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EM versus Markov chain Monte Carlo for

Estimation of Hidden Markov Models: A

Computational Perspective

Tobias Rydén∗

Abstract. Hidden Markov models (HMMs) and related models have become stan-
dard in statistics during the last 15–20 years, with applications in diverse areas
like speech and other statistical signal processing, hydrology, financial statistics
and econometrics, bioinformatics etc. Inference in HMMs is traditionally often
carried out using the EM algorithm, but examples of Bayesian estimation, in gen-
eral implemented through Markov chain Monte Carlo (MCMC) sampling are also
frequent in the HMM literature. The purpose of this paper is to compare the EM
and MCMC approaches in three cases of different complexity; the examples include
model order selection, continuous-time HMMs and variants of HMMs in which the
observed data depends on many hidden variables in an overlapping fashion. All
these examples in some way or another originate from real-data applications. Nei-
ther EM nor MCMC analysis of HMMs is a black-box methodology without need
for user-interaction, and we will illustrate some of the problems, like poor mixing
and long computation times, one may expect to encounter.

Keywords: hidden Markov model, incomplete data, missing data, EM, Markov
chain Monte Carlo, trans-dimensional Monte Carlo, computational statistics

1 Introduction

Hidden Markov models are a class of statistical models that today have become standard
in applied statistics, with applications in areas like speech processing (Levinson et al.
1983; Jelinek 1998), bioinformatics (Koski 2001), econometrics (Raj 2002), finance
(Bhar and Hamori 2004), and many more. More general references to the subject in-
clude MacDonald and Zucchini (1997), Cappé et al. (2005) and Frühwirth-Schnatter
(2006).

By a hidden Markov model we mean a discrete-time bivariate process {(Xk, Yk)}
possessing the following properties: (i) the X-process is a finite-state Markov chain;
(ii) the Y -variables are conditionally independent given all X-variables; (iii) given all
X-variables, the conditional distribution of Yk depends on Xk but not on any other
X-variables; (iv) the X-process is non-observable (latent). Before proceeding we make
a few remarks about this definition. Conditions (ii) and (iii) together stipulate a local
dependence between the X- and Y -variables. This property is exactly the same as in a
state-space model, and it is completely accurate to say that an HMM is a state-space
model with finite state space. The conditional distributions of Yk for various values
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of Xk in the state space are typically taken from a common family of distributions,
for instance Normal distributions with different means and/or variances, so that the
marginal (unconditional) distribution of Yk is over-dispersed relative to a single distri-
bution in that family. This mechanism is the same as for mixture distributions, but in
most contexts where the term ‘mixture distribution’ is used, the pairs (Xk, Yk) are i.i.d.
In an HMM they are not, so that an HMM can be viewed as a mixture model with
dependence. We remark that the Y -process is in general not Markov however.

Many variants and extensions of the above definition are found in the literature,
and we will also consider one in the present paper. A particularly common extension
is when the conditional distribution of Yk is allowed to depend, in addition to Xk, also
on some lagged Y -variables Yk−1, Yk−2, . . . , Yk−r. Such models are often referred to
as Markov-switching autoregressions, or autoregressions with Markov regime (see e.g.
Krolzig 1997).

The first papers on HMMs appeared in the second half of the 1960’s, authored by
Leonard Baum, Ted Petrie and co-workers, and mostly dealing with the case when the
output variables Yk take values in a finite set as well. Results established in these
early papers include consistency and asymptotic normality of the maximum-likelihood
estimator (MLE) (Baum and Petrie 1966; Petrie 1969), and in particular a version of the
EM algorithm (Baum et al. 1970), formulated for the particular case of HMMs before
Dempster et al. (1977) coined the term ‘EM’ in general. Since then the MLE and the EM
algorithm have been the main vehicles for inference in HMMs. The popularity of EM is
explained by an efficient computational tool known as the forward-backward algorithm,
that is used to implement EM for HMMs. Recent years have seen an increased interest
in Bayesian inference in HMMs however, often implemented using Gibbs sampling, and
the purpose of the present paper is indeed to discuss this approach, its strengths and
weaknesses, and how it compares to frequentist approaches. At this point it should be
stressed that EM is not per se a tool for frequentist (ML) inference, but a framework
that can equally well be used for computing maximum aposteriori (MAP) estimates in
Bayesian settings (Dempster et al. 1977, p. 6). Thus EM is best described as a method

for computing a point estimate. The comparison we will make is hence EM vs. Gibbs,
with bootstrap complementing EM for interval estimation and model selection, and
Gibbs sampling possibly being replaced by more general MCMC samplers for model
selection and more complex models. Our approach to this comparison will mainly
be computational, and not on larger differences between the frequentist and Bayesian
paradigms. Thus our focus is on how, in a computational sense, different models are
analysed using the two approaches and what kind of computational efforts are required.
Put differently, our perspective is that of a statistician who has no strong beforehand
preference for either approach, but is pragmatic and wants to arrive at useful results at
a reasonable computational cost.

The comparison will be based on three case studies of increasing complexity and
difficulty. The first one is the model with conditionally Normal distributions for Yk, as
outlined above. The second case is similar, but such that the size of the state space, i.e.
the number of hidden states, is unknown and needs to be estimated. In the third case
finally the hidden Markov chain evolves in continuous time, and at many time-points
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this chain affects several of the Y -variables, thus creating an overlap in the dependence
structure; this obviously violates (iii) in the definition above.

A paper somewhat similar to the present one is that by Scott (2002), which contains
a very readable and illuminating survey of the uses of the forward-backward and related
recursive algorithms in Bayesian analysis of HMMs. Scott’s focus is thus mainly on the
application of such computational tools in a Bayesian context and not so much on
comparing frequentist and Bayesian approaches to inference; we do mention however
that his paper (Section 4.1) contains a nice analysis of marginal likelihoods vs. BIC for
model selection.

2 Case I: A simple hidden Markov model

We will start with a simple hidden Markov model having d = 3 states and the data being
conditionally Normal with common conditional variance; Yk|Xk = i ∼ N(µi, σ

2). The
parameters of this model are thus µi, σ2 and the transition probabilities of the hidden
chain; the latter will be denoted by aij . We will estimate these parameters based on a
simulated set of data for which the true parameters values are

A = {aij} =





0.6 0.3 0.1
0.1 0.8 0.1
0.1 0.3 0.6



 ,

µ = (µ1, µ2, µ3) = (−2, 0, 2), and σ being either 0.5, 1 or 1.5. The stationary distri-
bution of the hidden chain is (0.2, 0.6, 0.2) and the chain is assumed stationary. It is
however convenient to also include the initial probabilities ρi = P(X1 = i) as separate
parameters in the model, and we do so even if these are implicitly given by the sta-
tionarity assumption and A; this is because otherwise the distribution of the complete
data does not form an exponential family as the stationary probabilities are non-linear
functions of the transition probabilities.

The marginal distribution of Yk is thus a mixture of Normals, and the different
cases for σ2 correspond to different degrees of overlap between the three components
(Figure 1). For σ = 0.5 the components are reasonably separated and the marginal
distribution is trimodal, for σ = 1 the marginal distribution is unimodal but its shape
otherwise visually reveals the presence of multiple components, whereas for σ = 1.5
the overlap is considerable and it is difficult by eye-inspection to detect the presence of
multiple components. For each of the three values of σ2, a sample y1:n = (y1, y2, . . . , yn)
of size n = 1, 000 was simulated.

For this HMM, implementation of the EM algorithm is standard (cf. Cappé et al.
2005, Sections 10.3.1–2). We do not quote the full details here, but notice that a key
step is to compute the conditional probabilities Pθ(Xk = i |y1:n) for k = 1, 2, . . . , n
and Pθ(Xk−1 = i, Xk = j |y1:n) for k = 2, 3, . . . , n. Here Pθ denotes probability
under a certain set θ of parameters. The computation of these conditional probabili-
ties is typically carried out using the forward-backward algorithm, which amounts to
computing the joint probabilities/densities, or forward variables, pθ(Xk = i,y1:k) for



662 EM vs. MCMC for hidden Markov models

−4 −3 −2 −1 0 1 2 3 40

0.1

0.2

0.3

0.4

0.5

−4 −3 −2 −1 0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

0.3

−4 −3 −2 −1 0 1 2 3 40

0.05

0.1

0.15

0.2

0.25

Figure 1: Densities of the Normal components, weighted by the stationary probabilities
(dashed lines) and marginal densities of the observations Yk (solid lines) for the hidden
Markov model of Case I with σ = 0.5 (left panel), σ = 1 (middle panel) and σ = 1.5
(right panel).

k = 1, 2, . . . , n (the forward pass), and the joint conditional densities, or backward

variables, pθ(yk+1:n|Xk = i) for k = n, n − 1, . . . , 1 (the backward pass). In practice
these forward and backward variables tend to zero or infinity exponentially fast in the
recursions, whence any useful implementation applies some kind of normalisation (cf.
Cappé et al. 2005, Sections 5.1.1.1–2, 3.2.2 and 3.4 for a thorough discussion on this
topic). For instance one may, in each iteration, normalise the forward and backward
variables to sum to one over i; in the forward pass this corresponds to computing filtered
probabilities Pθ(Xk = i |y1:k) .

We now turn to the Bayesian perspective. The by far most popular method for sam-
pling from the posterior distribution in cases like this is to include the latent data X1:n

in the MCMC state space and to run the full Gibbs sampler, i.e. alternating between
sampling model parameters and latent data from their respective full conditional distri-
butions. This is because given the latent Markov chain and the data, the parameters are
conditionally independent with distributions from standard parametric families (at least
as long as the prior distribution is conjugate relative to the model specification) and,
vice versa, given the parameters and the data the latent process is a non-homogeneous
Markov chain and hence simple to sample.

In the present case the prior distribution of the parameters was taken conjugate
to the complete data likelihood, as follows. Each row of the transition probability
matrix as well as the initial distribution (ρ1, ρ2, . . . , ρd) were given an independent
Dirichlet distribution prior Dir(1, 1, . . . , 1), each µi was given an independent Normal
prior N(ξ, κ−1) with ξ = (min yk +max yk)/2 and κ = 1/R2 where R = max yk −min yk

is the data range, σ−2 was given a gamma prior Γ(α, β) with α = 2, the hyperparameter
β was given a gamma prior Γ(g, h) with g = 0.2 and h = 10/R2, and all parameters
were assumed apriori independent. This prior specification is very much in line with
what Richardson and Green (1997) did for mixture models.

Under this prior specification, the full conditional distributions are given by

(ρ1, ρ2, . . . , ρd)| . . . ∼ Dir(I{X1 = 1} + 1, I{X1 = 2}+ 1, . . . , I{X1 = d} + 1) (1)
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where I{·} denotes an indicator function,

(ai1, ai2, . . . , aid)| . . . ∼ Dir(ni1 + 1, ni2 + 1, . . . , nid + 1) (2)

where nij = #{1 < k ≤ n : Xk−1 = i, Xk = j} is the number of transitions from
state i to j in the latent state sequence and with conditional independence across rows
i = 1, 2, . . . , d,

µi| . . . ∼ N

(

Si + κξσ2

ni + κσ2
,

σ2

ni + κσ2

)

(3)

where Si =
∑

k: Xk=i yk, ni = #{1 ≤ k ≤ n : Xk = i} is the number of visits to state i
in the latent state sequence and with conditional independence across i = 1, 2, . . . , d,

σ−2| . . . ∼ Γ

(

α +
1

2
n, β +

1

2

n
∑

k=1

(yk − µXk
)2

)

, (4)

and
β| . . . ∼ Γ(g + α, h + σ−2). (5)

Here in all cases ‘. . . ’ denotes other parameters, the latent Markov chain and the data.
Moreover, for the latent chain it holds that given parameters and data, this process is
a non-homogeneous Markov chain with initial distribution

P(X1 = j | . . .) ∝ ρj ϕ(y1; µj , σ
2) pθ(y2:n|X1 = j) (6)

and transition probabilities

P(Xk = j |Xk−1 = i) ∝ aij ϕ(yk; µj , σ
2) pθ(yk+1:n|Xk = j) (7)

where ϕ is the density of a Normal distribution with the indicated mean and variance.
Given that the relations are only up to proportionality in j, they need to be normalised
in order to obtain the correct probabilities. We note that the densities of the partial data
sequences are nothing but the backward variables. This leads to the common method
backward recursion forward sampling for simulating the latent Markov chain conditional
on the data (e.g. Chib 1996, Section 2.1). The opposite, i.e. forward recursion backward
sampling, is also possible.

The full Gibbs sampler then amounts to alternating between updating the parame-
ters conditional on the data and hidden Markov chain, and updating the hidden chain
conditional on the data and parameters. In our implementation, this was done in the
following order.

(a1) Update (µ1, . . . , µd) by drawing independently from (3).

(a2) Update σ2 by drawing from (4).

(a3) Update β by drawing from (5).

(a4) Update A by drawing (ai1, . . . , aid) from (2), independently for i = 1, . . . , d.
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(a5) Update (ρ1, . . . , ρd) by drawing from (1).

(b) Update {Xk}n
k=1 by drawing X1 from (6) and then Xk from (7) for k = 2, 3, . . . , n.

One sequence of these steps (a) and (b) is typically referred to as a sweep of the Gibbs
sampler.

2.1 Amount of missing information and rate of convergence/mixing

The EM algorithm was run for the model described above, for one sample of size n =
1, 000 for each of the three different values for σ2. The initial values of the parameters
were computed as follows: (i) initial means were computed as µi = min yk + R/(2d) +
(i−1)R/d with R as above, thus spreading the µi (uniformly) over the range of the data;
(ii) an initial imputation of the xk was computed by nearest distance, i.e. xk was set to
the argument i minimising (yk − µi)

2 over the initial means µi; (iii) an initial σ2 was
computed as n−1

∑n
1 (yk −µxk

)2 for initial means and imputation; (iv) initial estimates
of the aij were computed as nij/ni where nij is the number of transitions from state i to
j in the initial imputation and ni =

∑

nij ; (v) the initial probabilities ρi of X1 were set
to 1/d for all i. Figure 2 (left) shows that the estimates of the means µi converge to the
corresponding MLEs as EM is iterated. It also shows however, that convergence becomes
slower the larger σ2 gets. It is well known that the asymptotic rate of convergence of
EM is linear, meaning that if ζ is any parameter, ζ(m) its value in the m-th iteration
of EM and ζML its (unknown) ML estimate, then the error e(m) = ζ(m) − ζML satisfies
e(m+1) ≈ ce(m) for some 0 ≤ c < 1 (e.g. Meilijson 1989, p. 132). This provided the EM
sequence actually does converge to the MLE, which is not guaranteed (cf. Wu 1982). One
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Figure 2: Left plot: trajectories of µ
(m)
i for EM iterations m = 0, 1, . . . , 100, component

indices i = 1, 2, 3 (bottom to top curves) and data simulated with σ = 0.5 (solid lines),
σ = 1 (dashed lines) and σ = 1.5 (dash-dotted lines). Right plot: absolute differences

|µ(m+1)
i − µ

(m)
i | for EM iterations 1–60; same components and line symbols.
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should note that once the forward-backward algorithm has been run, the gradient of the
log-likelihood at the present parameter estimate may be computed at little additional
computational cost. This allows for switching from EM to e.g. quasi-Newtown methods
in the vicinity of the MLE, hence speeding up convergence (e.g. Meilijson 1989). The
cost of such approaches is the loss of EM’s stability property—that an EM iteration can
never decrease the likelihood.

The constant c is related to the amount of missing information in the model, and
the more missing information, the larger becomes c; these heuristics can be made pre-
cise in terms of information matrices of the model (e.g. Meilijson 1989, p. 132). The
asymptotics implies that e(m) ∼ bcm for some real b as m → ∞, so that ζ(m+1)−ζ(m) ∼
cmb(c − 1). Plotting ζ(m+1) − ζ(m) on a lin-log scale should thus produce roughly a
straight line, and this is exactly what Figure 2 (right) shows. It also shows that the
decay is faster when the amount of missing information is smaller (σ = 0.5), confirming
the heuristics numerically. Crude estimates of c for the three cases σ = 0.5, 1 and 1.5
are 0.3, 0.89 and 0.97 respectively.

For the Gibbs sampler the parameters were initialised as for the EM algorithm,
β was set to its prior mean g/h and then for each data set the sampler was run for
11,000 sweeps, of which the first 1,000 were discarded as a burn-in period. Plots of the
remaining 10,000 samples of the µi are shown in Figure 3. It it obvious from the plots
that the marginal variances of the sampled µi are larger for larger values of σ2 in the
data.

However, letting ζ be any model parameter, ζ [t] its sampled value in the t-th sweep of

the Gibbs sampler and using the empirical average ζ
[T ]

= T−1
∑T

t=1 ζ [m] as an estimate

of the posterior mean of ζ, the variance of ζ
[T ]

is not only governed by the marginal
variance of ζ [t] but is asymptotically equivalent to T−1

∑∞

t=−∞ Cov(ζ [t], ζ [0]) for a sta-
tionary version of the Gibbs sampler. Figure 4 shows empirical autocorrelations for the
samples of µ2, and we see that the dependence across the Gibbs sweeps is much stronger
for σ = 1 than for σ = 0.5. Indeed, the marginal sample variances of the sampled µ2
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Figure 3: Samples of µ1, µ2 and µ3 in 10,000 sweeps of the full Gibbs sampler for the
Normal HMM and data simulated with σ = 0.5 (left panel), σ = 1 (middle panel) and
σ = 1.5 (right panel). Prior to the draws displayed here there was a burn-in of 1,000
sweeps (not shown). Note the different scales on the y-axes.
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Figure 4: Empirical autocorrelations for the sequences of sampled µ2 computed from
10,000 sweeps of the full Gibbs sampler for the Gaussian HMM and data simulated with
σ = 0.5 (solid line) and σ = 1 (dashed line).

were 0.00049 and 0.0070 for σ = 0.5 and σ = 1 respectively, while crude estimates of
∑∞

t=−∞ Cov(µ
[t]
2 , µ

[0]
2 ) obtained by summing empirical autocovariances over the range

−30 ≤ t ≤ 30 were 0.00063 and 0.093. The ratios are about 14 and 149 respectively,
so that the stronger dependence causes a tenfold increase in asymptotic variance of the
empirical posterior mean on top of the increase already caused by the larger marginal
variance.

The reason for the higher correlation when σ = 1 is that we have a model with a
centered parametrisation (Papaspiliopoulos et al. 2007), and when σ = 1 the complete
(observed and latent) data is much more informative about the model parameters than
the observed data alone. This intuition can be made precise in terms of the Bayesian

fraction of missing information (see Papaspiliopoulos et al. 2007, Section 2.2 for de-
tails). This fraction will stay the same as n increases, so that a larger sample is no
solution to the problem. A potential remedy however is to convert to a non-centered

parametrisation, that would for instance express the Markov chain trajectory as a func-
tion of its transition probabilities and some random variables with a distribution not
depending on any further parameters. A useful such parametrisation has, to the au-
thor’s knowledge, not been proposed however. A different remedy is to remove the
latent chain from the state space of the MCMC sampler, which would then comprise
the model parameters alone. This drastically reduces the dimensionality of the sampler’s
state space, but also makes convenient Gibbs sampling impossible. Instead one has to
turn to Metropolis-Hastings sampling using e.g. random walk proposals, and designing
such moves to provide acceptable mixing of the MCMC sampler is not always easy.



T. Rydén 667

2.2 Label-switching

A further phenomenon often occurring in computational analysis of HMMs is seen in
Figure 3 for the data with σ = 1.5. Here the sampled µi exhibit what is commonly
referred to as label-switching ; in some sweeps the current ordering of the µi (which are
initially sorted in ascending order) is changed. This phenomenon may be problematic as
soon as one goes beyond computing a point estimate, but indeed also when approximat-
ing posterior means with empirical averages from an MCMC sampler. The underlying
reason for label-switching is that since the prior is invariant under permutation of state
indices (labels) and so is the likelihood function, the same holds for the posterior. As
a consequence, for instance, all µi have the same marginal posterior distribution. The
reason why label-switching does not appear for the data with σ = 0.5 and σ = 1 is
that for these cases the posterior modes arising from permutation of state labels are far
enough apart that the ordering of the µi is never changed when updating these parame-
ters independently according to (3). Label-switching may be dealt with in various ways.
One way is to break the permutation invariance of the prior by introducing identifia-
bility constraints. In the present case a natural such constraint is µ1 < µ2 < . . . < µd,
truncating the prior to the region where the constraint holds. The posterior is then also
zero outside this region, so that the ordering of the µi is unambiguous. A problem with
identifiability constraints however is that constraints on different parameters, like the
variances σ2

i if they are taken individual for each component, typically lead to different
shapings of the posterior; Frühwirth-Schnatter (2001) gives a good description of such
an example in detail. In the author’s view the best approach is to use a permutation
invariant prior for the MCMC simulations, thus avoiding any constraints there, and to
invoke possible constraints afterwards as part of the post-processing of the MCMC out-
put. Frühwirth-Schnatter (2001) proposed to end each sweep by randomly permuting
the state labels. Jasra et al. (2005) give a useful and readable overview of the label-
switching problem. We remark that label-switching is a potential problem also with
EM, which we discuss further below.

2.3 Interval estimation

We now turn to interval estimation. Here Gibbs sampling gives credibility intervals
for free whereas EM itself only provides a point estimate. The MLE is asymptotically
normal however, i.e. the weak convergence n1/2(θML − θ0) → N(0,J −1

0 ) holds as the
sample size n → ∞, where θ0 denotes the true parameter and J0 is the limiting Fisher
information matrix at this point (Bickel et al. 1998, Theorem 1). Moreover, J0 can
be estimated by the observed Fisher information, by which we mean the negative of
the Hessian of the log-likelihood, evaluated at θML and divided by n (Bickel et al. 1998,
p. 1619). This Hessian can be obtained by numerical differentiation of the log-likelihood
at the MLE, but there are also ways of doing an exact computation (Lystig and Hughes
2002). Having computed the observed Fisher information, Ĵ0 say, in either way, one
can thus obtain a two-sided confidence interval for the i-th component θi of θ, with
approximate degree of confidence 1 − α, as θi,ML ± z1−α/2[Ĵ−1

0 ]ii/
√

n where z1−α/2

is the (1 − α/2)-quantile of the standard Normal distribution and [Ĵ−1
0 ]ii is the i-th
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diagonal element of Ĵ −1
0 . Similarly, a confidence ellipsoid for θ with approximate degree

of confidence 1−α is obtained as the region satisfying (θ−θML)>Ĵ0 (θ−θML) ≤ χ2
1−α(q),

where q is the dimension of the parameter space and χ2
1−α(q) is the (1− α)-quantile of

the χ2(q) distribution.

If one does not want to rely on asymptotic normality, obtaining confidence intervals
becomes more difficult. The obvious alternative is bootstrap, where resampled data is
obtained either by parametric resampling (e.g. Rydén et al. 1998) or non-parametric
resampling. In either case an MLE is to be computed for each resampled data series,
resulting in an overall large number of EM iterations, and for non-parametric bootstrap
the dependence in the data requires the use of e.g. block resampling (Carlstein et al.
1998) to which are attached tuning parameters such as block size. Bootstrap for HMMs
is thus far from an automated procedure. In addition, when bootstrapping e.g. the
Normal mixture model studied here, the MLEs computed for the different bootstrap
replicates may have the µi appearing in different orders w.r.t. their numerical values.
That is, for some bootstrap replicate µ1,ML < µ2,ML < µ3,ML whereas maybe µ2,ML <
µ1,ML < µ3,ML for another replicate. This will in particular be the case if EM is
run multiple times for each replicate, initialised from different random starting points.
Thus the label-switching problem occurs here too. To compute sensible bootstrapped
confidence intervals for the µi say, the MLEs for the different replicates need to have the
µi sorted in a common way, e.g. in ascending order. The net effect of such a constraint
is similar to that caused by an identifiability constraint on a prior in a Bayesian context,
as discussed above.

To make a concrete comparison of bootstrapping with EM and credibility intervals
from Gibbs sampling, let us consider computing the 95% percentile of the bootstrap
and posterior distributions, respectively, for µ2 in the above example from the data with
σ2 = 1. To make the meaning of µ2 unique, we impose the identifiability constraint
µ1 < µ2 < µ3. The purpose of computing this percentile could be e.g. as the upper
bound of a 90% confidence or credibility interval for µ2. Using the parameters estimated
with EM, we generated 661 bootstrap series of size n = 1, 000 by simulating an HMM
with parameters given by the MLE computed from the original data. That is, we
used parametric bootstrap. The number 661 is obtained from an argument assuming
that the bootstrap distribution of µ2 is approximately Normal (see the Appendix);
Normal probability plots (not shown) revealed that such as assumption is reasonable.
For each bootstrap replicate, EM was used to re-estimate the parameters. For both the
original and the bootstrapped series, the EM algorithm was stopped when all parameters
aij , µi and σ moved less that 10−3 in an iteration. Computing the 661 bootstrapped
parameter estimates took 2,177 s of CPU time, i.e. 3.3 s per replicate, using a Matlab
implementation running under Linux on a PC with an Intel Pentium IV 2.66 GHz
CPU. The sample 95% percentile of µ2 was 0.154. The 5% quantile was −0.103, so that
(−0.103, 0.152) is the bootstrap estimate of a 90% confidence interval for µ2.

We then used the 10,000 sweeps (after burn-in) of the Gibbs sampler to obtain a
sample 95% percentile of µ2 equal to 0.141 (the sample 5% percentile was −0.129). We

also computed empirical autocovariances of the indicator sequence ζ [t] = I{µ[t]
2 ≤ 0.141}
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and summed them over the range −30, . . . ,−1, 0, 1, . . . , 30 as above to obtain an estimate
5.47 of the constant Cα of the Appendix, accounting for the increased variance caused
by the serial dependence in the Gibbs sampler. Thus about 5.57× 661 ≈ 3, 700 samples
from the Gibbs sampler would suffice to obtain the same precision in estimating the
sample percentile as for the bootstrap, or in total 4,700 sweeps including burn-in. The
CPU time per sweep was 50.5 ms, giving a total time of about 237 s for 4,700 sweeps.
Thus, because the ratio 3300 ms/50.5 ms≈ 65 of CPU times for a bootstrap replicate
and Gibbs sweep respectively is much larger than the variance increase factor 5.47,
Gibbs sampling is faster than bootstrapping. On the other hand, estimating a number
like 5.47 requires a preliminary run to estimate covariances in the Gibbs sampler, and
this factor Cα also depends on the chosen parameter and quantile. For instance, for
the median of µ2 this factor was estimated at 12.1 while for the 95% percentile of µ3 it
was estimated at 3.6. From this perspective, bootstrapping is more automatic. For the
bootstrap analysis the computation time crucially depends on the stopping tolerance
for EM however, which is somewhat arbitrary.

2.4 Summary

We now summarise this section. We have seen that both EM and full Gibbs sampling
are viable inferential procedures for the model considered, which is thought of as being
representative for an HMM with known number of states and component densities from
some parametric family. Both approaches suffer from less informative data, EM in the
way of slower convergence and Gibbs sampling in terms of mixing rate. In one pass of
the EM algorithm the main computational expense is the forward-backward algorithm.
One sweep of the Gibbs sampler uses the backward pass only but in addition forward
sampling, rendering a computational cost similar to that of one EM iteration. However,
typically one would run many more Gibbs sweeps than EM iterations, so that the total
computational cost for Gibbs sampling is much higher. If only a point estimate is
desired EM is thus the simplest and quickest way there. This is true also if a prior is
placed on the parameters—at least as long as it is conjugate relative to the complete
data likelihood—and the point estimate is then the MAP. Having said that we remark
that since EM does not guarantee convergence to the MLE or MAP but may end up at
a local maximum or even a saddle point of the likelihood function or posterior density,
it is quite common to run EM from several initial points in the parameter space, often
chosen randomly, and to select the point giving the overall largest objective function
as the final estimate. Such multiple runs of EM may offset most of the computational
savings of only one run, relative to Gibbs sampling for computing e.g. posterior means.

For interval estimates the quickest solution is confidence intervals based on the Nor-
mal distribution and the observed information, requiring negligible additional compu-
tation time compared to computing the point estimate itself. In the comparison of
bootstrap vs. Gibbs sampling our conclusion is that the actual computation time is
smaller for Gibbs sampling in most cases. The serial dependence of the sampler how-
ever creates a need for preparatory analyses, and working with the (conditionally) i.i.d.
replicates of the bootstrap is a lot simpler from this perspective.
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3 Case II: Unknown number of states

We now turn to a more challenging estimation problem, namely that of estimating the
number d of hidden states along with the model parameters. In other words, we con-
sider model selection. If the HMM is fully parametrised in the sense that the unknown
parameters are the transition probabilities and parameters specifying each individual
component—as in the previous section for instance—then the class of models with d
states, Θ(d) say, form a nested sequence in d; Θ(1) ⊂ Θ(2) ⊂ · · · in the sense that for
each specific model in Θ(d), there is a model in Θ(d+1) governing the same distribu-
tion for {Yk} (the model is equivalent). With a frequentist approach, model selection
in such settings is often carried out using generalised likelihood ratio tests (GLRTs),
with another approach being penalised likelihood criteria like the Akaike or Bayesian
information criteria (AIC/BIC). Here we do not consider AIC/BIC further however,
but rather focus on methods that provide some kind of measure of confidence in the
selected model; AIC/BIC obviously do select a model, but provide no information about
the confidence in this model is relative to others.

A major problem with GLRTs in the case of HMMs is that the asymptotic distri-
bution is not the usual χ2 because if the true model is in Θ(d), there is a continuum
of equivalent models in Θ(d+1). This difficulty occurs already for mixture distributions,
(see e.g. McLachlan and Peel 2000, Section 6.4). Although theory explains the limit
distribution in terms of a Gaussian process (e.g. Hansen 1992), this theory has not lent
itself to any practically useful numerical approximations to critical levels or p-values.
Rather, the approach usually taken in the literature is bootstrapping the GLRT. This
bootstrap can be either non-parametric, leading to the same non-trivial design choices
for dependent data as described in the previous section, or parametric.

In a Bayesian framework one places a prior distribution on the model size d, and
then tries to infer the posterior distribution of d—and the model parameters—given
data. In practice this again requires numerical computations using MCMC. There are
two main approaches to this problem, with one being to run MCMC, typically a Gibbs
sampler, for different d separately, and the other approach being to use MCMC algo-
rithms that incorporate moves between models of different dimensionality, often called
trans-dimensional MCMC. In the former case the central quantity one needs to estimate
for fixed d is the marginal likelihood p(y1:n|d), since p(d |y1:n) ∝ p(y1:n|d)p(d) where
p(d) is the prior on d. There are many ways to approximate marginal likelihoods, see
e.g. Frühwirth-Schnatter (2004) and Frühwirth-Schnatter (2006, Sections 5.4 and 11.6.3)
who in particular advocated using the bridge sampler (Meng and Wong 1996). With
this method, p(y1:n|d) is estimated as

p̂(y1:n|d) =
L−1

∑L
`=1 κ(θ̃[`;d])p?(θ̃[`;d]|y1:n, d)

M−1
∑M

m=1 κ(θ̌[m;d])q(θ̌[m;d])
,

where p?(θ|y1:n, d) = p(y1:n|θ, d)p(θ|d) is the unnormalised posterior density of θ on
Θ(d), κ is an arbitrary function on Θ(d), q is an arbitrary probability density on Θ(d), the
θ̌[m;d] are samples from the posterior p(θ|y1:n, d) obtained using some MCMC algorithm,
and the θ̃[`;d] are i.i.d. samples from q. This estimator contains particular Monte Carlo
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schemes for estimating p(y1:n|d) like importance sampling and reciprocal importance
sampling as special cases, obtained by selecting κ appropriately. Meng and Wong (1996)
showed that an optimal κ, in terms of asymptotic variance, is given by

κ(θ) ∝ 1

Lq(θ) + Mp(θ|y1:n, d)
.

Here p(θ|y1:n, d) is the normalised posterior density for θ on Θ(d), which is not known.
Nevertheless one can construct an iterative procedure in which p?(θ|y1:n, d) is normalised
using the estimate of p(d|y1:n) from the previous iteration (see Frühwirth-Schnatter
2004, Eq. (8)), and this recursion typically converges in a few steps to a final estimate
of p(d|y1:n). Thus this approach requires small additional efforts compared to Gibbs
sampling for fixed d, since the same code can be used for a range of d. The density q can
also be chosen based on output from the Gibbs sampler (see Frühwirth-Schnatter 2004,
Section 3.4). In the application below we choose between d in the range from 1 to 8,
so that a marginal likelihood analysis would amount to (a) running the Gibbs sampler
for all d in the range 1–8 separately, (b) using e.g. the bridge sampling device to obtain
estimates p̂(y1:n|d), and (c) computing p̂(d|y1:n), 1 ≤ d ≤ 8, as numbers proportional to
p̂(y1:n|d)p(d) and summing to unity. What one could worry about in this application,
and in general, is the mixing rate and how well the Gibbs sampler explores the posterior
density for over-parametrised models, i.e. models with d larger than what is supported
by the data.

Turning to trans-dimensional MCMC, in particular reversible jump MCMC (RJM-
CMC) due to Green (1995) has been used quite widely for HMMs. While computation
of marginal likelihoods by sampling for different d separately requires little new com-
puter code, trans-dimensional MCMC does require substantial additional coding efforts
and can also be difficult to design so that dimension-changing moves achieve reasonable
acceptance rates. However, trans-dimensional MCMC can sometimes improve mixing
compared to fixed-dimensional MCMC by allowing the sampler to move between modes
in the posterior distribution for some particular model size d through visits to models
of other sizes; see Richardson and Green (1997, Section 6.2.2) for a somewhat contrived
but still relevant illustration with finite mixtures. A small comparison of RJMCMC to
marginal likelihoods computed using the bridge sampler, for a two-component Poisson
mixture model, can be found in Frühwirth-Schnatter (2006); the conclusion there is a
moderate advantage for the bridge sampler.

Finally we mention that there are also other hierarchical Bayesian approaches that
do not explicitly put a prior on d, but in which a posterior distribution of d rather results
as a function of the posterior distribution of other model parameters. One example is
the hierarchical Dirichlet process (HDP) of Teh et al. (2006). In this model a random
probability distribution G0 is drawn from the Dirichlet process DP(γ, H), where γ and
H are hyperparameters and H is a distribution on the state space of the latent Markov
chain. It is usually most convenient to let this state space correspond not to {1, 2, 3, . . .},
but to the space in which the parameters associated with the conditional distributions
of the different states lie. Thus, in the N(µi, σ

2) model of the previous section we
would take this space as R, whereas in the example of this section, described below,
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Figure 5: Time series (left) and Normal probability plot (right) of S&P 500 data.

we would take it as (0,∞). Since the realisation of a Dirichlet distribution is discrete
(Ferguson 1973), the support of G0, which is infinite, can be thought of as the set of
possible states. Then for each such possible state the HDP contains another Dirichlet
process, drawn from DP(α0, G0), that governs the transition probabilities. In this way
the set of possible states is always infinite, and we interpret d as the realised number of

states, i.e. the number of distinct states visited within the time span the observations
were taken. When doing posterior analysis of the model using MCMC, this number is
a bi-product and its posterior distribution can hence be simulated. In this Bayesian
model formulation the states can in fact be thought of as nuisance parameters, and
the primary objective of the analysis is to cluster observations on one or more levels
of hierarchy. Yet another paper in which the parameter d is thought of as the realised

number of states during the time span of the observations, is that by Chopin (2007).
There the approach is however closer to that described above, in that it starts from
the traditional formulation of an HMM which is then reformulated as the latent chain
gradually visiting an increasing number of distinct states.

3.1 Data and model

The data we will study here is a sequence of 1,700 daily log-returns from the S&P 500
stock index during the 1950’s. The structure of the HMM is again conditional Normal,
but this time with components having zero mean and individual variances; in other
words, Yk|Xk = i ∼ N(0, σ2

i ). This HMM can be thought of as a stochastic volatility
model, with a finite number of possible volatilities. The sample mean of the original
data is −4.0× 10−11, which was subtracted off before further analyses were carried out.
This particular dataset has previously been analysed by Rydén et al. (1998) (called
‘subseries E’) and Robert et al. (2000), and is displayed in Figure 5. Note in particular
that the Normal probability plot reveals that the marginal distribution has tails heavier
than those of a Normal distribution, and the mixture of several Normals is a way to
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capture that feature of the data.

3.2 Likelihood ratio testing with bootstrap and EM

For the likelihood ratio analysis we employed parametric bootstrap for testing d vs.
d + 1 hidden states. In other words we computed the MLEs θ̂(d) and θ̂(d+1) for models
with d and d + 1 states respectively, and the corresponding observed (log) LR-statistic

LR
(d)
obs = log L(θ̂(d+1);y1:n) − log L(θ̂(d);y1:n) as the difference between the respective

log-likelihoods. These MLEs were computed by starting EM at randomly chosen ini-
tial points—each row of A as well as the initial vector ρ was drawn from a Dirich-
let Dir(1, 1, . . . , 1) distribution and the σi were drawn uniformly on (0, max |yk|/2), all
independently—and EM was iterated until the difference of two successive log-likelihood
values was less than 10−3. No stopping criteria were put on the parameters themselves,
as the log-likelihoods are the important numbers here. For each model 50 different
random initial points were used, and the overall best log-likelihood was stored.

Furthermore we simulated bootstrapped series of size n = 1, 700 from the model with

parameter θ̂(d), and for each of these a bootstrapped LR-statistic LR
(d)
boot,r was computed

by proceeding exactly as above for the original data (including subtraction of the sample
mean). Denoting the total number of bootstrapped series by R, i.e. r = 1, 2, . . . , R, an
estimated p-value of the test for d vs. d+1 hidden states is then given by (b+1)/(R+1)

where b is the number of bootstrap samples r for which LR
(d)
boot,r > LR

(d)
obs.

We performed this bootstrap procedure for testing d = 2 vs. d = 3 using R = 200
bootstrap series. The observed LR-statistic was 10.03, and the largest bootstrapped
one was 9.85. Thus b = 0 and the estimated p-value is 1/201 ≈ 0.005. These results
differ somewhat from those obtained by Rydén et al. (1998, Table III). The differences
arise as Rydén et al. based their analysis of subsamples of length 800 observations,
whereas here samples of full size 1,700 were used. The main point we want to make
here however is that these computations were slow; on average each bootstrapped LR-
statistic took 1805 s of CPU-time to produce using Matlab on the same machine as
in Section 2, yielding a total CPU-time of about 100 h for all 200 series. Obviously
these computations would have been must faster if implemented in e.g. C, but the main
focus here is on the comparison to the RJMCMC computations described below. We
also proceeded to testing d = 3 vs. d = 4 using another R = 200 bootstrap series. In
this test the observed LR-statistic was 7.41 and b = 6 of the bootstrapped ones exceed
this value, giving an estimated p-value of 7/201 ≈ 0.035. The average CPU-time per
bootstrap replicate was 4722 s, giving a total computation time of about 262 h. We did
not attempt to test d = 4 vs. d = 5.

One could cut run times by running less than 50 repeated runs of EM for each
series. Making too few runs, say 10, however causes a considerable risk of not finding
the maximal likelihood for the overparametrised model with d + 1 states, and even
ending up with negative LR-statistics (which are false and artefacts of unsuccessful
optimisation over Θ(d+1)).
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3.3 Implementation of the reversible jump MCMC sampler

For the Bayesian analysis we employed a reversible jump sampler similar to that de-
scribed in Cappé et al. (2005, Example 13.2.2). This sampler incorporates moves that
update the model parameters without changing the dimension of the model—just like
in the previous section—but also moves that increase or decrease the number of hid-
den states. The latter are the split move which attempts to split one component into
two, with different variances, and the combine move which attempts to combine two
components into one. Using moves of this structure goes back to Richardson and Green
(1997).

A uniform prior over {1, 2, . . . , dmax} with dmax = 8 was put on d and the σi were
equipped with independent uniform U(0, α) priors where the hyperparameter α had
an exponential prior with mean 5 maxk |yk|. This prior on the σi is the same as that
used by Robert et al. (2000). The transition probabilities were parametrised by ωij for
i, j = 1, 2, . . . , d, where each ωij has an independent exponential prior with unit mean
and aij = ωij/

∑

j′ ωij′ . This gives the same Dirichlet prior on the rows of A as in the
previous section, but simplifies the construction of the RJMCMC sampler as the row
sum constraint does not apply to the ωij .

One sweep of the RJMCMC sampler employed contains the following steps.

(i) Impute the hidden Markov chain using current parameters and backward re-
cursion forward simulation, and sample each σ−2

i from its conditional distribu-
tion given data and x1:n. This distribution has density (in v) proportional to
v(ni−3)/2e−v(Si/2)I{v ≥ α−2}, where ni = #{k : xk = i} and Si =

∑

k: xk=i y2
k.

Sampling from this density was carried out using the slice sampler of Damien et al.
(1999).

(ii) Resample the ωij by a Metropolis-Hastings step with proposal ω′
ij = ωijεij for

each i, j = 1, 2, . . . , d, where log εij are independent N(0, τω). The joint proposal
of all ω′

ij was either accepted or rejected. The acceptance ratio for this move is
described in Cappé et al. (2005, Example 13.1.14).

(iii) Resample α from its full conditional distribution, which has density (in v) pro-
portional to v−de−RvI{v ≥ max σi}. The same slice sampler as in (ii) was used.

(iv) Attempt a split of a component with probability 1/2 if 1 < d < dmax (otherwise
1 if d = 1 and 0 if d = dmax), or attempt to combine two components with
probability 1/2, 0 and 1 for the cases 1 < d < dmax, d = 1 and d = dmax

respectively. This move was designed as in Cappé et al. (2005, Example 13.2.2)
with the exception that there are no Normal means to consider, while σi0 , where
i0 is the component to split, was split as σi1 = σi0ξσ , σi1 = σi0/ξσ with log ξσ ∼
N(0, τ ′

σ). The Jacobian corresponding to this part of the move is 2σi0/ξσ , replacing
the expression in (i) of the cited example. We refer to Cappé et al. (2005) for
further details on this move.

A major difference between the sampler presented here and that used in Robert et al.
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(2000) is that the latter includes the latent Markov chain as part of the RJMCMC state
space, while here the imputation in (i) above is only used as a means to resample the σi

from their full conditional distribution; when step (i) is finished, the imputed realisation
of X1:n is discarded. This dramatically reduces the dimensionality of the sampler’s state
space and suggests a faster mixing sampler (when moves are identical otherwise, which
they are not here compared to Robert et al. 2000). A further aspect of our sampler is
that we did not put any identifiability (ordering) constraints on the parameters.

3.4 Results from the reversible jump MCMC sampler

We ran this RJMCMC sampler for 100,000 sweeps with τω = 0.2, τ ′
σ = 0.6 and τ ′

ω = 0.9
respectively (the last variance being involved in splitting the ωij in (iv)). Using a
Matlab-implementation, the average CPU-time for one sweep was 0.67 s with a total
computation time of about 19 h on the same computer as above. Again this run time
would have been shorter with an implementation in a different computer language, but
the main point here is that this it was shorter than for the bootstrap analysis.

The mean acceptance probability was 44% for the Metropolis-Hastings step in (ii)
above and 2.3% for the split-combine move (iv). The latter is obviously lower than
desired. We did moderate attempts to increase it by varying the variances τ ′ involved
in the split-combine move, and the rate reported here was the best obtained. We remark
that obtaining satisfying acceptance rates for dimension-changing moves for HMMs is
generally difficult; Robert et al. (2000) obtained the rate 4.4% for the same dataset,
seemingly contradicting the above suggestion of faster mixing with a smaller RJMCMC
state space. Robert et al. however employed a much more elaborate split-combine move
being more carefully optimised, so the rates are not directly comparable. Here we did
not attempt to optimise the move structure, but rather suggest that even with a not
too involved structure one can obtain a sampler that works, although not optimally.

Some example output plots are presented in Figure 6. We note that apart for over
the model size d, the sampler appears to mix well. We also note that there is label-
switching within the subsequences of sweeps with d = 2 and d = 3 respectively, i.e. the
σi do not stay in fixed order within these subsequences. This switching is mainly caused
by visits to models of different sizes. Discarding the first half of the sample as burn-in,
the estimated posterior probabilities of d = 2, 3, 4 and 5 were 0.427, 0.494, 0.067 and
0.011 respectively, with values below 0.2% for remaining values of d. These estimates
are similar to those obtained by Robert et al. (2000, Table 2), but with a slightly higher
value for d = 3 at the expense of d = 2. Comparing to the bootstrap analysis, the
degree of belief in d = 4 vs. d = 3 is comparable to what was obtained with the GLRT,
whereas the results for d = 2 vs. d = 3 is entirely different; here d = 2 comes out as a
plausible model, though it was firmly rejected by the GLRT.
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Figure 6: Left plot: Sampled values of model size d in sweeps 90,001–100,000 of the
RJMCMC sampler. Middle plot: Sampled values of σ1 and σ2 in the last 5,000 sweeps
with d = 2. Right plot: Sampled values of σ1, σ2 and σ3 in the last 5,000 sweeps with
d = 3.

3.5 Summary

Summing up this case, we first remark that if one wants to compute only the best model
without any further information on how plausible it is relative to other ones, then the
simplest solution is using EM to compute MLEs for all candidate models and then
calculating and comparing their BICs or some other penalised likelihood criterion. We
also remark however that BIC is based on approximating the distribution of the MLE
by a Normal, and may be unreliable, as exemplified by Scott (2002, Section 4.1), for
data of small or moderate size.

We have discussed several methods to provide not only a model that is in some sense
best-fitting, but also a number indicating how likely this model is in relation to other
candidates. For simulating p-values of generalised likelihood ratio tests using parametric
bootstrap and EM, as good as no extra code compared to Case I is required, but we have
seen that computation times can be substantial even when carrying out only a few tests;
in the example above just 2 vs. 3 states and 3 vs. 4 states were tested. Likewise, little
extra code is required for computing marginal likelihoods using the bridge sampler, and
computation times will typically be much less than for the bootstrap approach. A pos-
sible problem with this method is, as noted above, potentially poor mixing of the Gibbs
sampler with over-parametrised models. As long as the Gibbs sampler mixes reasonably
for all candidate models, this approach should however be feasible and have a relatively
low computational cost. Reversible jump MCMC on the other hand requires consider-
able amounts of additional code. Its problems with mixing do not lie in mixing within
models of fixed size, which can be improved relative to a fixed-d Gibbs sampler, but
typically in small probabilities of moving between models of different sizes. Designing
good dimension-changing moves often demands experimentation and experience. The
HMM considered here is in fact quite simple, and with more complex structures such as
involved dependencies between the latent and observed data, autoregressions in the Yk

etc., designing RJMCMC samplers can be extremely difficult or almost impossible. Sim-
ilarly, in such models a fixed-d Gibbs sampler may spend hours of computation time in
minor modes and fail to deliver a correct picture of the posterior density surface, while
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EM can repeatedly end up in local maxima. Model selection in more complex mod-
els can thus be intrinsically difficult, irrespective of the inferential and computational
approach taken.

Finally it should be pointed out that with a Bayesian analysis, regardless of the
computational approach taken, some other aspects require attention too. One is the
influence of the prior distribution, which can be particularly difficult to understand in
model selection settings with a prior on d. Aitkin (2001) is a good and critical review of
several earlier papers all using Normal mixtures to analyse a common set of data, and in
particular it focuses on the quite different results obtained; see also Frühwirth-Schnatter
(2006, Section 5.3.2).

4 Case III: Overlapping dependence structure

In this third and last case we will study a model that involves a continuous-time (hidden)
Markov chain, and also a more complex structure for the dependence of the output w.r.t.
this latent process.

4.1 Biological background

The model is motivated by array comparative genomic hybridisation data. The genetic
material of a cell is encoded in the form of DNA. In eukaryotic cells, such as a human
cell, the DNA lies inside the cell nucleus. Each cell (nucleus) carries a complete copy
of the full DNA. In human cells the DNA is organised into 23 pairs of chromosomes;
thus 46 chromosomes in total. The chemical structure of DNA is usually described as a
double helix, consisting of two strands wound around each other. Each strand consists
of a sequence of four possible bases, coded using the alphabet {A, C, G, T}. The two
strands are complementary in the sense that an A on one strand is matched by a T on
the other strand, with a similar match between C and G. For each chromosome pair the
base sequences of the two chromosomes are identical for the major part of their lengths
(with the exception for one pair, the sex chromosomes). Therefore it is common to say
that humans have two copies of the DNA. Functionally it also makes sense to think of
each chromosome as one long string of base pairs. We will refer to a position in such
a string as a genomic location, measured in the unit of base pairs (bps), relative to the
beginning of the string. However, the functional view of a chromosome as a single string
does not reflect the way that it is physically organised inside a cell nucleus. Rather, the
DNA is split into many shorter segments. Also, parts of the DNA may exist in more
or less copies (segments) than two. Thus the conception of the DNA existing in two
copies is a simplified view, as, in parts of the genome, it can exist in only one copy (then
carried by only one chromosome), in three or more copies, or in no copies at all. The
number of copies of the DNA at a given genomic location is called the copy number.
Deviations from the normal two copies are often referred to as aberrations. Aberrations
are of medical interest, as they may cause or increase the risk of diseases, for instance
different forms of cancer (e.g. Albertson et al. 2003). As another example, it has been
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found that homozygotic twins may have different DNA, not regarding the actual base
sequence but in the copy number at certain genomic locations (Bruder et al. 2008).

For reasons as indicated above, there is a large medical interest in studying copy
number variations, and trying to relate copy number aberrations to e.g. diseases. To
carry out such studies, techniques to measure copy numbers are needed. One such
technique is array comparative genomic hybridisation (aCGH). The following is a brief
and incomplete description of this data acquisition procedure; complete descriptions
can be found e.g. in Snijders et al. (2001) or Albertson and Pinkel (2003). The basic
principle of aCGH analyis is to compare, at selected genomic locations, the copy number
of a sample DNA to that of a reference DNA. The first step of the procedure is to prepare
spots on a micro array (carrying thousands of spots) with clones, or reporters. A clone
is a short segment of base pairs that is complementary, in the sense A-T and C-G, to
a specific chosen subsequence of the genome. In this way, each clone corresponds to a
certain part of the genome. The sample DNA is then labelled with a flourescent dye of
one colour, the reference DNA is labelled by a dye of a different colour, and a mixture
of both is hybridised onto the micro array. DNA segments matching the clone on a
particular spot will then bind to that spot. By irradiating the spots with laser light
of colours corresponding to the two dyes, one can measure the amount of DNA from
the two samples that has bound to each spot. Assuming also that the amount of DNA
bound to each spot is proportional to the fraction of DNA containing the base sequence
matching the corresponding clone, one obtains a figure representing the copy number
of the sample DNA relative to that of the reference DNA (which is two) at the genomic
locations specified by the clone. This number is typically transformed onto log2-scale, so
that the actual data yk for clone k on the microarray can be thought of as yk = µxk

+εk

where xk is the copy number for clone k, µxk
is the corresponding mean level and εk is

noise. In an ideal setting the µi would equal log2(m/2) for a selection of m = 0, 1, 2, . . .,
but for various reasons of experimental bias this ideal relationship does not hold and
one must treat the µi as unknown parameters. A plot of the data for one chromosome
is found in Figure 7.

4.2 Data and model

From now on we will assume that the data is from some single chromosome. As each
clone k corresponds to a subsequence of the genome of that chromosome, we can as-
sociate with it a starting location tstartk and a stopping location tstopk , where the unit
of these numbers is bp. We will also assume that the clones are sorted according to
increasing starting location, i.e. tstartk increases with k. As is obvious from Figure 7, the
copy numbers are not independent across the clones. Many authors, e.g. Picard et al.
(2005), have addressed statistical analysis of aCGH data using change point techniques.
A different approach is to model the copy number process as a latent stochastic process.
Fridyland et al. (2004) modelled {Xk} as a finite-state Markov chain, resulting in {Yk}
being an HMM. There are some arguments against such a model though, including that
(i) clones are of unequal lengths and are separated by unequal distances, and that (ii) in
many array designs clones overlap by as much as up to 30% of their lengths. Here over-



T. Rydén 679

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
x 108

−1

0

1

2

3

Figure 7: aCGH data (thin lines) and a possible reconstruction of the latent Markov
chain (thick lines) for chromosome 4 from the human breast cancer cell line BT-474.
Each thin line segment represents the location and extension (x-axis) and measured
copy number relative to the normal two, on log2-scale (y-axis), for one clone. For further
information on this data we refer to Stjernqvist et al. (2007). The reconstruction is a
trajectory of the hidden Markov chain obtained with the RJMCMC sampler described
in the text and model parameters being those produced in the final iteration of the
Monte Carlo EM algorithm.

lap means that one clone may start before the previous one has ended, and indeed even
more than two clones may overlap simultaneously (see Figure 8). These observations
lead to the conclusion that a simple HMM with constant transition probabilities may
not be a realistic model for the data. Stjernqvist et al. (2007) rather modelled the copy
number process as a continuous-time Markov chain, with time unit being bp. This also
allows for a copy number change within a clone. In fact the term ‘time’ is not entirely
appropriate as the index is not time but rather location in the DNA in a chromosome;
Stjernqvist et al. (2007) used the term ‘continuous index’ but we will stick to ‘time’ here
for convenience. Letting {X(t)}0≤t≤T denote this latent process, where T is the length
of a chromosome (different chromosomes are analysed separately), the model proposed
for the observed Yk is

Yk ∼ N

(

1

tstopk − tstartk

∫ tstop
k

tstart
k

µX(t) dt, σ2

)

, (8)

where µi as before is the mean level of observations when the latent Markov process
is in state i. Hence the conditional expectation of Yk is modelled as a weighted mean
of the µi, with weights equal to the proportions of the clone that the copy number
process spent in the respective states. Furthermore the Yk are assumed conditionally
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Figure 8: Data (thin lines) and a possible reconstruction of the latent Markov chain
(thick lines) for two shorter subsequences of the same data and reconstruction as in
Figure 7.

independent given the latent process {X(t)}. The dynamics of the Markov chain is
expressed by transition intensities qij , i, j = 1, 2, . . . , d, i 6= j. It would have been
possible to formulate the model in discrete time, with a Markov chain evolving on bp’s
rather than clones. Since the number of bp’s in a chromosome is very large (2 × 108

in the example below), such a Markov chain would have transition probabilities being
either very small (for transitions between states) or very close to one (for staying in a
state). Working with parameters that close to the boundaries of the parameter space is
awkward, and we find the above continuous-time formulation more appealing.

4.3 Monte Carlo EM and MCMC algorithms

We note that the above model extends the basic HMM assumptions of Section 1 in
several ways. The most obvious one is that the latent Markov chain evolves in con-
tinuous time. Moreover, whenever there is clone overlap the corresponding Yk do not
depend on disjoint parts of the trajectory of {X(t)}, violating a continuous-time coun-
terpart to assumption (iii) of Section 1. This second extension has the major effect of
precluding the design of an efficient forward-backward algorithm, as such algorithms
always make implicit use of the ordered and disjoint dependence of the data on the
latent process. This in turn leaves us without an efficient E-step in the EM algorithm
for this model. There are many examples of EM algorithms for continuous-time HMMs,
see e.g. Roberts and Ephraim (2008), but only in models in which the above-mentioned
assumption (iii) holds in some way.

The M-step of the EM algorithm for the model above is quite simple however, see
Stjernqvist et al. (2007, Suppl. info.). In that paper the authors used a Monte Carlo
EM (MCEM) algorithm to compute an approximation to the MLE. In other words, in
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Figure 9: Parameter estimates as a function of EM iterations for the continuous-time
HMM with 3 states and the same aCGH data as shown in Figure 7. Left plots: means
µi (◦, left y-scale) and σ (∗, right y-scale). Right plot: transition intensities qij for
(i, j) = (1, 2) (solid, ∗); (i, j) = (1, 3) (solid, ◦); (i, j) = (2, 1) (dashed, ×); (i, j) = (2, 3)
(dashed, ◦); (i, j) = (3, 1) (dotted, ×); (i, j) = (3, 2) (dotted, ∗).

EM iteration m, letting θ(m) denote the current estimate of the parameter (vector), one
simulates R trajectories {xr(t)}0≤t≤T , r = 1, 2, . . . , R, of the latent Markov chain from
the conditional distribution Pθ(m)({X(t)}0≤t≤T ∈ · |y1:n) of this process given data, and
approximate any expectations regarding the latent process by empirical averages over
these replicates. The trajectories were in turn simulated using an RJMCMC algorithm
due to Ball et al. (1999).

For an HMM with d = 3 states, this MCEM algorithm was run for 19 iterations
with R = 1400m2 trajectories {xr(t)} sampled in the m-th iteration; results for the
parameters are found in Figure 9. We see that the estimates of µ1, µ2 and µ3 appear to
have converged reasonably over these iterations, and also that the estimate of σ appears
to have reached a neighbourhood where it remains although with some oscillations.
For the transition intensities qij the situation is different. Indeed, we see that q23,
q31 and q32 grow continually. State 3 appearing here is the one with the largest µi

(≈ 1.19), and by making short visits to this state the model can fit the Normal mean
in (8) closely to the observed yk, as a suitable small weight is then attached to µ3. In
particular this happens for clones with large yk; an example is displayed in the right
plot of Figure 8. By making transition intensities to and from state 3 large such short
visits become increasingly likely, and the shorter the visits the larger the estimates of
these qij become in the next MCEM iteration, and so on. Thus, as MCEM proceeds
there is a continuing trend of overfitting the data by making many jumps so as to match
the mean of (8) closely to the observations.

This is an obvious problem with frequentist estimation of this model. One may argue
that the main interest in this model does not lie in the estimation of model parameters
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but rather in reconstruction of the hidden Markov chain, as from a biological and/or
medical perspective the locations of the aberrations are of primary importance. This is
true, but on the other hand using fixed—and perhaps rather arbitrarily set—transition
intensities in the analysis is not a good solution either. In a Bayesian approach one would
put a prior on the qij , preventing them from becoming overly large and thus elegantly
solving the situation. A different frequentist approach would be to view the locations
of jumps as parameters and their number as a model dimension and use penalised
likelihood criteria like AIC/BIC to discriminate between different models. This would
however be problematic because of difficulties in maximising the likelihood over the
jump locations, and also because the number of jumps can be quite large. Thus we
advocate a Bayesian approach as the most appropriate.

As an example we put independent vague priors N(ξ, κ−1) on the µi, with ξ being
the sample mean of y1:n and κ small, an improper prior with density 1/σ2 on σ2 and
independent exponential priors Exp(β) on each qij . Here β = 4 × 107, which with a
chromosome length of about 2×108 base-pairs (cf. Figure 7) gives a prior mean of about
2 × 108/β = 5 jumps from state i to j for the full chromosome. Of course the latent
process does not reside in state i for all of the chromosome, but this calculation gives an
idea about the prior dynamics. It is now possible to build an MCMC sampler similar in
spirit to that of Section 2, alternating between updating model parameters and the latent
Markov chain. The model parameters were again sampled from their full conditional
distributions, while the Markov chain was updated using the same RJMCMC moves as
in the MCEM algorithm described above. Two examples of the output are found in
Figure 10. We see that the data provides information about the transition intensities as
the posterior and prior densities are different, but a closer look at the tails also reveals
that in the far right of these diagrams the prior and posterior densities are essentially
equal. This illustrates that the prior prevents the transition intensities from becoming
very large, and as the prior and posterior look alike here one may say that the inference
is subjective for the tails.

4.4 Summary

Summing up this case, it has not been as clear a comparison of EM vs. MCMC as in the
previous cases, as also the non-Bayesian model formulation requires MCMC samples to
implement MCEM. Using MCEM we also repeatedly, as the EM iterations proceed, need
to perform long runs of the MCMC sampler which in itself is quite complex. Thus we
see a distinct advantage in using the Bayesian approach, which rather requires a single
long run of the sampler. In our view the Bayesian approach also handles the problem
of potential overfitting of the Markov trajectory to the data in a simpler way, as part of
the model structure, than what can be done with a frequentist approach. Although we
noted above that the prior has a definite impact on the tails of the posterior distribution
of the transition intensities, it is equally clear that the centre of the same posteriors are
very different from the priors, thus showing that the data has the major influence there.
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Figure 10: Exponential prior densities and estimated posterior densities of transition
intensities q23 (left) and q31 (right) of the continuous-time HMM of Case III, computed as
rescaled histograms from the sampled qij in 300,000 sweeps of the RJMCMC algorithm.

5 Discussion

We have compared inference using the EM algorithm and bootstrap on one hand, and
Gibbs sampling or other MCMC algorithms on the other hand, in hidden Markov models
of different degrees of complexity regarding model structure and inferential questions.
In situations where one wants only a point estimate, or it is sufficient to compare models
only using their (penalised) maximal likelihoods, then EM is typically the simplest and
quickest way to go. When a point estimate is not sufficient, the comparison between
bootstrap/EM and Gibbs/MCMC sampling is not so simple however. In the examples
above we saw that Gibbs sampling and other MCMC algorithms, working in a Bayesian
context, tended to require less computation time, whereas the (conditionally) i.i.d. repli-
cates provided by bootstrap require no analyses of correlations etc. in order to assess
the precision of the results. To some extent the choice is thus a matter of taste; whether
one prefers to let the computer work longer, or to cut computation times but rather
spend more time on the usually more manual parts of the analysis.

Having said that, it is important to be aware that inference in HMMs, whether fre-
quentist or Bayesian, is not always an easy and far from automated task. In simple
models such as that of case I there may be multimodality of the likelihood, potentially
causing EM to converge to local maxima and poor mixing of MCMC samplers. A
further problem illustrated is slow convergence of EM and slow mixing of the Gibbs
sampler caused by imbalance between information about the parameters in the com-
plete and observed data respectively. In Bayesian model selection the design of e.g. a
reversible jump MCMC sampler is never trivial, and when running the Gibbs sampler
to approximate marginal likelihoods it can spend most of its time in irrelevant modes
of the posterior if the problem is ill-posed.

A Bayesian approach does show some advantages in the more complex models and
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inferential problems, and indeed the critical aspect of both Cases II and III is model
selection although less explicitly in Case III where the number of jumps of the latent
Markov chain plays this role. In particular in Case III it is the Bayesian approach that
deals with this aspect more efficiently and as an integral part of the model description.
Care must however always be taken with issues like influence of prior distributions,
when evaluating a Bayesian analysis.

Although a Bayesian approach to HMM analysis may be appealing from several
perspective, it is the author’s experience that users of HMMs often consider writing
the computer code necessary to implement such procedures a prohibitive exercise. In
particular reversible jump MCMC algorithms have, in the author’s view, a somewhat
unjustified reputation for being difficult to derive and implement. Still it is clear that
readily available software packages would be extremely beneficial for making such meth-
ods available to a wider audience of researchers and users in statistics and other scientific
fields.

Appendix: Review of some asymptotics of quantile esti-

mation

Let Z1, Z2, . . . , Zn be real random variables with some common distribution function
F having density f . For some α ∈ (0, 1), let ξα be the α-quantile of f , and let ξ̂α,n

be the sample α-quantile computed from the sample Zk, k = 1, 2, . . . , n. Assume that
f(ξp) > 0.

Write F̂n for the empirical distribution function computed from the sample, and write
φ for the functional that maps a distribution function into its α-quantile. This functional
is Hadamard differentiable at F with derivative φ′

F (h) = −h(ξα)/f(ξα) (van der Vaart
1998, Lemma 21.3). Thus we may approximate

ξ̂α − ξα = φ(F̂n) − φ(F )

= φ(F + (F̂n − F )) − φ(F )

≈ φ′
F (F̂n − F )

= −(F̂n(ξα) − F (ξα))/f(ξα),

so that n1/2(ξ̂α − ξα) is asymptotically equivalent to −n1/2(F̂n(ξα) − F (ξα))/f(ξα).

From this we conclude that for an i.i.d. sample, for which F̂n(ξα) is distributed like

n−1 times a binomial random variable with parameters n and α, n1/2(ξ̂α−ξα) converges
in distribution to a Normal law with zero mean and variance α(1−α)/f(ξα)2. This result
is often proved using entirely different techniques (e.g. Ferguson 1996, Chapter 13). The
advantage of the present approach is that it immediately extends to dependent samples.
Indeed, if the Zk are weakly dependent such that the sequence (I{Zk ≤ ξα} − α) of
centered indicator functions satisfies a central limit theorem with asymptotic variance
Cαα(1 − α)/n, then n1/2(ξ̂α − ξα) again has a limiting Normal distribution, with zero
mean and variance Cαα(1 − α)/f(ξα)2. Here Cα is thus a constant accounting for the
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amount of extra variance caused by the dependence in {Zk}, relative to the i.i.d. case.

Now return to the i.i.d. setting and assume that we wish to estimate the quantile ξα

with a standard error of at most say 5% relative to the actual value of ξα −mF , where
mF is the mean of F . That is, we should choose n large enough that the standard
deviation

√

α(1 − α)/n/f(ξα) ≤ 0.05(ξα − mF ). Assume also that F is Normal, or
at least approximately so. Then ξα = mF + zασF where σ2

F is the variance of F and
zα is the α-quantile of the standard Normal distribution, and f(ξα) = 1/(

√
2πσF ) ×

e−z2
α

/2. The inequality above thus becomes
√

2πα(1 − α)/nez2
α

/2 ≤ 0.05zα, or n ≥
400 z−2

α ez2
α2πα(1 − α). For α = 0.95 we find zα = 1.64 and n ≥ 661. Finally, if the

Zk are dependent as above these calculation look the same, except that an additional
factor Cα multiplies the bound on n.
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