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THE MAXIMUM SIZE OF A CRITICAL
2-EDGE-CONNECTED GRAPH

Tiam Fane  Znans Cumouaw

§ 1. InTaoovcTion

Let G be a simple connected graph. The vertex set of G is denoted by V{(G) and the
ndgt set by E(G); rh:}r will be abhreviated to V' and E if there 5 no danger of amhigu{:}l,
The number of vertices in G, called the order of G, is denoted by p(G) and the number of
edgs in G, called the size of G, is deroted by g(G). Similarly, they will be abbreviated
to pag respectively.  We denote by ry the edge joining vertices x and y,

If Vs Vi are two vertex disjoint subsets in F, we denote by ¥,V; the edge set
{uve Elw€ Vyywe Vi), If (V..V} i a partition of ¥ (Le. V,UV, =V, V,NV,=¢),
and |T7,I3] = 1, then the unique edge in F,1; s called a bridge in &5,

If V\OVF, the subgraph generated by V, i denoted by G{¥,). Parocularly, if v€ 17,
we write G — ¢ instead of G(P\{e}). If G — ¢ is disconnccred, the vertex ¢ s called a
cut-vertex in 7,

We denote the set of vertices adjacent 1o v by N(¢). The number of vertices in N(#)
is called the degree of ¢, denoted by d(w). If d(p) == k we call v a k-vertex.

Suppose thar G 18 a 2-edge-connected graph. A wertex v is said to be critical if G —
either is disconnected or has at least one bridge. G is said to be critical 2-edae-connected f
every vertex of G is critical.

In this paper we give the maximum size of 2 critical 2-edgeconnected graph of order p,
and construct the graphs with maximum size.

§2. Mamw TurorREMm

Theorem. [f {(p) denotes the maxvimum size of a critical 1-edge-connected graph
of order pa then

> p==06;
(¢ + 4p), p=0 (med 4);

7
1
‘?
1
i(p) = ] 3 (F+2p+13), p=1 (mod 4);
1
|T{f+zﬂ)' p=12 (mod 4), p = 6;
|1
B

(77 +2p+9), p=3 (med 4).
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The graphs cxhibived in Fig, | are critical I-edge-conneciod wita maximnm jize.

- —— e ——— S

Fig. 1.

Pn:laj. (]:' Suppns: that 18 a critical 2 cdg::--;:o-nn:fr.ul graph of arder . When F o = 6,
the assertion of the theorem can be verified di::clly, S0 we shall deal wich bl d_l'?.- 7.

From the critical 2-edge-connectedness of &, it follows thar
(A d(e) =12 for any v £ V;

{B) thers is ar least one partition {¥.. V.'} of PN\{e} such thar [V.F. | =1 for any
ve WV,
It can be seen easily that the partition { V., Vo | has the following properties:
(a) N(edIN Vo=, NNV = 3
(b)) G(r.J{el), GOV ULe}) are both conmected subgraphs;
() 1 (W] = 1, let VoW = {xy} (€ ¥y, y€ V). Then
[ Vel = max {d(x) — 1, max d{u)},

HEV )

IV = max{dCy) — 1, max ()l
wg F Yk
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Denote by 5, the set of panitions {¥,, ¥.'} mentioned above. Let

(o) = max  {min((Vel. [V,

v es,
al G} = max {a(v)}.
FEF

Ohbviously,
_ 1 — 1
]:-:_d'fﬂ_}'—:te-\_?(_ﬁ_].]g latuﬂ(}‘}?:.-_?{p—fj'.

We shall show that afG:II 2],

In fact, if a{G) =1, then for every v € ¥V we have a{e) = 1 and hence there s a
least one 2-vertex adjacent to #. Ler w be such a vertex. Let N{w) = {o, 5],

If d{e) =2, then a(s,} = 2 (becawss p = 7). It commradics a{G )=, H d(e)=3,
then the Z-vertex adjacent to o must be a,, Thus e(e) =2, This contradicts ol G) =1,
Tod.

Now we show the thearem by induction en p. Suppose (reductio ad absurdum) thar G
is a eritical 2-edge connected graph of minimum order such that g(G) = f{#).

{2) Suppose alG) =1,

Let T ={v€ Flu{u]—'z]‘; D='{#E I"lﬁ!(t"}—]}. It follows that T #= ¢ by
(1).

First, we give the following propositions,
Proposition 1. Every I-vertex is adjacent to at least one 2-vertex.

In fact, suppese that J(x)}) =2, If x€ O, then the proposition holds obviously. [f
€T, let ¥V, =1{u,vr}. Since d{&) = 2, x cannot be a cut-vertex, Thus |V.¥Vr| =1,
LeaV.Vy = {uw}, Then # i not adjacent to any vemex in V. Thus, from d(e) =2,
it follows thar # is a 2-vertex adjacent o x.

Pl‘npe'iﬁnu L | n’l{u o dl:r:l =32 and wr € E, then u, v € (O,

I face, let NCu) = {o. 0}, N{o) = {u, »,}. It s obvious thar &, )==3,4(p )23,
{(rherwise, we have a(e,) =3 or alw) = 3,)

WNow we consider graph G — w,  Since d{w) =2, w i not a cut-vertex in G, Thus,
G—u 15 a connected graph which contains ar least one bridge.

We show that vv, is the unique bridge in G—u. Obwiously, vey &5 a bridge in G—u,
If G — u contains a bridge ry different from re,, then xy belongs to every chain  con-
nected @, and 2, in G — u. From the property (e} in (1) and 4(u,) =3, d(e,) =3, it
follows that Ty must be an n:c[g: incadent  with By O Ify. If .t}'-‘—#le(qu Nll:n‘l),
sy 7= w), then &) = 3 because a(G) =2, Let N, ) = {u, 6y, vy}, Hence, there is a
partition {¥Vas Fu} of ¥\{u} such that ¥V, = {#,, #:}. Therefore d(m:) = 1, which isim-
possible. If ay == w0y( e € N(e, ), v2 2% ¢) s the proof s similar.

Thus e, is the vnigque bridge in G — », Hence a(w) = 1, Le. w€ 0,
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It can be shown similarly that #€ O,
According to Propositions 1,2, we can prove that graph G has the following properties.
Property 1. Let V= {a, ¢}(x€ T); then d{u) = d(e} =2 and u, v € O,

[f x is a cut-vertex in G4 then the assertion 15 obvieus. So we suppose that x i5 not =
cut-vertex, Lot ew € E {w€ Vl,r}, Thus ey we € E and d{u) =2, I x¢€ E then re
must be a bridge in G — w. (Otherwise, vertex @ is not critical.) Thus r is a cut-vertex in
G, a contradiction. Therefore, r#€F and d(¢) = 2, We have a2 € (0 hy Proposition 2.
Meanwhile, we also Find that N(z) 0 2= ¢,

Property 2. d(3) = 2 and N(¥) M0 = ¢ for any y€ O,

Since y € O, there must exist € N(y) such that #(x) = 2, Let N(2) = {y, z}. By
Proposition 1, there must exist at least one 2-vertex in N(2). If d(2) = 2 thena(y) = 2,
This contradicts y € @, Therefore, we have d(y) =2, By Proposition 2, we have 1 € 0, So,
NGINO 2= .

Froperty 3. N{y)NT 2 ¢ for any y € O.

Let N(9) = {2, v} and r€ 0. So 4(x) = 2 by Property 2. Then a(v) = 2_ Since
alG) == 2 we have a(e) =2, i.e. v€ T, Hence NIJNT 2= 4,

From the above properties it 13 clear that (0| =0 {maod 2), |O| = |T|,]0T| = D]

and q(G{G})——;— lo].

Furthermore, there must exist a vertex v such that y € M{e) N O and d{y) = 2 for any
€ V., So, G 15 sull critical 2-edge-connected when we add an edge between two non-adjacent
vertices in T. Thus we can suppese that G(T) i a complete graph.

Let |0Q] =2¢ and |T] == p — 2¢r, Then 4r = p because |0 = |T|.and 22 = p—1

p—1 ]
2 5

where [m ], {n] denote respectively the minimum integer not less than m and the maximum

integer not greater than n.,

becanwse |T| 2= 1, Hence the integer + must be on the closed interval [[51, l

Since g(G) = 4(G(0)) + g(G(T)) + |OT| = ¢ + %{p— 2)(p — 26— 1)+ 2

H
- 3 -+ —; (g — 2edp—2e— 1}, wchavt;d—q(—lc—) =, Thus the maximum valees of
I

g( (i) must be artained ar an end of the interval H%l . I £~ 1“ .

2
Afeer caleularion, we can see that g{G) atrains its maximum value when 1= [%'. The

max g(G), for four cases p =0, 1,2, 3(med 4), are listed as Follows.

" B k2D A+ 1k=1D) 4+ 2 h=1) A+ Wh=1)

ZECE A+ 1) 25+ 4 E+ 10+ 3 it 4+ 4k + 3
mat g(G) = _L. Cp? =+ Ap) =%E.P" = 2p 4+ 33) =-1!$_('PI + 20 _:":5_'(#. + p+ %)

-
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It follows that g(G) = {(#g), a contradiction,

(3) Now we suppose that a(G) = 3, Hence there will exist a vertex ¢ in ¥ such that
a(e) = 3. Let {V., V.'} be the pantition of V\{v} such that |Vi| =3, [V)]| =3,

According to whether V.V, is empty or not we construct two graphs G;= (V;, E;)
of order p; and size 4,(i = 1, 2) as follows.

If VW,V =g, let
V=T, U{e, x, 115
E, = E(G(V.U{e}))Ulex,, x,x;5, x0};
Vi=V"U{s; yi» 12}s
E; = E(G(Vo U{s})) U{ryis yayas var}.
It s cbvious that p, + =g + 5, g + u =g + 6.
I VoV # ¢y let VoV = {xp}(x € Vo5 y€ V), Then let
Vy=Vo.Ulos x5 13}3
E, = E(G(V.U{r})) Ulxxyy xi2p xw}s
Vo=V, U{es 31> yals
E; = E(G(V: U{e ) U{yyi» yuyas yark.
It 15 obvious that gy +pa=p + 5. g0 + g2 =g + 5.

Evidently, both G, and G; arc critical 2-edge-connected graphs and py, << p, p3 << p, (We
suppose that p, = 3 in the following.)

By induction, g; = f(p;}{i -], Z). Hence q[G} = f(;‘&] -+ f{p;} — !, where =25
or 6.

By the assumption g(G) = f(g).
1) < f(pa) + f(p2) — L.

We prove the theorem by considering three cases:
Case 1. p, =8B, In this case, p = 11, We consider two subcases.
{a) p=13. It can be eaily found tha

-;—r:p‘ +28) < f() %%(p’ + 4p).

(P +28) @) < fp) + Hpa) — !
<= (i) + o Gl ) — L,

Since py=p — p, + 3, we have
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F(p) =12p — 10p, — 2pp + 14p + 17 — 81 = 0.
d

F(p) 15 a decreasing funcrion of p, because %P‘) = 0. (Note that 2p, = p+5.)
1

Hence, F(p,) attains its maximum value when p, — 8, Bat, ¢ince p =13 and | =5,
0<F(p)<F(8) —65—2p— 81 =39 — 8l < —1,
a contradiction,

(b) p=11 or 12, In this subcase, we can find that p, = p; =8 when p = 11, and
pr=8, py=139 when p =11,

Thus
1) = -;- (¢ + 2p + 9)  (becawse p = 0,3 (mod 4)):
flp) = f(8) = 123
flp:) ﬁ—; (¢ + 4p2)  (because gy =0, 1 (mod 4)).
We have

% (7 + 2p + 9) = f(p) < q(G) = [(8) + #(p) — 1

é12+%{pi+4_ﬂ;}—h

i e
P+ p <87 4+ pi+ 4p, — B,
Since p=p, + 3, 125 and p; == 8, we have
40 =S 81 - 72 — 4p, =0 72 — 311 = 40,
a contradiction.

Case 2, py=7. In this case p = 9, It is clear that
1o)==+ 28),
.fff-"l) - J'(‘;J =1,

f(pa) i'—'-.-;— (pd + 4p;) (because g, = 7).

%(P=+23J--:9+%{F:+4ﬁ; s

which contradicts p= g3 + 2 and § = 5.
Case 3, py=06, [n this case p = 7,
(a) If p=dk(k==2), then py =4k — 1. Since f{4k) < f(6) + f(3k — 1) =1,
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we have 287+ 2k <7 4+ (A — 1P+ 44— 1)+ 33—, ie. I =8 — 2k, This contra-
dicts T =3,

(b) If p=4k + 1(k =2) then p; = 4k. Since f(4k + 1) < f(6) + f(4k) — 1, we
have 2k 4= 2k 4 2 <7 4 2k* + 2k — I, i.e. ] <5, a contradiction.

(c) If po=dk & 2(k = 2), then p; = 4k + 1. Since f(4k 4 2) << j(6) + f(4k+1)
— Iy we have 28 + 28 + 4 =<2 + 2k + 2 + 7 — I, which contradicts | = 5,

(d) If p=4k + 3(k =1}, then py =4k + 2, Note thar f(4F + 3) =< #6) +
f(4% + 2) — 1, When 4 =2, we have 28" + 4F + 3 <7 4+ 28 + 2F +4—1, e l<
8 — 24, a contradiction,

When k=1, we have py = o= 6 and f(7) =9 <f(6) +fl6) —1=7+7—1,
e, { == 5, which contradicts { = 5,

The proof of the theorem is complered.

Mote, In the above proof, it can be found that 2 =< a(G)==5 if G &5 a critical 2-
edge-connected graph with maximum size. Furthermore, the authors believe it is imposible
that a(G) =4, and so conjecture that all of the critical Z-edge-connected graphs with maxi-
mum size have been discovered in Fig. 1. (If two graphs arc isomorphic, we de not regard
them as diffmnt.}
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%L’p’+4p}, p=0 (mod 4);

f(p) = %{FZ"'EF"' 13), p=1 (mod 4);

l —;'{F’A-EE), p= (2mod 4}, p = 6;
Cr(P e 9), =3 (mod 4,
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