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Bayesian Analysis of Comparative Microarray

Experiments by Model Averaging

Paola Sebastiani∗, Hui Xie† and Marco F Ramoni‡

Abstract. A major challenge to the statistical analysis of microarray data is
the small number of samples — limited by both cost and sample availability —
compared to the large number of genes, now soaring into the tens of thousands
per experiment. This situation is made even more difficult by the complex nature
of the empirical distributions of gene expression measurements and the necessity
to limit the number of false detections due to multiple comparisons. This paper
introduces a novel Bayesian method for the analysis of comparative experiments
performed with oligonucleotide microarrays. Our method models gene expression
data by log-normal and gamma distributions with hierarchical prior distributions
on the parameters of interest, and uses model averaging to compute the posterior
probability of differential expression. An initial approximate Bayesian analysis is
used to identify genes that have a large probability of differential expression, and
this list of candidate genes is further refined by using stochastic computations. We
assess the performance of this method using real data sets and show that it has
an almost negligible false positive rate in small sample experiments that leads to
a better detection performance.

Keywords: Microarrays, gene expression, gamma distribution, log-normal distri-
bution, model averaging, true and false positive rates, false discovery rate

1 Introduction

One of the results of the Human Genome project is the discovery that the human

genome comprises between 30,000 and 35,000 genes. Only about 50% of these genes

have known functions and one of the challenges of the post-genome era is to characterize

these newly discovered genes and to understand their role in cellular processes or in

mechanisms leading to disease. An avenue of research focuses on gene expression: the

process by which a gene transcribes the genetic code stored in its DNA sequence into

molecules of mRNA that are used for producing proteins (Jacob and Monod 1961). A

gene expression level is the abundance of mRNA produced during the gene expression,

and the measurement of the expression levels of all the genes in a cell is nowadays made

possible by the technology of microarrays.

Data analysis methods play a critical role in the successful execution and analysis

of microarray experiments but notwithstanding a large body of literature

(Nadon and Shoemaker 2002; Shoemaker and Lin 2005) there is no universally accepted
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statistical protocol for the analysis of microarray data

(Sebastiani et al. 2003a; The Tumor Analysis Best Practices Working Group 2004).

Three main issues challenge the development of these data analytical methods: the

controversial distributional nature of data generated by microarray experiments, the

typically small sample size, and the problem of multiple comparisons.

In the biology literature, the standard measure of change in expression is the fold
change, which, in the case of unpaired measures, is estimated by the ratio of the sample

means (Chen et al. 1997; Newton et al. 2001). Alternative statistical techniques rely

on the t statistic, or some adjusted form of it, such as the signal to noise ratio im-

plemented in GeneCluster (Reich et al. 2004), the adjusted t statistic implemented in

sam Tusher et al. (2000), or in its empirical Bayes version (Efron et al. 2001) that are

implemented in the package siggenes of Bioconductor (Gentleman and Carey 2002).

Genes are ranked according to one of these statistics, and those genes exceeding a sig-

nificance threshold are deemed to be changed across the two conditions. To reduce

the number of falsely significant changes due to erroneous distributional assumptions

and multiple comparisons, the choice of the significance threshold is typically distri-

bution free, and it aims at controlling the false discovery rate — the rate of non sig-

nificant changes among the detected changes — rather than the false positive rate —

the rate of genes called changed among all non changes (Dudoit et al. 2001). A lim-

itation of distribution free methods is the large sample size required to detect genes

with significant change and a large true positive rate (Zien et al. 2003). By contrast,

parametric approaches can be more powerful with small samples but rest on conve-

nient distributional assumptions, such as that gene expression data follow a Gaussian

distribution (Giles and Kipling 2003; Thomas et al. 2001), a log-normal distribution

(Baldi and Long 2001; Ibrahim et al. 2002), or a gamma distribution with some restric-

tions on the shape parameters (Chen et al. 1997; Newton et al. 2001).

We investigated the adequacy of these distributional assumptions using large data

sets (Sebastiani and Ramoni 2002; Sebastiani et al. 2003b, 2006), and our results sug-

gested that a single distributional assumption is not sufficient to consistently describe

gene expression data. The problem is particularly evident for gene expression data

measured with synthetic oligonucleotide arrays, such as Affymetrix (Sebastiani et al.

2003a) and lead us to develop an approximate Bayesian analysis of gene expression

data based on model averaging. The analysis is described in Sebastiani et al. (2006)

and is implemented in the program badge (Bayesian Analysis of Differential Gene Ex-

pression). Briefly, badge implements two parallel Bayesian analyses of gene expression

data, one conditional on the assumption that the expression data follow a log-normal

distribution, and the other one conditional on the assumption that the expression data

follow a gamma distribution. The results of the two analyses are averaged using the

posterior probabilities of the two models. To make fast computations, the Bayesian

inference implemented in badge is based on a series of numerical approximations that

make it feasible to assess the evidence of differential expression for thousands of genes

in a matter of seconds. Several investigations we conducted suggest that the effect of

the numerical approximation is negligible on the detection of genes that change expres-

sion across two conditions but, although smaller than other popular solutions, the false
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positive rate of badge is still large. We conjecture that this effect may be due to the

over-confidence of the posterior analysis caused by the numerical approximations.

To solve this issue, in this paper we propose a stochastic analysis of differential gene

expression. We continue to rely on model averaging to account for model uncertainty

but, rather than using numerical approximations to the posterior distribution, we use

Markov Chain Monte Carlo (MCMC) methods to compute a sample from the posterior

distribution of the fold change of expression for each gene, using gamma and lognor-

mal distributions. We then average the results with MCMC estimates of the posterior

weights. Beside relaxing the requirement on the minimum sample size that is neces-

sary for comfortably using the numerical approximations implemented in badge, the

use of stochastic computations enables us to include appropriate prior distributions on

the parameters of the log-normal and gamma distribution. We describe a method to

define objective hierarchical prior distribution that uses the expression values of genes

that are not used in further analysis to model the baseline hyper-variability of gene

expression measured with microarrays. The use of proper prior distributions makes the

analysis very robust to outliers and leads to a significant decrease of the false positive

rate without loss of power.

The next section describes the Bayesian models and the specification of prior dis-

tributions that account for the variability of gene expression data and Section 3 shows

the effect of using stochastic computations in the reduction of the false positive rate in

small sample experiments. Discussion and suggestions for further work are in Section

Appendix.

2 Method

We first give a brief description of microarray data, followed by a general overview of our

approach and then provide details of the model parameterizations and implementation

in Winbugs 1.4 Thomas et al. (1992).

2.1 Microarray Data

Technically a microarray is a platform containing copies of functional DNAs of genes.

There are different technologies for microarrays and we remind to the review in

Sebastiani et al. (2003a) for a general overview. In this paper, we focus on synthetic

oligonucleotide microarrays. A synthetic oligonucleotide microarray is a platform grid-

ded in such a way that each location of the grid corresponds to a gene and con-

tains several copies of a short specific DNA segment that is characteristic of the gene

(Duggan et al. 1999). The short specific segments are known as synthetic oligonu-
cleotides and the copies of synthetic oligonucleotides that are fixed on the platform

are called the probes.

Each gene is associated with a number of probe pairs ranging from 11 in the Human

Genome U133 set, to 16 in the Murine Genome U74v2 set and the Human Genome



710 Bayesian Analysis of Microarray Experiments

U95v2. A probe pair consists of a perfect match probe and a mismatch probe. Each

perfect match probe is chosen on the basis of uniqueness criteria and proprietary, em-

pirical rules designed to improve the odds that probes will hybridize — that is bind

— to mRNA molecules with high specificity. The mismatch probe is identical to the

corresponding perfect match probe except for the nucleotide in the central position,

which is replaced with its complementary nucleotide. The inversion of the central nu-

cleotide makes the mismatch probe a further specificity control because, by design,

hybridization of the mismatch probe can be attributed to either non specific hybridiza-

tion or background signal caused by the hybridization of cell debris and salts to the

probes (Lockhart et al. 1996). Each cell of an Affymetrix oligonucleotide microarray

consists of millions of samples of a perfect match or mismatch probe, and the probes

are scattered across the microarray in a random order to avoid systematic bias. To

measure the expression level of the genes in a cell, investigators prepare the target
by extracting the mRNA from the cell and making a fluorescence-tagged copy. This

tagged copy is then hybridized to the probes in the microarray. During the hybridiza-

tion, if a gene is expressed in the target cells, its mRNA representation will bind to

the probes on the microarray, and its fluorescence tagging will make the corresponding

probe brighter. Therefore, the measure of each probe intensity is taken as a proxy of the

mRNA abundance for the corresponding gene in the sample, and a robust average of the

intensities of the probe set determines a relative expression for the corresponding gene.

Full details are in the Affymetrix document describing the statistical algorithm that is

available from www.affymetrix.com/support/technical/whitepapers, and a summary is

in Sebastiani et al. (2003a). Figure 11 in the supplementary material sketches the three

steps of a microarray experiment.

2.2 Model Averaging

A typical microarray experiment produces the expression level of thousands of genes in

two or more biological conditions. We denote by ykji the expression level of gene k,

(k = 1, ..., p) measured in sample i of condition j, (j = A, B), and by yk the overall

expression profile of gene k. We also denote by nj the number of samples measured in

condition j so that i = 1, . . . , nj . We measure the differential expression of each gene k
by the fold change θk that is defined as

θk =
µkA

µkB
, k = 1, . . . , p,

where µkj denotes the average expression level of the gene k in condition j (j = A, B).

A fold change θk = 1 denotes no change of expression, while θk < 1 and θk > 1

indicate, respectively, over and under expression in condition 2 compared to condition 1.

Therefore, we measure the evidence of differential expression by the posterior probability

1−p( 1
τ ≤ θk ≤ τ |yk) for a pre-specified threshold change τ > 1. More specifically, values

of p(θk < 1
τ |yk) near 1 identify those genes that are τ -fold more expressed in condition 2,

while values p(θk > τ |yk) close to 1 identify those genes that are τ -fold more expressed

in condition 1. The threshold τ on the fold change of expression is determined by

the sample size. Experiments with less than 20 samples per condition usually leads to
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the discovery of genes that change by at least 2-fold expression, while the detection of

smaller effects requires larger sample size (Zien et al. 2003; Sebastiani et al. 2006).

We compute the posterior probability by assuming that the gene expression data

follow either a gamma or a log-normal distribution and average the results of the two

analyses. If we let Mlk and Mgk denote, respectively, the log-normal and gamma models

for the expression data of gene k, the posterior probability p(θk > τ |yk) is computed as

the weighted average

p(θk > τ |yk) = p(θk > τ |Mlk , yk)p(Mlk|yk) + p(θk > τ |Mgk , yk)p(Mgk|yk) (1)

where p(θk > τ |Mlk, yk) and p(θk > τ |Mgk , yk) are the posterior probabilities of differ-

ential expression assuming a log-normal and a gamma model, and the weights p(Mlk|yk)

and p(Mgk|yk) = 1− p(Mlk|yk) are the posterior probabilities of the two models. Sim-

ilarly, we compute the Bayesian point estimate of the fold change by the posterior ex-

pectation of θk, say E(θk|yk), and therefore we average the conditional point estimates

E(θk |yk) = E(θk|Mlk, yk)p(Mlk|yk) + E(θk|Mgk, yk)p(Mgk|yk). (2)

We compute an approximate (1−α)% credible interval by averaging the credible limits

under the two models. This averaging technique is known as Bayesian model averaging
and is reviewed in Hoeting et al. (1999).

2.3 Log-normal Model

Suppose the expression data ykji follow a log-normal distribution with parameters ηkj

and τkj = 1/σ2
kj defining the mean µkj = eηkj+σ2

kj/2, the variance µ2
kj(e

σ2
kj −1), and the

density function

fl(ykji|Mlk, ηkj , σ
2
kj) =

1

ykji

√
2πσ2

kj

e
− 1

2σ2
kj

(log(ykji)−ηkj)
2

, ykji, σ
2
kj > 0, j = A, B.

(3)

With this parameterization, the fold change of expression conditional on the log-normal

model is:

θk|Mlk =
µkA

µkB
= eηkA−ηkB+(σ2

kA−σ2
kB)/2

and this is our parameter of interest. Because ηkj and σ2
kj define the mean and variance

of the log-transformed data, we assume Gamma priors on the parameters τkA and τkB ,

and normal-gamma priors on the parameters ηkA and ηkB that are independent of τkA

and τkB . The graphical model in Figure 1 summarizes the Bayesian model, conditional

on the assumed log-normal distribution for the expression data.

We choose the hyper-parameters to represent the fact that a gene is not expressed

in the target. Because of background noise, non expressed genes may result in noisy
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measurements and our prior specification describes this variability of non-expressed

genes and, in particular, of non differentially expressed genes. Therefore, the prior

distributions for the parameters ηkj and τkj are the same for j = A, B. Furthermore,

the hierarchical prior on the parameters ηkA and ηkB allows us to model the wide range

of variability of non-expressed genes.

Figure 1: Graphical model describing the parameterization for gene expression data

modeled by a log-normal distribution. The subindex A and B denote the two biological

conditons. Nodes in blue are the parameters that need a prior distribution. Nodes

with border in dotted lines are functional nodes. Plates represents repeated parts of the

graph.

We use the following strategy to elicit the prior distributions when the expression

data are measured by Affymetrix chips and processed with the statistical software MAS

5.0. The software labels genes by a detection call and, specifically, genes are labelled as

either “absent” or “marginally present” when the expression is non detectable, and they

are labelled as “present” when there is evidence of detectable expression (We remind to

Sebastiani et al. (2003a) for full details on how these detection calls are determined.) It

is common practice to disregard from the analysis those genes that are systematically

labelled as absent in all the samples, because they are either never expressed in the

biological samples, or their expression measure is not reliable. Typically they amount

to about 25–50% of the total number of genes. These data however contain information

about the variability of non expressed genes and therefore we use them to build our

prior distributions.

We first note the following relationships that will be used to define the hyper-
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parameters of the prior distributions:

E(ηkj) = η0 (4)

E{log(Ykj)} = E(E{log(Ykj )|ηkj , τkj}) = η0 (5)

V (ηkj) = βη0/(αη0 − 1) (6)

V {log(Ykj)} = V (E{log(Ykj)|ηkj , τkj}) + E(V {log(Ykj)|ηkj , τkj}) (7)

= V (ηkj) + E(1/τkj)

= βη0/(αη0 − 1) + βτ0/(ατ0 − 1)

To have V (ηkj) > 0 and V {log(Ykj)} > 0 we specify αη0 > 1 and ατ0 > 1, and because

the marginal variances decrease with αη0 and ατ0, we specify

αη0 = 2 ατ0 = 2.

We use the expression values of the genes labelled as absent to specify the hyper-

parameters η0 = x̄a, where x̄a is the average of the expression values labelled as absent,

in logarithmic scale. To fix the hyper-parameter βη0, we note that this parameter

determines the variance of the marginal distribution of ηkj . Therefore, we compute the

sample mean of the log-transformed expression values for each gene labelled as absent

throughout the samples, say x̄g and then compute the variance of the distribution of the

sample means σ2
l =

∑
g(x̄g− x̄a)2/(na−1), where na is the number of absent genes. We

then set βη0 equal to this variance. To compute the last hyper-parameter βτ0, we solve

the equation S2
xa = σ2

l + βτ0 where S2
xa is the variance of the expression values labelled

as absent, in logarithmic scale. Note that S2
xa > σ2

l so that βτ0 is always positive.

2.4 Gamma Model

Suppose now that the gene expression data follow a gamma distribution with parameters

αkj , βkj that specify the mean and the variance of the distribution as µkj = αkj/βkj

and µ2
kj/αkj , and the density function

fg(ykji |αkj , βkj) =
β

αkj

kj

Γ(αkj)
y

αkj−1
kji e−ykjiβkj , ykji, αkj , βkj > 0, j = A, B. (8)

The parameter of interest is the fold change of expression of each gene k:

θk =
µkA

µkB
=

αkAβkB

αkBβkA

so that we specify our Bayesian model by defining the conditional distribution of the

gene expression data ykj as a function of αkj and βkj , where βkj is a function of αkj and

µkj , for j = A, B. We then model the prior distribution of αkj and µkj by gamma distri-

butions. The graphical model in Figure 2 summarizes the Bayesian model, conditional

on the assumed gamma distribution for the expression data.
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Figure 2: Graphical model describing the parameterization for gene expression data
modeled by a gamma distribution. The subindex A and B denote the two biological
conditions. As in Figure 1, nodes in blue need a prior distribution; nodes with border
in dotted lines are functional nodes, and plates represents repeated parts of the graph.

We assume the same gamma prior distribution Γ(αa0, βa0) on the parameters αkj for

j = A, B, and the same gamma prior distribution Γ(αµ0, βµ0) on the parameters µkj for

j = A, B to represent the assumption that, a priori, each gene k is not expressed in either

conditions A and B, and therefore it is also not differentially expressed. The parameters

µkj and αkj are marginally independent, and become conditionally dependent given βkj .

We note the following relationships that will be used to define the hyper-parameters of

the prior distributions:

E(µkj) = αµ0/βµ0 (9)

E(Ykj) = E{E(Ykj |µkj)} = αµ0/βµ0 (10)

V (µkj) = αµ0/β2
µ0 (11)

V (Ykj) = E{V (Ykj |µkj , αkj)}+ V {E(Ykj |µkj)} (12)

= E{µ2
kj/αkj}+ V (µkj) (13)

= E(µ2
kj)× βa0/(αa0 − 1) + V (µkj) (14)

We first specify the parameters αµ0 and βµ0 such that they match the distributions of

the sample means of the genes that are always absent. To do this, we compute the

average expression ȳg of each gene g that is always absent, and then we compute the

mean and variance of the distribution of these values:

ȳ =

∑
g ȳg

na
σ2 =

∑
g(ȳg − ȳ)2

na − 1
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where na is the number of absent genes. We then set

αµ0 = ȳ2/σ2 βµ0 = ȳ/σ2

to ensure that αµ0/βµ0 = ȳ and αµ0/β2
µ0 = σ2. We specify the last hyper-parameter

αa0 and βa0 so that the marginal variance of Ykj matches the variance of the absent

genes, for all k and j. Therefore we need to find αa0 and βa0 so that

S2
ya = E(µ2

kj)× βa0/(αa0 − 1) + V (µkj)

where S2
ya is the overall sample variance of the expression values labelled as absent.

By the prior definition for µkj , we know that E(µ2
kj) = V (µkj) + E(µkj)

2 = σ2 + ȳ2.

Therefore,

βa0/(αa0 − 1) = (S2
ya − σ2)/(σ2 + ȳ2)

We fix αa0 = 2 to have the least informative proper prior, and βa0 = (S2
ya−σ2)/(σ2+ȳ2).

2.5 Implementation and Analysis

We have implemented the model averaging procedure into a set of functions that run

under the R package (version 1.9) and are interfaced to Winbugs 1.4 through the pack-

age R2WinBUGS1. We first identify the set of genes that are consistently labelled

as absent throughout all samples and use their expression values to define the prior

hyper-parameters. Then, for each gene and each log-normal and gamma model, we use

WinBugs 1.4 to generate a sample from the posterior distribution of θk that we use to

estimate the posterior probability p(θk > τ |Mm) (Mm = Mg, Ml) as

p(θk > τ |Mm) =

∑
h(θkh > τ)

n

where {θkh} (h = 1, ..., n) is the MCMC sample of n values for the parameter θk. In prac-

tice, an initial burn-in of 1,000 iteration followed by a sample of 1,000 iterations seem

to be sufficient to reach the convergence when the gene expression data are assumed to

follow a log-normal distribution. When we assume a gamma distribution for the gene ex-

pression data, convergence may be slower so we use initial values for the parameters that

match the empirical moments of the data. (See some discussion in the supplementary

material, section Diagnostic). For each gene, we also estimate the mixing weights by

computing a stochastic estimate of the marginal likelihood, in log-scale. We use these es-

timates to approximate the Bayes factor by Bk = exp(log(p(Mlk|yk))− log(p(Mgk |yk)))

and then derive the mixing weights of the log-normal and gamma models as Bk/(1+Bk)

and 1/(1 + Bk).

1Available for download at http://cran.r-project.org/src/contrib/Descriptions/R2WinBUGS.html
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Our analysis scores each gene by the posterior probability of differential expression

that is then used to rank genes. To select the genes differentially expressed across

the two conditions, we fix a small threshold α(= 5%) on the posterior probability of

differential expression, and select the genes for which p(1/τ ≤ θk ≤ τ |yk) < α.

Although MCMC methods can be time consuming, in our experience we have suc-

cessfully analyzed sets comprising up to 5,000 genes in at most 15 minutes, using an

Intel Pentium 1.7 GHz, and 1.0 GB of RAM.

3 Evaluation

The objective of this evaluation is to assess the performance of our method in real

microarray experiments of different sample sizes, in which there is a known number of

genes that change expression between two biological conditions.

3.1 Material and Methods

We created test sets from a spiked-in microarray study prepared by Affymetrix using

the U133 array A. The data set consists of three technical replicates of 14 separate

microarray experiments. In each experiment, the target consisted of a complex human

background, and 42 genes whose expression was artificially amplified at concentrations

ranging from 0pM to 512pM. While the expression profiles of the non-spiked genes

should simply be random noise, the expression values of the spiked-in genes increase

proportionally to the concentrations. As an example, Figure 12 in the supplementary

material shows the expression profiles of four of these genes, for increasing concentra-

tions. Note that the data were scaled to a target value of 1, so that the expression

values range between 0 and 6968.0, with a median expression 31.2.

These 42 spiked-in genes were assigned to each of the 14 experiments using the Latin

square design described in Figure 3. One of the 42 samples did not pass the quality

control steps and we removed it from any subsequent analysis. Furthermore, we found

that the expression profiles of 27 extra genes matched the expression profiles of some of

the spiked-in genes: four had the expression profiles matching those of three spiked-in

genes assigned to group G1 in the original Latin square experiment; two expression

profiles matched those of the spiked-in genes assigned to group G8; five expression

profiles matched those of the spiked-in genes in group G13; and 15 profiles matched

those of the spiked-in genes in group G14 (See Table 2 in the supplementary material

for full details). We therefore used the expression profiles of the 42+27 spiked-in genes

and the background noise to create test sets for differential analysis in which we varied

the sample size, and the number of true changes represented by the artificially spiked-in

genes.

To create these test sets, we proceeded as follows. We first note that by the Latin

square arrangement, each group of low concentrations ranging between 0pM and 4pM

is matched by a group of high concentrations ranging between 8pM and 512pM: For
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Figure 3: Latin square design used to generate the artificial test sets. Each row rep-
resents one of the 14 distinct experiments, and each column represents the groups of
genes that were artificially spiked in. Each cell (i, j) represents the concentration of the
spiked-in genes in run i and group j. The color code is red to denote concentrations
from 0pM to 4pM, or low concentrations, and blue to denote concentrations from 8pM
to 512pM, or high concentrations. For example, in run 1 the genes in group G1 are
all spiked-in at concentration 0pM, while the genes in group G2 are all spiked-in at
concentration 512pM and all genes in group G8 are spiked-in at concentration 4pM.

example the first seven low concentrations of the spiked-in genes in group G1 (red cells in

Column 1, Figure 3) are matched by the first seven high concentrations of the spiked-in

genes in group G8 (blue cells in Column 8, Figure 3). Similarly the low concentrations

in run 2–8 of the spiked-in genes in group G2 are matched by the high concentrations

of the spiked-in genes in group G9, and so on. Because our preliminary analysis showed

that the expression of each gene spiked at low concentrations 0–4pM was much smaller

than the expression of the same gene spiked at higher concentrations 8–512pM (See

Figure 12 in the supplementary material), we dichotomized the concentrations as low

(0–4pM) and high (8–512pM) and used the genes that were spiked-in with either low or

high concentration to create test sets of different sample sizes as illustrated in Figure 4.

We started by creating three initial sets of 41 samples each: the first set comprised

all 12 spiked-in genes in groups G1 and G8, as well as all 22,244 genes that were not

spiked-in any of the 41 samples; the second set comprised all 11 spiked-in genes in groups

G6 and G13 and the 22,244 genes that were not spiked-in any of the 41 samples; the

third set comprised the 21 spiked-in genes in groups G7 and G14, and the remaining

22,244 genes that were not spiked-in any of the 41 samples. We then divided the 41

samples in each set into two biological conditions A and B comprising all experiments

at low or high concentrations. For example, in the first set we assigned the triplicated

experiments 1–7 to condition A, and the triplicated experiments 8–14 to condition B,
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Figure 4: Test sets used for the evaluation that were created from the original microarray
study. As in Figure 3, each row represents one of the 14 distinct experiments, and each
column represents the groups of genes that were artificially spiked-in at concentrations
represented by the color intensity. The color code is red to denote concentrations from
0pM to 4pM, and blue to denote concentrations from 8pM to 512pM.

thus providing a test set for comparative analysis with 12 known changes, given by

the seven known spikes-in genes in group G1 and the five spike-in genes in group G8,

and 20 and 21 samples in conditions A and B. From this set, we selected two further

subsets of 10 samples per condition, and two subsets of 5 samples per condition. We

created data sets of different sample size from the other two sets in a similar way, as

shown in Figure 4. Note that the data sets of different sizes comprise genes that were

spiked-in at different concentrations, thus providing test sets for differential analysis of

different complexity with median fold change ranging from 1.04 to 88 between the two

conditions.

We analyzed each of the 15 data sets by first removing the genes labelled as absent,

whose expression values were used to build the prior distributions as described in Section

2. The genes with at least one expression value labelled as present were analyzed with

the original version of badge (Sebastiani et al. 2006), which uses numerical approxima-
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tions for fast computations. The effect of these numerical approximations is to yield a

posterior probability of differential expression that is often too extreme, with the con-

sequence of a large power and a large false positive rate. We used this first approximate

analysis as a filter to only remove those genes in which there is no evidence of differential

expression and we filtered out all those genes with a posterior probability of differential

expression 0.025 < p(θk > 1|yk) < 0.975. We used the stochastic analysis on the remain-

ing genes and we selected those genes with p(θk > 2|yk) or p(θk < 1/2|yk) exceeding

95% as differentially expressed. This choice for the threshold τ will be discussed in the

next section. For comparisons, we also detected the differentially expressed genes by

controlling the false discovery rate using sam (Tusher et al. 2000) that is implemented

in the package siggenes in Bioconductor2. We limited the analysis with sam to the de-

fault search ranges for the smoothing parameters, and transformed the raw expression

data using the cubic root transformation as suggested in Tusher et al. (2000).

3.2 Results

Table 1 reports the results of the evaluation. The selected number of genes that were

analyzed after removal of the absent genes was on average 14,000. In this initial selec-

tion, badge identified a number of significant genes ranging from 31, with 20 falsely

significant genes, to 1106 with 1085 falsely significant genes and a false discovery rate

ranging from 56% to 99%. The behavior of sam was mixed: in five tests sam selected an

unacceptable number of significant genes, with almost 100% FDR; in the remaining ten

tests sam usually selected a small number of different genes with a large true positive

rate, although the performance is almost always worse than the stochastic Bayesian

analysis. The stochastic Bayesian analysis is remarkably accurate, with a number of

false detection that is almost negligible and a false discovery rate that is at most 27%.

The large accuracy is also paired by a large power that is above 85% in the 15 sets.

These results confirm our preliminary power analysis that relatively small samples al-

low for the estimation of large effects defined by at least a 2-fold change of expression

(Sebastiani et al. 2006), and hence τ = 2. Furthermore, the positive results are stable

across the 15 test sets.

We believe the higher sensitivity and specificity of the stochastic analysis is induced

by both the use of a prior distribution that models the background noise and a more

conservative threshold τ on the fold change. This is confirmed by the fact that, if we

restrict the initial selection in badge to those genes that change expression by at least

2-fold, the average number of gene selected by badge decreases but remains larger than

the number of genes selected with the stochastic analysis. For example the number of

selected genes is 82 and 37 in Test 1, column 1 of Table 1 with five samples per group,

compared to 14 and 13 genes selected by the stochastic analysis. These results confirm

that the approximate analysis of the original implementation of badge has high power

at the price of a large false positive rate. On the other hand, the stochastic analysis

maintains the high power but reduces the false positive rate.

2http://bioconductor.org/
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Test 1 Test 2 Test 3

12 True Change 11 True Changes 21 True Changes
n1 = 20, n2 = 21 Selected FDR TP Selected FDR TP Selected FDR TP

sbadge 11 0.00 11 11 0.00 11 21 0.00 21
badge 76 0.84 12 31 0.64 11 58 0.64 21
sam 6989 1.00 10 19 0.42 11 6906 1.00 21

9 True Changes 11 True Changes 21 True Changes
n1 = n2 = 10 Selected FDR TP Selected FDR TP Selected FDR TP

sbadge 11 0.27 8 13 0.15 11 24 0.13 21
badge 256 0.96 9 573 0.98 11 663 0.97 21
sam 10260 1.00 7 11710 1.00 11 11168 1.00 21

12 True Changes 11 True Changes 21 True Changes
n1 = n2 = 10 Selected FDR TP Selected FDR TP Selected FDR TP

sbadge 11 0.00 11 12 0.08 11 21 0.00 21
badge 38 0.68 12 30 0.63 11 48 0.56 21
sam 10 0.33 8 10 0.09 10 18 0.00 18

9 True Changes 11 True Changes 21 True Changes
n1 = n2 = 5 Selected FDR TP Selected FDR TP Selected FDR TP

sbadge 14 0.43 8 15 0.27 11 23 0.09 21
badge 1104 0.99 9 496 0.98 11 1106 0.98 21
sam 8 0.13 7 14 0.21 11 229 0.91 21

12 True Changes 11 True Changes 21 True Changes
n1 = n2 = 5 Selected FDR TP Selected FDR TP Selected FDR TP

sbadge 13 0.17 10 14 0.21 11 22 0.05 21
badge 251 0.01 12 101 0.89 11 248 0.92 21
sam 171 0.95 9 12 0.08 11 23 0.09 21

Table 1: Detection accuracy of badge, the extension with MCMC estimation (sbadge),
and significant analysis of microarray (sam) in the 15 data sets generated from the
spiked-in experiment. In each test, we identified the significant genes by bounding the
posterior probability of differential expression to 0.95. The false discovery rate (FDR)
is the ratio of falsely significant genes and the total number of significant genes. The
true positives (TP) is the total number of detected true changes. In sam we used 18%
nominal FDR.
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Figure 5: Left: Expression data of the gene 203662 s at (y-axis) in 20 microarray sam-
ples comprising 10 samples in condition A (red) and 10 samples in condition B (blue)
(x-axis). This gene was selected as differentially expressed by the approximate anal-
ysis in badge. Middle: posterior distribution of the fold change using a gamma dis-
tribution for the expression values. Right: posterior distribution of the fold change
using a lognormal distribution for the expression values. The two distributions lead to
p(θ > 2|Mg) = 0.937 with weight 0.94 and p(θ > 2|Ml) = 0.725 with weight 0.06, so
that the overall posterior probability is 0.92 and the gene is not selected as differentially
expressed.

Figure 5 shows an example of the gain of accuracy induced by the use of stochastic

computations. The bar plot in the left panel shows the expression values of the gene

203662 s at3 in 20 samples: the average expression is below 5 with the exception of one

sample with expression value above 35. The presence of this outlier leads to the selection

of this gene as differentially expressed in the initial approximate analysis. The plots in

the middle and right panels show the posterior distributions of the fold parameter in

1,000 simulations. The two distributions lead to p(θ > 2|Mg) = 0.937 with weight 0.94

and p(θ > 2|Ml) = 0.725 with weight 0.06, so that the overall posterior probability

is 0.92 and the gene is not selected as differentially expressed. This example suggests

that the analysis conditional on the log-normal distribution is more robust to outliers.

However, as shown in Figure 6, the analysis conditional on the lognormal distribution

is often too cautious: the gene 213060 s at is one of those artificially spiked in in the

experiment and, although the data in the left panel suggests some evidence of differential

expression, the posterior distribution of the fold parameter conditional on the lognormal

distribution rules out a detectable change of expression (p(θ < 1/2|Ml) = 0.214 with

weight 0.26), while the analysis conditional on the gamma model points to an almost

detectable change of expression (p(θ < 1/2|Mg) = 0.92 with weight 0.74). The effect

of averaging the two inferences is an overall posterior probability of 0.73. We note

that, in both examples, the larger weights assigned to the gamma models are more

consistent with the data distributions: the left top panel of Figure 13 (supplementary

material) shows the histogram of the expression values in the original scale, and after

the logarithmic transformation (top right panel) for the gene analyzed in Figure 5.

3See a description of gene annotation at

http://www.affymetrix.com/support/technical/technotes/mouse430_technote.pdf .

http://www.affymetrix.com/support/technical/technotes/mouse430_technote.pdf
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The bottom panel of the same figure shows the histograms of the expression values in

the original (left) and logarithmic scale (right) for the gene analyzed in Figure 6. In

both cases, the residual asymmetry left after the logarithmic transformation is more

consistent with a gamma model rather than a log-normal model.

Figure 6: Left: Expression data of the gene 213060 s at (y-axis) in 10 microarray sam-
ples comprising 5 samples in condition A (red) and 5 samples in condition B (blue)
(x-axis). This gene was selected as differentially expressed by the approximate anal-
ysis in badge. Middle: posterior distribution of the fold change using a gamma dis-
tribution for the expression values. Right: posterior distribution of the fold change
using a lognormal distribution for the expression values. The two distributions lead to
p(θ < 1/2|Mg) = 0.92 with weight 0.74 and p(θ < 1/2|Ml) = 0.214 with weight 0.26, so
that the overall posterior probability is 0.73.

4 Discussion

In this paper we proposed a Bayesian hierarchical model coupled with model averaging to

identify genes that change expression between two biological conditions. The well known

variability of gene expression data measured with microarrays is modelled through a

set of hierarchical prior distributions, whose parameters are determined empirically by

matching them with the expression levels of the genes that are not expressed in either

biological condition. In this way, the inference on one gene borrows information from

the other genes. This is particulary beneficial in microarray studies, where there are

many genes simultaneously under study but the sample size for each gene is small.

A Bayesian model averaging technique is used to address the problem of model

uncertainty for the gene expression data. Two distributions, log-normal and gamma

distributions, are used to fit the individual gene expression data and infer the posterior

distribution of the parameter that describes the change of expression between the two

biological conditions. The two conditional inferences are then averaged with weights

given by their posterior probabilities. We evaluated the proposed method in a spiked-in

study produced by Affymetrix. The analysis showed that our method has advantages

of computational stability and low detection error rates compared to the popular SAM

procedure (Tusher et al. 2000). We are also beginning to use this method for the analysis

of real microarray experiments. One successful application is the identification of the



Sebastiani, Xie and Ramoni 723

molecular profile of HIV positive women in South Africa, who transmit the virus to

their newborns (Montano et al. 2006).

A further advantage of our method is that it is easily extendable to accommodate

other distributions. So far we implemented the method with log-normal and gamma

distributions and our experience shows that these two distributions are generally suffi-

cient to describe gene expression data measured with Affymetrix oligonucleotide arrays.

More research is needed to assess the properties of this method when applied to gene

expression data measured with cDNA arrays (Sebastiani et al. 2003a) or other emerging

platforms such us the Illumina Sentrix BedChip, and compared it to other methods that

are more suitable for these platforms.

There are several technical issues that remain to be investigated. We are currently as-

sessing the sensitivity of the results to the prior hyper-parameters and preliminary anal-

ysis suggests that specifying the prior hyper-parameters to match the background inten-

sity of non-expressed genes increases specificity. However, the prior hyper-parameters

need to be “experiment dependent” as different microarray experiments may lead to

different ranges of variability. We are also extending this approach to incorporate a fur-

ther predictive step that can help identifying genes that are necessary and sufficient to

describe the molecular signatures characterizing the two biological conditions. The main

intuition is to build a predictive model that uses the genes with detected differential

expression to identify each of the two biological conditions. Furthermore, in this paper

we focused attention to microarray data preprocessed with the statistical software MAS

5.0. This software uses a non-parametric statistical method to label gene expression

as “absent”, “marginally present” or “present and we use genes that are consistently

labelled as absent to build our prior distributions. Alternative approaches to MAS 5.0

include RMA (Cope et al. 2004) and dChip (Li and Wong 2001) that provide different

filters to identify genes with low/nonreliable expression values. Therefore, our method

can be easily applied to microarray data preprocessed with either RMA or dChip.

Another issue that needs further investigation is how to determine the significant

changes of expression between two conditions. Our method now uses the criterion

that p(1/τ ≤ θk ≤ τ) < α for pre-specified values of τ and small α. The choice of

the threshold τ is sample size dependent and our preliminary power analysis suggests

that microarray experiments comprising less than 20 samples per condition require

τ ≥ 2 (Sebastiani et al. 2006). This value for τ appears to remove the need for a more

conservative value α that would lead to a loss of power. In our evaluation, we tried

for example detection rules based on a smaller value α and τ = 1, but we could not

optimize the trade off between sensitivity and specificity as with the results obtained

when τ = 2. The choice of the best threshold α is still an open question and we are

investigating two approaches, one based on a decision theoretic approach to optimize

the trade off between sensitivity and specificity, and the other one based on optimizing

the FDR.
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Software

The program badge is available from http://genomethods.org/badge/. The stochas-

tic extension uses a series of scripts for the R package and Winbugs that will be made

available on a dedicated web site.

Supplementary material

Diagnostics We use the traceplot of simulations from the posterior distributions of θk

to assess the convergence of MCMC with 2,000 iterations. The traceplots for gene 24

in test 1 is shown in Figures 7 and 8 for the fitting of log-normal model and Gamma

Model. The plot is representative of traceplots for all the genes. The traceplots are for

3 chains with 2000 iterations for each chain. In each chain, an initial burn-in period

of 1,000 iterations are followed by a sample of 1,000 iterations. The traceplots show a

pattern of convergence.

Figure 7: Traceplot for gene 30 after 1000 burn-in period with a log-normal model.

Figure 8: Traceplot for gene 30 after 1000 burn-in period with a Gamma model.

http://genomethods.org/badge/
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Gelman (1996) presents a diagnostic statistic, called R-hat that is used when multiple

Markov chains are run, and recommends that values of R-hat for all the estimated

parameters should be smaller than 1.2. In our analysis, R-hat values range between 1

and 1.02 for log-normal models, and between 1.003 and 1.031 when Gamma models,

thus confirming that 2,000 iterations appear to be sufficient to achieve convergence.

In addition, the two graphs in Figures 9 and 10 display deviance plots for each log-

normal and gamma model for the gene expression data used in in test 1, and appear

to confirm that a burn-in of 1,000 iteration followed by 1,000 is sufficient to reach

convergence.

Figure 9: Traceplot of deviance for log-normal model with data from all genes used in
test 1.

Figure 10: Traceplot of deviance for Gamma model with data from all genes used in
test 1.
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Group ID Gene ID Extra spiked-in genes

1 203508 at; 204563 at; 204513 s at 204890 s at; 204891 s at;

203173 s at; 213060 s at;

2 204205 at; 204959 at; 207655 s at

3 204836 at; 205291 at; 209795 at

4 205569 at; 207777 s at; 204912 at

5 205692 s at; 207160 at; 212827 at∗ 209374 s at∗

6 204417 at; 205267 at;209606 at

7 205398 s at; 209354 at; 209734 at;

8 206060 s at∗; 205790 at; 200665 s at 205397 x at; 208010 s at∗

9 204430 s at; 207540 s at; 207641 at

10 203471 s at; 204951 at; 207968 s at

11 AFFX-r2-TagA at; AFFX-r2-TagB at;

AFFX-r2-TagC at

12 AFFX-r2-TagD at; AFFX-r2-TagE at;

AFFX-r2-TagF at

13 AFFX-r2-TagH at; AFFX-r2-TagG at; AFFX-DapX-5 at; AFFX-DapX-M at;

AFFX-DapX-3 at AFFX-r2-Bs-dap-3 at; AFFX-r2-Bs-dap-5 at;

AFFX-r2-Bs-dap-M at

14 AFFX-LysX-3 at; AFFX-LysX-5 at; AFFX-LysX-M at;

AFFX-PheX-3 at; AFFX-PheX-5 at; AFFX-PheX-M at;

AFFX-ThrX-3 at; AFFX-ThrX-5 at; AFFX-ThrX-M at;

AFFX-r2-Bs-lys-3 at; AFFX-r2-Bs-lys-5 at;

AFFX-r2-Bs-lys-M at; AFFX-r2-Bs-phe-3 at;

AFFX-r2-Bs-phe-5 at; AFFX-r2-Bs-phe-M at;

AFFX-r2-Bs-thr-3 s at; AFFX-r2-Bs-thr-5 s at;

AFFX-r2-Bs-thr-M s at

Table 2: Summary of the original 42 spiked-in genes in the latin square experiment. The
last column reports the extra spikes that we identified in the data, using the program
Caged (http://www.genomethods.org/caged/). The spikes marked with a star were
already identified as possible targets.
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Figure 11: A sketch of a microarray experiment. The mRNA in a cell is fluorescently
labelled and hybridized to the microarray. After the hybridization, the intensity of
each probe is captured into an image that is then processed to produce a proxy of the
expression level of each gene in the target. Each microarray measures the molecular
profile of a cell, and several microarray samples are needed to be able to detect the genes
that have differential expression. In this figure, five microarrays were used to measure
the molecular profiles of three healthy cells (Samples 1–3) and two tumor cells (Samples
4 and 5).
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Figure 12: Barplots of four spiked-in genes. The x-axis reports the concentrations,
in increasing order from 0pM to 512pM, and the y-axis reports the intensity values
(unscaled-unnormalized measurements). Each concentration was measured in three
technical replicates.
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Figure 13: Histograms of the raw expression data for the genes displayed in Figures
5 (top panel) and 6 (bottom panel). In each panel, the left histogram displays the
original expression values, and the right histogram displays the expression values after
the logarithmic transformation.




