Q) ≥
(

c0
8 log c0

− 5c1
√
c0 log c0

)
h log3 |D|.

Thus given any constant c4 we may effectively determine c0 ≥ e2 (using c1) so that

π1(x,KO/Q) ≥ c4h log3 |D|.
For the set Rx of primes in PD bounded by x, we have #Rx = π1(x,KO/Q)− 2.

Let v0 be the least integer such that at least half the primes in Rx have v(p) ≤ v0.
There are v0 positive integers less than or equal to v0, and any particular value
v(p) ≤ v0 can arise for at most 2

√
x primes p ∈ Rx, since t(p) < 2

√
p ≤ 2

√
x.

Therefore 2v0
√
x ≥ #Rx/2, and this implies

2v0
√
c0h log2 |D| ≥ (c4h log3 |D| − 2)/2 > (c4/2− 1)h log3 |D|.

We thus obtain v0 > c5 log |D|, where c5 = (c4/2− 1)/
√

4c0, and assume c4 > 2.
For primes p ∈ Rx with v(p) ≥ v0, the lower bound in Lemma 9 implies

p

H(−v(p)2D)
≤ p

v(p)H(−D)
≤ x

c5h log |D|
= (c0/c5)h log3 |D|.

If z ≥ c2h log3 |D|, with c2 = c0/c5, then Sz contains at least half the primes in Rx.
Setting c4 = max{2c3+2, 3} determines c0, c5, and c2, and completes the proof. �

The primes p ∈ Sz are enumerated by Algorithm 2.1 (Section 3.3), which grad-
ually increases z until

∑
p∈Sz

lg p > 2b, where b = lgB + 2.

Lemma 3 (GRH). When Algorithm 2.1 terminates, for every prime p ∈ Sz we
have the bounds p = O(|D| log6 |D| llog8 |D|) and v(p) = O(log3 |D| llog4 |D|).

Proof. Let D = u2DK , where u is the conductor of D. The upper bound in
Lemma 9, together with the bound (i) on h(D), implies that for a suitable constant
c2 and sufficiently large |D|, the bound

H(−v2D) ≤ 12uvH(−DK) llog2(uv + 4)) ≤ c2v|D|1/2 llog |D| llog2(v|D|)
holds for all positive integers v.

Lemma 2, together with bounds (i) and (ii), implies that Algorithm 2.1 achieves∑
p∈Sz

lg p > 2b with z = O(h(D) log3 |D|) = O(|D|1/2 log3 |D| llog |D|). Thus for
a suitable constant c3 and sufficiently large |D|, the bound

(22) p ≤ zH(−v(p)2D) ≤ c3v(p)|D| log3 |D| llog2 |D| llog2(v(p)|D|)

holds for all p ∈ Sz. We also have v(p) ≤ 2
√
p/|D|, since 4p = t(p)2 − v(p)2D.

Applying this inequality to (22) yields p = O(|D| log6 |D| llog8 |D|), which then
implies v = O(log3 |D| llog4 |D|). �

We could obtain tighter bounds on pM and vM by modifying Algorithm 2.1 to
only consider primes in Rx ∩Sz, but there is no reason to do so. Larger primes will
be selected for S only when they improve the performance.

To achieve the space bound of Theorem 1, we assume a time/space trade-off is
made in the implementation of Algorithm 2.1. We control the space used to find
the primes in Sz, by sieving within a suitably narrow window. This increases the
running time by a negligible poly-logarithmic factor.
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Lemma 4 (GRH). The expected running time of Algorithm 2.1 is O(|D|1/2+ε),
using O(|D|1/2 log |D| llog |D|) space.

Proof. When computing Sz, it suffices to consider v up to an O(log3+ε |D|) bound,
by Lemma 3 above. For each v we sieve the polynomial f(t) = t2 − v2D to find
f(t) = 4p with p prime. The bound on p implies that we need only sieve to an
L = O(|D|1/2 log3+ε |D|) bound on t. We may enumerate the primes up to L in
O(L llogL) time using O(

√
L logL) = O(|D|1/4+ε) space (we sieve with primes up

to
√
L to identify primes up to L using a window of size

√
L).

For each of the π(L) primes ` ≤ L, we compute a square root of −v2D modulo `
probabilistically, in expected time O(M(log `) log `), and use it to sieve f(t). Here
we sieve using a window of size O(|D|1/2 log |D| llog |D|), recomputing each square
root O(log2+ε |D|) times in order to achieve the space bound.

For each v, the total cost of computing square roots is O(π(L) log4+ε |D|), which
dominates the cost of sieving. Applying π(L) = O(L/ logL) and summing over v
yields O(|D|1/2 log9+ε |D|), which dominates the time to select S ⊂ Sz.

To stay within the space bound, if we find that increasing z in Step 3 by a factor
of 1 + δ causes Sz to be too large (say, greater than 4b bits), we backtrack and
instead increase z by a factor of 1 + δ/2 and set δ ← δ/2. We increase z a total of
O(log |D|) times (including all backtracking), and the lemma follows. �

In practice we don’t actually need to make the time/space tradeoff described in
the proof above. Heuristically we expect pM = O(|D| log1+ε |D|), and in this case
all the primes in Sz can be found in a single pass with L = O(|D|1/2 log1/2+ε |D|).

We now show that all the precomputation steps in Algorithm 2 take negligible
time and achieve the desired space bound. This includes selecting primes (Algo-
rithm 2.1 in Section 3.3), computing polycyclic presentations (Algorithm 2.2 in
Section 5.1), and CRT precomputation (Algorithm 2.3 in Section 6.2).

Lemma 5 (GRH). Steps 1, 2, and 3 of Algorithm 2 take O(|D|1/2+ε) expected
time, using O(|D|1/2(log |D|+ logP ) llog |D|) space.

Proof. The complexity of Step 1 is addressed by Lemma 4 above. By Proposition 6,
Step 2 performs h(D) operations in cl(D), each taking O(log2 |D|) time [9]. Even if
we compute a different presentation for every v ≤ vM, the total time is O(|D|1/2+ε).
The table used by Algorithm 2.2 stores h(D) = O(|D|1/2 llog |D|) group elements,
by bound (i), requiring O(|D|1/2 log |D| llog |D|) space.

As described in Section 6.2, when logP ≤ µ log3 |D| the complexity of Algo-
rithm 2.3 is O(M(logM) log2 n) time and O(logM + n logP ) space, and we have

logM =
∑
p∈S

log p ≤ n log pM = O(|D|1/2 log |D| llog |D|),

according to bounds (iii) and (vi) above. As discussed in Section 6.3, the same time
and space bounds for precomputation apply when logP > µ log3 |D|. �

We next consider TestCurveOrder (Section 3.4), which is used by Algo-
rithm 1.1 to find a curve in Ellt(Fp). We assume [64, Alg. 7.4] is used to implement
the algorithm FastOrder which is called by TestCurveOrder.

Lemma 6. TestCurveOrder runs in expected time O(log2 p llog2 p).
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Proof. For s = 0, 1 the integer ms computed by TestCurveOrder is the lcm of
the orders of random points in Es(Fp). By [64, Thm. 8.1] we expect O(1) points
yield ms = λ(Es(Fp)), the group exponent of Es(Fp). For p > 11, Theorem 2 and
Table 1 of [25] then imply N ⊆ {N0, N1}, forcing termination. We thus expect to
execute each step O(1) times. We now bound the cost of Steps 2-5:

2. The non-residue used to compute Ẽ can be probabilistically obtained using
an expected O(log p) operations in Fp, via Euler’s criterion.

3. With Es in the form y2 = f(x), we obtain a random point (x, y) by comput-
ing the square-root of f(x) for random x ∈ Fp, using an expected O(log p)
operations in Fp to compute square roots (probabilistically).

4. Computing Q = msP uses O(log p) group operations in Es(Fp). The fac-
torization of Ns/ms is obtained by maintaining ms in factored form. Im-
plementing FastOrder via [64, Alg. 7.4] uses O(log p llog p/ lllog p) group
operations on Es(Fp), by [64, Prop. 7.3].

5. The intersection of two arithmetic sequences can computed with the ex-
tended Euclidean algorithm in time O(log2 p), by [70, Thm. 3.13].

Step 4 dominates. The group operation in Es(Fp) uses O(1) operations in Fp, each
with bit complexity O(M(log p)), and this yields the bound of the lemma. �

We are now ready to bound the complexity of Algorithm 1 (Section 2), which
computes HD mod p using Algorithm 1.1 (Section 3.4), Algorithm 1.2 (Section 4.1),
and Algorithm 1.3 (Section 4.2).

Lemma 7 (GRH). For p ∈ S, Algorithm 1 computes HD mod p with an expected
running time of O(|D|1/2 log5 |D| llog3 |D|), using O(|D|1/2 log |D| llog |D|) space.

Proof. Ignoring the benefit of any torsion constraints, Algorithm 1.1 expects to
sample p/H(−v2D) ≤ z random curves over Fp to find j ∈ Ellt(Fp). The cost of
testing a curve is O(log2 p llog2 p), by Lemma 6, and this bound dominates the cost
of any filters applied prior to calling TestCurveOrder.

Applying bound (v) on z and bound (vi) on pM yields an overall bound of

(23) O(|D|1/2 log5 |D| llog3 |D|)

on the expected running time of Algorithm 1.1, and it uses negligible space.
Algorithm 1.2 finds j ∈ EllO(Fp) in polynomial time if the conductor of D

is small, and otherwise its complexity is bounded by the O(p1/3) = O(|D|1/3+ε)
complexity of Kohel’s algorithm (under GRH). In either case it is negligible.

As shown in [4], the ERH yields an O(log2 |D|) bound on the prime norms needed
to generate cl(D), even if we exclude norms dividing v (at most O(llog |D|) primes).
It follows that every optimal polycyclic presentation used by Algorithm 1.2 has
norms bounded by `M = O(log2 |D|). To bound the running time of Algorithm 1.3
we assume `i - v, since we use `i|v only when it improves performance.

The time to precompute each Φ`i is O(`3+εi ) = O(log6+ε |D|), by [28], and at
most O(log |D|) are needed. These costs are negligible relative to the desired bound,
as is the cost of reducing each Φ`i modulo p. Applying the bound on `M and
bound (vi) on pM, each step taken by Algorithm 1.3 on an `i-isogeny cycle uses
O(log4 |D|) operations in Fp, by (13). A total of h steps are required, and the
bounds (i) on h and (vi) on p yield a bit complexity of O(|D|1/2 log5 |D| llog2+ε |D|)
for Algorithm 1.3, using O(h lg p) = O(|D|1/2 log |D| llog |D|) space.



COMPUTING HILBERT CLASS POLYNOMIALS WITH THE CRT 25

Step 4 of Algorithm 1 computes
∏

(X − j) over j ∈ EllO(Fp) via a product tree,
using O(M(h) log h) operations in Fp and space for two levels of the tree. Applying
bound (i), this uses O(|D| log3+ε |D|) time and O(|D|1/2 log |D| llog |D) space. �

We remark that (23) can be improved to O(|D|1/2 log4+ε |D|) by arguing that
the order of a random point on a random elliptic curve over Fp has order greater
than 4

√
p with probability 1 − O(1/ log p). However, this does not significantly

change the overall complexity bound for Algorithm 1, since Step 3 then dominates.

Theorem 1 (GRH). Algorithm 2 computes HD mod P in O(|D| log5 |D| llog4 |D|)
expected time, using O(|D|1/2(log |D|+ logP ) llog |D|) space.

Proof. Lemma 5 bounds the cost of Steps 1–3. As previously noted, if we have
P > M =

∏
p∈S p, we set P = M and compute HD over Z.

Algorithm 1 is called for each p ∈ S, of which there are n = O(|D|1/2 llog |D|),
by bound (iii). Applying Lemma 7, Algorithm 1 computes HD mod p for all p ∈ S
within the time and space bounds stated in the theorem.

Recalling (18) from Section 6.2, for logP ≤ µ log3 |D| the total cost of updating
the CRT sums via Algorithm 2.4 is bounded by

(24) O
(
nhM(logP ) + hM(logM + n log n)

)
.

We have logM ≤ n log pM = O(|D|1/2 log |D| llog |D|), by bounds (iii) and (vi),
thus (24) is bounded by O(|D| log3+ε |D|), using bound (i) on h. The cost of Algo-
rithm 2.5 in Step 5 is O(hM(logP )) = O(|D|1/2+ε), with logP = O(log3 |D|). The
space required is O(h(log |D|+ logP )), which matches the bound in the theorem.

For logP > µ log3 |D|, we apply the hybrid approach of Section 6.3, whose costs
are bounded in (19). Using the bounds on logM , n, and h, we again obtain an
O(|D| log3+ε |D|) time for all CRT computations, and the space is as above. �

The CRT approach is particularly well suited to a distributed implementation;
one simply partitions the primes in S among the available processors. The precom-
putation steps in Algorithm 2 have complexity O(|D|1/2+ε), under the GRH, and
this is comparable to the complexity of Algorithm 1. Parallelism can be applied
here, but in practice we are happy to repeat the precomputation on each processor.

When logP is polynomially bounded in log |D|, the postcomputation can be
performed in time O(|D|1/2+ε) by aggregating the CRT sums, with the final result
HD mod P available on a single node. When P is larger, as when computing HD

over Z, we may instead have each processor handle the postcomputation for a subset
of the coefficients of HD, leaving the final result distributed among the processors.

We do not attempt a detailed analysis of the parallel complexity here, but note
the following corollary, which follows from the discussion above.

Corollary 1 (GRH). There is a parallel algorithm to compute HD mod P on
O(|D|1/2+ε) processors that uses O(|D|1/2+ε) time and space per processor.

7.1. A heuristic analysis. To obtain complexity estimates that better predict the
actual performance of Algorithms 1 and 2, we consider a näıve probabilistic model.
We assume that each integer m is prime with probability 1/ logm, and that for each
prime ` - D we have (D` ) = 1 with probability 1/2. For a prime ` with (D` ) = 1
we further assume that if α, α−1 ∈ cl(D) are distinct classes containing an ideal
of norm `, then α corresponds to a random element of cl(D) uniformly distributed
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among the elements of order greater than 2. Most critically, we suppose that all
these probabilities are independent. This last assumption is obviously false, but
when applied on a large scale this model yields empirically accurate predictions.

Compared to the GRH-based analysis, these assumptions do not change the
space complexity, nor bounds (i)–(iii), but significantly improve bounds (iv)–(vii).

(H) Our heuristic model predicts the following:

(iv) `M = O(log1+ε |D|).

(v) z = O(|D|1/2 log1/2+ε |D|).
(vi) pM = O(|D| log1+ε |D|).

(vii) vM = O(log1/2+ε |D|).
Applying these to the analysis of Section 7 yields an O(|D| log3+ε |D|) bound on

the expected running time of Algorithm 2, matching the heuristic result in [5].
It is claimed in [5, §5.4] that applying the bounds (i) and (ii) to [27, Thm. 1.1]

also yields a heuristic complexity of O(|D| log3+ε |D|) when using the floating-
point method to compute HD. This is incorrect, the implied bound is actually
O(|D| log4+ε |D|) (as confirmed by the author of [27]).

One may reasonably question how accurate our O(|D| log3+ε |D|) estimate is in
practice, since it assumes the Fast Fourier Transform (FFT) is used for all multi-
plications. The cost M(n) arises in three distinct contexts:

(a) The cost of operations in Fp is bounded by O(M(log p)).
(b) Finding a root of Φ`(X, ji)/(X − ji−1) uses O(M(`) log p) Fp-operations.
(c) Computing

∏
(X − j) uses O(M(h) log h) Fp-operations.

In case (a) we actually expect lg pM to be smaller than the word size of our CPU, so
multiplications in Fp effectively have unit cost. For (b), ` is typically in the range
where either schoolbook or Karatsuba-based multiplication should be used. It is
only in case (c) that FFT-based algorithms may be profitably applied.

In order to better estimate the running time of Algorithm 1 (which effectively
determines the running time of Algorithm 2) we break out the cost of each step,
expressing all bounds in terms of Fp-operations.

Step Complexity (Fp-operations)
1. Find j ∈ Ellt(Fp) O(|D|1/2 log3/2+ε |D|)
2. Find j′ ∈ EllO(Fp) negligible
3. Enumerate EllO(Fp) O(|D|1/2 log1+ω+ε |D|)
4. Compute

∏
j∈EllO(Fp)(X − j) O(|D|1/2 log2+ε |D|)

Table 1. (H) Heuristic complexity of Algorithm 1.

The value of ω depends on our estimate for M(`). One can find values of D in
the feasible range where `M is over 300, see [40, 41], and here it is reasonable to
assume M(`) = `ω with ω = lg 3 ≈ 1.585. In the worst case, Step 3 dominates.

However, the critical parameter is `1, the least cost `i used by Algorithm 1.3. If
`1 - D we expect it to be used in the overwhelming majority of the steps taken by
Algorithm 1.3. As with `M, it is possible to find feasible D for which `1 is fairly large
(over 100), but such cases are extremely rare. If we average over D in some large
interval, our heuristic model predicts `1 = O(1) (in fact E[`1] < 4). We typically
have M(`1) = O(1) and use ω = 0. In almost all cases, Step 4 dominates.
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The relative cost of Step 4 is not significant for small |D|, due to the excellent
constant factors in the algorithms available for polynomial multiplication, but its
asymptotic behavior becomes evident as |D| grows (see Tables 3 and 4).

8. Computational Results

To assess the performance of the new algorithm in a practical application, we
used it to construct pairing-friendly curves suitable for cryptographic use, a task
that typically requires large discriminants. We constructed ordinary elliptic curves
of prime order and embedding degree k over a prime field Fq such that either

k = 6 and 170 < lg q < 192, or k = 10 and 220 < lg q < 256.

These parameters were chosen using the guidelines in [31], and have particularly
desirable performance and security characteristics. For additional background on
pairing-based cryptography we refer to [20, Ch. 24].

To obtain suitable discriminants we used algorithms in [44] (for k = 6) and [30]
(for k = 10) that were optimized to search for q within a specified range. This
produced a set DPF of nearly 2000 fundamental discriminants (1722 with k = 6
and 254 with k = 10), with |D| ranging from about 107 to just over 1013 (almost
all greater than 1010). We selected 200 representative discriminants from DPF for
our tests, including those that potentially posed the greatest difficulty, due to an
unusually large value of `1 or h(D).

To each selected discriminant we applied the CM method, using Algorithm 2 to
compute HD mod P (with P = q); we find a root j of HD(X) over Fq, construct
an elliptic curve E with this j-invariant, then check that the trace of E has the
correct sign and use the quadratic twist of E if it does not.1

8.1. Implementation. The algorithms described in this paper were implemented
using the GNU C/C++ compiler [63] and the GMP library [33] on a 64-bit Linux
platform. Multiplication of large polynomials was handled by the zn poly library
developed by Harvey [36], based on the algorithm in [35].

The hardware platform included sixteen 2.8 GHz AMD Athlon processors, each
with two cores. Up to 32 cores were used in each test (with essentially linear
speedup), but for consistency we report total cpu times, not elapsed times. Memory
utilization figures are per core, and can be achieved using a single core.

8.2. Distribution of test discriminants. To construct a curve of odd order over
a field of odd characteristic we must have D ≡ 5 mod 8, and this necessarily applies
to D ∈ DPF. We then have (D2 ) = −1, which implies `1 ≥ 3, and also tends to
make h(D) smaller than it would be for an arbitrary discriminant. Averaging over
all discriminants up to an asymptotically large bound, we expect

L(1, χD) =
πh(D)√
|D|

−→ Cπ2/6 ≈ 1.45,

where C =
∏
p

(
1 − 1/(p2(p + 1))

)
, see [18, p. 296] (and see [40] for actual data).

Among the 1722 discriminants we found for k = 6, the average value of L(1, χD)
is about 0.55, close to the typical value for D ≡ 5 mod 8. For k = 10 we have the
further constraint `1 ≥ 7, and the average value of L(1, χD) is approximately 0.40.

1One may apply the method in [56], or simply verify that NQ = 0 for a point Q 6= 0 on E/Fq ,
where N is the desired (prime) order of E(Fq).
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Example 1 Example 2 Example 3

|D| 13, 569, 850, 003 11, 039, 933, 587 12, 901, 800, 539
h(D) 20,203 11,280 54,706
L(1, χD) 0.54 0.34 1.51
b 2,272,565 1,359,136 5,469,772
n 63,682 39,640 142,874
z 755,637 734,040 905,892
dlg pMe 40 38 43
vM 12 8 32
(`r11 , . . . , `

rk

k ) (720203) (171128, 1910) (327038, 52)

Step 1 0.0s 0.0s 0.0s
Step 2 1.2s 0.5s 4.0s
Step 3 0.6s 0.3s 2.0s
Step 4 23,300s 26,000s 61,000s
Step 5 0.0s 0.0s 0.0s
(Tf , Te, Tb) (57,32,11) (51,47,2) (53,20,27)

throughput 2.0Mb/s 0.6Mb/s 4.9Mb/s
memory 3.9MB 2.1MB 9.4MB
total data 5.7GB 1.9GB 37GB

Solve HD(X) = 0 over Fq 127s 86s 332s

Table 2. Algorithm 2 example computations.
(2.8 GHz AMD Athlon)

While we regard the discriminants in DPF as representative for the application
considered, in order to assess the performance of Algorithm 2 in more extreme
cases we also conducted tests using discriminants with very large values of L(1, χD).
These results are presented in Section 8.5.

8.3. Examples. Table 2 summarizes computations for three discriminants of com-
parable size, with |D| ≈ 1010. These represent a typical case (Example 1) and two
“worst” cases (Examples 2 and 3). The parameter values appearing in the top sec-
tion of the table are as defined in Section 7. The next section of the table contains
timings for each step of Algorithm 2.

As predicted by the asymptotic analysis, nearly all the time is spent in Step 4,
which calls Algorithm 1 for each prime p ∈ S. There are three principal components
in the running time of Algorithm 1:

Tf : time spent in Step 1 finding a curve in Ellt(Fp);
Te: time spent in Step 3 enumerating EllO(Fp);
Tb: time spent in Step 4 building HD(X) =

∏
j∈EllO(Fp)(X − j) mod p.

These are listed in Table 2 as percentages of the total time T . The time spent
elsewhere (T − Tf − Te − Tb) is well under 1% of T .

The third section in Table 2 lists the throughput, memory utilization, and total
data processed during the computation.2 The total data is defined as the product
of the number of coefficients h(D) and the height bound b. This approximates the

2The suffixes Mb and MB indicate 106 bits and 106 bytes respectively.
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|D| h(D) cpu secs (Tf , Te, Tb) Mb/s memory data

116, 799, 691 2, 112 156 (65,28,7) 2.6 0.5MB 52MB
1, 218, 951, 379 6, 320 1,650 (64,26,8) 2.5 1.1MB 520MB

13, 596, 850, 003 20, 203 23,400 (57,33,10) 2.0 3.9MB 5.7GB
126, 930, 891, 691 56, 282 195,000 (66,22,12) 2.0 9.5MB 50GB

1, 009, 088, 517, 019 181, 584 2,160,000 (64,20,16) 2.0 34MB 535GB
10, 028, 144, 961, 139 521, 304 20,600,000 (63,20,17) 1.9 84MB 5.0TB

Table 3. Algorithm 2 performance for typical D ∈ DPF.
(2.8 GHz AMD Athlon)

total size of HD, typically overestimating it by about 10% (the actual sizes of HD

for the three examples are 5.3GB, 1.8GB and 34GB respectively). The throughput
is then the total data divided by the total time. Memory figures include all working
storage and overhead due to data alignment (to word boundaries and to powers of 2
in FFT computations), but exclude fixed operating system overhead of about 4MB.
The last row of the table lists the time to find a root of HD over Fq, although this
task is not actually performed by Algorithm 2.

Example 1 represents a typical case: L(1, χD) is close to the mean of 0.55, and
`1 = 7 is just above the median of 5 (over D ∈ DPF). Example 2 has an unusually
large `1 = 17 (exceeded by fewer than 1% of D ∈ DPF), while Example 3 has an
unusually large L(1, χD) ≈ 1.51 (exceeded by fewer than 1% of D ∈ DPF).

In Example 2, the large `1 increases Te substantially, despite the smaller h(D).
The smaller L(1, χD) tends to increase the running time of individual calls to Al-
gorithm 1.1, but at the same time n decreases so that overall Tf decreases slightly.
The smaller values of h(D) and n both serve to decrease Tb significantly.

In Example 3 the large L(1, χD) decreases the cost of individual calls to Algo-
rithm 1.1, but increases n substantially so that overall Tf increases. However, Te

and Tb increase even more, especially Tb. Despite the longer running time, this
scenario results in the highest throughput of the three examples.

8.4. Scaling. Table 3 summarizes the performance of Algorithm 2 for D ∈ DPF

ranging over six orders of magnitude. We selected examples whose performance
was near the median value for discriminants of comparable size. We note the quasi-
linear growth of T , and the increasing value Tb as a percentage of T , consistent
with our heuristic prediction that this component is asymptotically dominant.

Up to 32 cores were applied to the computations in Table 3. In all but the
smallest example we can effectively achieve a 32x speedup. The actual elapsed
time for the largest discriminant was about 8 days, while the second largest took
less than a day. As suggested by Corollary 1, these computations could be usefully
distributed across many more processors. The low memory requirements provide
headroom for much larger computations: each of our cores had 2GB of memory,
but less than 100MB was used.

Below is an example of a curve constructed using D = −10, 028, 144, 961, 139,
the largest discriminant listed in Table 3. The elliptic curve

y2 = x3 − 3x+ 3338561401570133202017008597803337396411439360229378547
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|D| h(D) cpu secs (Tf , Te, Tb) Mb/s memory data

2, 093, 236, 031 100,000 98,800 (25,19,56) 7.5 18MB 93GB
8, 364, 609, 959 200,000 472,000 (24,17,59) 6.8 36MB 400GB

17, 131, 564, 271 300,000 1,240,000 (20,15,65) 5.9 61MB 920GB
30, 541, 342, 079 400,000 2,090,000 (21,16,63) 6.4 71MB 1.7TB
42, 905, 564, 831 500,000 3,050,000 (22,17,61) 6.9 81MB 2.6TB
67, 034, 296, 559 600,000 5,630,000 (18,14,68) 5.6 121MB 3.9TB
82, 961, 887, 511 700,000 7,180,000 (19,14,67) 5.9 132MB 5.3TB

113, 625, 590, 399 800,000 9,520,000 (19,15,66) 5.9 142MB 7.1TB
133, 465, 791, 359 900,000 11,500,000 (20,15,65) 6.2 152MB 9.0TB
170, 868, 609, 071 1,000,000 14,200,000 (20,16,64) 6.3 163MB 11.2TB

Table 4. Algorithm 2 timings for large L(1, χD).
(2.8 GHz AMD Athlon)

has embedding degree 6 over the finite field Fq with

q = 30518311673028635209000068713843412774183984182022701057.

This curve has prime order N = q + 1− t, where

t = 5524338120809463560527395583.

There are a total of h(D) = 521, 304 nonisomorphic curves with the same order
that may be constructed using HD mod q. A complete list of curves for all the
discriminants tested is available at http://math.mit.edu/~drew.

8.5. Discriminants with large L(1, χD). Table 4 shows the performance of Al-
gorithm 2 on discriminants specifically chosen to make L(1, χD) extremely large,
between 6.8 and 7.8. These discriminants are not in DPF, and are likely the small-
est possible for the class numbers listed (but we do not guarantee this). In each
case we computed HD modulo a 256-bit prime P . The timings would not change
significantly for larger P , but the space would increase.

The first discriminant D = −2, 093, 236, 031 in Table 4 also appears in Table 1 of
[27]. Scaled to the same processor speed, Algorithm 2 computes HD mod P using
less than half the cpu time spent by the floating-point approximation method to
compute a class polynomial over Z for the same D (this polynomial would then
need to be reduced mod P in order to apply the CM method). Most significantly,
the memory required is about 20 MB versus 5 GB.

This comparison is remarkable, given that the height bound b = 7, 338, 789 for
HD is nearly 28 times larger than the 264,727 bits of precision used in [27], where
the class polynomial for the double-eta quotient w3,13 is computed instead of the
Hilbert class polynomial. The difference in throughput is thus much greater than
the difference in running times: 7.5 Mb/s versus 0.10 Mb/s.
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Appendix 1

This appendix proves Lemma 8, which bounds the coefficients of the Hilbert
class polynomial HD(X), and Lemma 9 which bounds the Hurwitz class number
H(−v2D) in terms of v and H(−D).

Let B denote an upper bound on the absolute values of the coefficients of HD(X).
In the literature one finds many values for B (or logB), but due to an unfortunate
series of typographical errors, many are incorrect [5, p. 285], exponentially larger
than necessary ([2, Eq. 22] and [11, p. 151]), or heuristics that do hold for all D ([1,
Eq. 3.1] and [12, p. 2431]). In [27, Thm. 1.2], Enge gives a rigorous and fully explicit
value for B that is empirically accurate to within a constant factor, but still larger
than desirable for practical application. Provided one is prepared to enumerate the
elements of cl(D), a much tighter bound is given by the lemma below, whose proof
is derived directly from Enge’s analysis in [27, §4].

Lemma 8. For a quadratic discriminant D < 0, let (a1, b1, c1), . . . , (ah, bh, ch) be
the sequence of reduced, primitive binary quadratic forms of discriminant D with
0 < a1 ≤ · · · ≤ ah, where h = h(D). Let Mk = exp(π

√
|D|/ak) + C, where

C = 2114.567. Then the coefficients of HD(X) have absolute values bounded by

B =
(
h

m

)
M−mh

h∏
k=1

Mk,

where m =
⌊
h+1
Mh+1

⌋
. We also have logB = O(|D|1/2 log2 |D|), and under the GRH,

logB = O(|D|1/2 log |D| llog |D|).

Proof. We may write HD as

HD(X) =
h∏
k=0

(
X − j(τk)

)
,

where τk = (−bk +
√
D)/2ak. With qk = e2πiτk , we have Mk = |1/qk| + C, where

the constant C bounds |j(τk)−1/qk|, as shown in [27, p. 1094]. Thus |j(τk)| ≤Mk,
and the absolute value of the coefficient of Xn in HD(X) is bounded by

(25) Bn =
(
h

n

) h−n∏
k=1

Mk.

We now argue that Bn ≤ B. For n > m we have n > (h+ 1)/(Mh + 1) and(
h

n

) / ( h

n− 1

)
=
h− n+ 1

n
< Mh.

This implies Bn < Bn−1. For 0 < n ≤ m we have
(
h
n

)
/
(
h
n−1

)
≥Mh, which implies

B0 ≤ B1Mh/Mh ≤ B2Mh−1Mh/M
2
h ≤ · · · ≤ BmMh−m+1 · · ·Mh/M

m
h = B.

It follows that B bounds every Bn.
The bound logB = O(|D|1/2 log2 |D|) follows from h = O(|D|1/2 log |D|), as

proven in [59], and the bound
∑
k

1
ak

= O(log2 |D|), proven in [58, Lemma 2.2].
As shown in [5, Lemma 2], under the GRH the bound

∑
k

1
ak

= O(log |D| llog |D|)
follows from [52], which yields logB = O(|D|1/2 log |D| llog |D|). �
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In practice the bound given by Lemma 8 is close to, and often better than,
the heuristic bound B =

(
h
bh/2c

)
exp(π

√
|D|
∑
k

1
ak

) that is sometimes used, even
though the latter bound is not actually valid for all D (such as D = −99).

Lemma 9. Let D be a negative discriminant, let v ≥ 2 be an integer, and let x
be the largest prime for which

∏
p≤x p ≤ v, where p ranges over primes. Let H(n)

denote the Hurwitz class number. The following bounds hold:

1 ≤ H(−v2D)
vH(−D)

≤
∏
p≤x

p+ 1
p− 1

< 11 llog2(v + 4).

Proof. Let u be the conductor of D, so that D = u2D0. Then

(26) H(−v2D) = H(−(uv)2D0) =
∑
d|uv

2h(d2D0)
w(d2D0)

,

where w(d2D0) = |O∗d2D0
| is 2, 4, or 6 [18, Lemma 5.3.7]. We also have [18, p. 233]

h(d2D0)
w(d2D0)

=
h(D0)
w(D0)

d
∏
p|d

(
1− χp

p

)
,

where χp =
(
D0
p

)
is −1, 0, or 1. Regarding D0 as fixed, we note that

H(−n2D0) =
2h(D0)
w(D0)

∑
d|n

d
∏
p|d

(
1− χp

p

)
is a multiplicative function of n, which yields

H(−n2D0) =
2h(D0)
w(D0)

∏
p

(
1 +

(
pνp(n) − 1

)
(p− χp)/(p− 1)

)
.

where νp(n) is the p-adic valuation. From (26) we obtain

(27)
H(−v2D)
vH(−D)

=

∏
p

(
1 +

(
pνp(u)+νp(v) − 1

)
(p− χp)/(p− 1)

)
v
∏
p

(
1 +

(
pνp(u) − 1

)
(p− χp)/(p− 1)

) .

Fixing D = u2D0, we regard (27) as a multiplicative function of v. For v = pk:

H(−p2kD)
pkH(−D)

=

(
1 +

(
pνp(u)+k − 1

)
(p− χp)/(p− 1)

)
pk
(
1 +

(
pνp(u) − 1

)
(p− χp)/(p− 1)

) .
This value is minimized when χp = 1, in which case it is 1, yielding the first
inequality in the lemma. It is maximized when χp = −1, in which case one finds(

1 +
(
pνp(u)+k − 1

)
(p+ 1)/(p− 1)

)
pk
(
1 +

(
pνp(u) − 1

)
(p+ 1)/(p− 1)

) ≤ p+ 1
p− 1

,

for all nonnegative integers k and νp(u). We thus obtain from (27)

H(−v2D)
vH(−D)

≤
∏
p|v

p+ 1
p− 1

≤
∏
p≤x

p+ 1
p− 1

,
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proving the second inequality in the lemma. To prove the third inequality, we first
note that for v ≥

∏
p≤x p the inequality holds for each prime x < 41, by a machine

calculation, so we assume x ≥ 41. We then have

log
∏
p≤x

p+ 1
p− 1

=
∑
p≤x

log
(

1 +
2

p− 1

)
≤
∑
p≤x

2
p− 1

= 2
∑
p≤x

1
p

+ 2
∑
p≤x

1
p(p− 1)

.

We now apply the bound
∑
p≤x

1
p < llog x+B1 + 1/(log x)2 from [55, 3.20], where

B1 = 0.261497 . . ., and also
∑
p

1
p(p−1) = 0.773156 . . . from [19], to obtain

log
∏
p≤x

p+ 1
p− 1

< 2 llog x+ 2.218,

valid for x ≥ 41. This yields
∏
p≤x

p+1
p−1 < 9.189 · log2 x. We also have the bound

x(1− 1/ log x) <
∑
p≤x log p, valid for x ≥ 41, by [55, 3.16], which implies∏

p≤x

p+ 1
p− 1

< 9.189 · log2(1.369 · log v),

For x ≥ 41 we have log v > 30, and the RHS is then smaller than 11 llog2(v+4). �

Appendix 2

Here we list some of the torsion constraints used to accelerate the search for an
elliptic curve E/Fp with p+ 1± t points, as described in Section 3. Each constraint
has the form m = a · b ·N , where a is a power of 2 and b is a power of 3. Curves
with a point of order N are generated using a plane model for X1(N) as in [65],
then filtered to ensure that the constraints implied by a and b are also met. When
a or b is expressed in exponential notation, it is meant to control the exact power
of 2 or 3 that divides #E. The torsion constraint 14 = 20 · 30 · 14, for example,
indicates that #E is divisible by 14 but not divisible by 3 or 4.

Efficient methods for analyzing the Sylow 2-subgroup of E(Fp) are considered
in [53, 65], and for 3-torsion we use the 3-division polynomial [71, § 3.2]. For the
sake of brevity, here we consider constraints on the Sylow 2-subgroup only up to
4-torsion, but one may obtain minor improvements using 2k-torsion for larger k.

The benefit of each constraint is computed as 1/r, where r is the proportion of
elliptic curves E/Fp that satisfy the constraint. We derive r using [38, Thm. 1.1],
under the simplifying assumption that if N divides #E, then E(Fp) contains a
point of order N (necessarily true when the square part of N is coprime to p− 1).
A more precise estimate may be obtained from [32, Thm. 3.15]. Table 5 assumes
that p ≡ 1 mod 3 and p 6≡ 1 mod ` for primes ` > 3 dividing N . It is easily adjusted
to other cases via [38, Thm. 1.1]; this will change the rankings only slightly.

The cost of each constraint was determined empirically (and is somewhat imple-
mentation dependent). For a random set of primes p of suitable size (30-50 bits) we
measured the average time to: (1) generate a curve E/Fp satisfying the constraint,
(2) obtain a random point P ∈ E(Fp), and (3) compute the points (p+1)P and tP .
This is compared to the cost of (2) and (3) alone (the “null case” for Algorithm 1.1,
excluding TestCurveOrder which is rarely called). The parametrizations of [3]
combine (1) and (2), enabling a cost of less than 1.0 in some cases.
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m torsion benefit cost ratio m torsion benefit cost ratio

33 20 · 3 · 11 80.0 2.3 34.3 44 4 · 11 24.0 1.8 13.0
39 20 · 3 · 13 96.0 3.0 31.5 93 20 · 3 · 31 240.0 18.9 12.7
51 20 · 3 · 17 128.0 4.4 29.0 34 21 · 17 64.0 5.0 12.7
15 20 · 15 32.0 1.2 26.4 28 2 · 14 14.4 1.2 12.4
11 20 · 11 30.0 1.2 25.9 52 4 · 13 28.8 2.4 12.2
57 20 · 3 · 19 144.0 5.7 25.4 18 20 · 18 26.2 2.2 12.0
66 21 · 3 · 11 106.7 4.3 24.7 36 2 · 18 15.7 1.3 12.0
21 20 · 3 · 7 48.0 2.1 23.1 68 4 · 17 38.4 3.4 11.2
69 20 · 3 · 23 176.0 7.8 22.4 38 21 · 19 72.0 6.7 10.8
78 21 · 3 · 13 128.0 5.8 22.0 10 20 · 10 16.0 1.5 10.7
13 20 · 13 36.0 1.6 21.8 174 21 · 3 · 29 298.7 28.6 10.4
9 20 · 9 19.6 1.0 20.2 20 2 · 10 9.6 0.9 10.4

102 21 · 3 · 17 170.7 8.5 20.0 348 4 · 3 · 29 179.2 18.0 9.9
42 20 · 3 · 14 64.0 3.2 20.0 76 4 · 19 43.2 4.4 9.9
7 20 · 7 18.0 0.9 19.6 46 21 · 23 88.0 9.2 9.5

132 4 · 3 · 11 64.0 3.3 19.2 29 20 · 29 84.0 8.9 9.5
17 20 · 17 48.0 2.5 19.0 48 3 · 16 21.3 2.3 9.4

156 4 · 3 · 13 76.8 4.2 18.2 3 20 · 3 8.0 0.9 9.2
204 4 · 3 · 17 102.4 5.9 17.5 92 4 · 23 52.8 6.0 8.8
114 21 · 3 · 19 192.0 11.0 17.4 12 12 6.4 0.7 8.8
30 21 · 15 42.7 2.5 16.9 186 21 · 3 · 31 320.0 36.9 8.7
84 2 · 3 · 14 38.4 2.3 16.5 31 20 · 31 90.0 11.5 7.8
19 20 · 19 54.0 3.3 16.4 6 20 · 6 10.7 1.4 7.4
22 21 · 11 40.0 2.5 16.2 16 16 8.0 1.1 7.2

228 4 · 3 · 19 115.2 7.4 15.7 58 21 · 29 112.0 17.4 6.4
87 20 · 3 · 29 224.0 14.5 15.5 116 4 · 29 67.2 11.0 6.1

138 21 · 3 · 23 234.7 15.3 15.4 8 8 4.0 0.7 5.9
26 21 · 13 48.0 3.3 14.4 62 21 · 31 120.0 23.0 5.2
23 20 · 23 66.0 4.7 14.2 124 4 · 31 72.0 14.2 5.1

276 4 · 3 · 23 140.8 10.0 14.0 2 20 · 2 4.0 0.9 4.3
14 20 · 14 24.0 1.7 13.8 4 4 2.4 0.6 3.8
60 4 · 15 25.6 1.9 13.5 1 20 · 1 3.0 0.8 3.7
5 20 · 5 12.0 0.9 13.0

Table 5. Ranking of m-torsion constraints (for p ≡ 1 mod 3).

Dominated constraints are not listed, e.g. 3 · 4 · 31 is always inferior to 12.

The rankings in Table 5 assume each constraint is applicable to bothN0 = p+1−t
and N1 = p+ 1 + t; if not, the effective ratio is about half the listed value (9/16, on
average). For given values of p and t, we thus consider three possible constraints,
one satisfied by N0, one by N1, and one by both, and pick the best of the three.
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5. Juliana Belding, Reinier Bröker, Andreas Enge, and Kristin Lauter, Computing Hilbert class

polynomials, Algorithmic Number Theory Symposium–ANTS VIII (A. J. van der Poorten and

A. Stein, eds.), Lecture Notes in Computer Science, vol. 5011, Springer, 2008, pp. 282–295.
6. Daniel J. Bernstein, Detecting perfect powers in essentially linear time, and other studies in

computational number theory, Ph.D. thesis, University of California at Berkeley, 1995.

7. , Multidigit modular multiplication with the explicit chinese remainder theorem, 1995,

Chapter 4 of [6], available at http://cr.yp.to/papers.html#mmecrt.

8. , Modular exponentiation via the explicit Chinese Remainder Theorem, Mathematics
of Computation 76 (2007), 443–454.

9. Ingrid Biehl and Johannes Buchmann, An analysis of the reduction algorithms for binary

quadratic forms, Voronoi’s Impact on Modern Science (P. Engel and H. Syta, eds.), Insti-
tute of Mathematics, Kyiv, 1998, available at http://www.cdc.informatik.tu-darmstadt.

de/reports/TR/TI-97-26.ps.gz, pp. 71–98.

10. Gaetan Bisson and Andrew Sutherland, Computing the endomorphism ring of an ordinary
elliptic curve over a finite field, 2009, http://arxiv.org/abs/0902.4670.

11. Ian Blake, Gadiel Seroussi, and Nigel Smart, Elliptic curves in cryptography, London Mathe-

matical Society Lecture Note Series, vol. 265, Cambridge University Press, 1999.
12. Reinier Bröker, A p-adic algorithm to compute the Hilbert class polynomial, Mathematics of

Computation 77 (2008), 2417–2435.
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