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The Relationship Between the Power Prior and

Hierarchical Models

Ming-Hui Chen∗, and Joseph G. Ibrahim†

Abstract.

The power prior has emerged as a useful informative prior for the incorpora-
tion of historical data in a Bayesian analysis. Viewing hierarchical modeling as
the “gold standard” for combining information across studies, we provide a for-
mal justification of the power prior by examining formal analytical relationships
between the power prior and hierarchical modeling in linear models. Asymptotic
relationships between the power prior and hierarchical modeling are obtained for
non-normal models, including generalized linear models, for example. These ana-
lytical relationships unify the theory of the power prior, demonstrate the generality
of the power prior, shed new light on benchmark analyses, and provide insights
into the elicitation of the power parameter in the power prior. Several theorems are
presented establishing these formal connections, as well as a formal methodology
for eliciting a guide value for the power parameter a0 via hierarchical models.

Keywords: Generalized linear model, hierarchical model, historical data, power
prior, prior elicitation, random effects model

1 Introduction

The power prior discussed in Ibrahim and Chen (2000) has emerged as a useful class of
informative priors for a variety of situations in which historical data is available. Sev-
eral applications to clinical trials and epidemiological studies using the power prior have
appeared in the literature. Examples of the use of the power prior and its modifications
in clinical trials and carcinogenicity studies include Berry (1991), Eddy et al. (1992),
Berry and Hardwick (1993), Lin (1993), Spiegelhalter et al. (1994), Berry and Stangl
(1996), Chen et al. (2000), Ibrahim and Chen (1998), Ibrahim et al. (1998), Ibrahim et al.
(1999), Chen et al. (1999a), Chen et al. (1999b), Ibrahim and Chen (2000), and
Ibrahim et al. (2003). Examples using the power prior in epidemiological studies include
Greenhouse and Wasserman (1995), Brophy and Joseph (1995), Fryback et al. (2001),
and Tan et al. (2002). A recent book illustrating the use of the power prior in epidemi-
ological studies is Spiegelhalter et al. (2003).

The power prior for a general regression model can be constructed as follows. Sup-
pose we have historical data from a similar previous study, denoted byD0 = (n0,y0, X0),
where n0 is the sample size of the historical data, y0 is the n0 × 1 response vector, and
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X0 is the n0 × p matrix of covariates based on the historical data. Further, let π0(θ)
denote the prior distribution for θ before the historical data D0 is observed. We shall
call π0(θ) the initial prior distribution for θ. Let the data from the current study be
denoted by D = (n,y, X), where n denotes the sample size, y denotes the n×1 response
vector, and X denotes the n × p matrix of covariates. Further, denote the likelihood
for the current study by L(θ|D), where θ is a vector of indexing parameters. Thus,
L(θ|D) is a general likelihood function for an arbitrary regression model, such as linear
models, generalized linear model, random effects model, nonlinear model, or a survival
model with censored data. Given the discounting parameter a0, we define the power

prior distribution of θ for the current study as

π(θ|D0, a0) ∝ L(θ|D0)
a0 π0(θ) , (1)

where a0 weights the historical data relative to the likelihood of the current study, and
thus the parameter a0 controls the influence of the historical data on L(θ|D). The
parameter a0 can be interpreted as a precision parameter for the historical data. Since
D0 is historical data, it is unnatural in most applications — including clinical trials
and carcinogenicity studies — to weight the historical data more than the current data;
thus it is scientifically more sound to restrict the range of a0 to be between 0 and 1,
and thus we take 0 ≤ a0 ≤ 1. One of the main roles of a0 is that it controls the
heaviness of the tails of the prior for θ. As a0 becomes smaller, the tails of (1) become
heavier. Setting a0 = 1, (1) corresponds to the update of π0(θ) using Bayes theorem.
That is, with a0 = 1, (1) corresponds to the posterior distribution of θ based on the
historical data. When a0 = 0, then the prior does not depend on the historical data
D0; in this case, π(θ|D0, a0 = 0) ≡ π0(θ). Thus, a0 = 0 is equivalent to a prior
specification with no incorporation of historical data. Therefore, (1) can be viewed as
a generalization of the usual Bayesian update of π0(θ). The parameter a0 allows the
investigator to control the influence of the historical data on the current study. Such
control is important in cases where there is heterogeneity between the previous and
current studies, or when the sample sizes of the two studies are quite different. One of
the most useful applications of the power prior is for model selection problems since it
inherently automates the informative prior specification for all possible models in the
model space (see (Chen et al. 1999b), (Ibrahim et al. 1999), and (Ibrahim and Chen
2000)).

One of the most common ways of combining several datasets or incorporating prior
information is through hierarchical modeling. Hierarchical modeling is perhaps the most
common and best known method for combining several sources of information. In this
paper, we establish a formal analytic connection between the power prior and hierar-
chical models, both for the normal linear model and non-normal models including the
class of generalized linear models. This relationship is accomplished by establishing an
analytic relationship between the power parameter a0 and the variance components of
the hierarchical model. Establishing this relationship is critical since it formally justifies
the power prior based on hierarchical modeling as well as guides the user into the choice
of a0 from which sensitivity analyses can be based. Such a “benchmark” power prior
would be the prior that has an a0 value which corresponds to equivalence between the
hierarchical model and the power prior. Thus in this situation, the benchmark power



M.-H. Chen and J. G. Ibrahim 553

prior analysis would be the one that corresponds to hierarchical modeling. Thus, the
analytical connection we make is important and useful since it characterizes the relation-
ship between the power parameter a0 and the variance components in the hierarchical
model, thereby motivating and justifying the use of the power prior as an informative
prior for incorporating historical data, as well as providing a semi-automatic elicitation
scheme for a0 based on hierarchical modeling. Indeed, one of the most difficult and
elusive issues in the use of the power prior is the choice of a0. Since there will typically
be little information in the historical data about a0, it is not at all clear how to use the
historical data in eliciting a0. The analytic relationship between a0 and the hyperpa-
rameters of the hierarchical model provides the data analyst with elicitation strategies
for a0 based on the historical data.

The rest of this paper is organized as follows. We consider the normal hierarchical
linear model in Section 2 and develop formal analytical relationships between the power
prior and the hierarchical regression model. In Section 3 we develop formal analytical
relationships between the power prior and the hierarchical generalized linear model. In
Section 4, we extend our results to multiple historical datasets. In Section 5, we use the
analytic relationship between a0 and the hyperparameters of the hierarchical model to
devise a formal elicitation method for a0 based on the historical data. In Section 6, we
present a real dataset to demonstrate the main results.

2 Hierarchical Normal Models

2.1 I.I.D. Case

We first consider the i.i.d. case with a single historical dataset. The model for this case
can be written as

yi = θ + εi, i = 1, 2, . . . , n, and y0i = θ0 + ε0i, i = 1, 2, . . . , n0, (2)

where y = (y1, y2, . . . , yn) denotes the current data with sample size of n and y0 =
(y01, y02, . . . , y0n0) denotes the historical data with sample size of n0. In (2), we further
assume that the εi are i.i.d. N(0, σ2) and the ε0i are i.i.d. N(0, σ2

0) and independent of
the εi’s, where σ2 and σ2

0 are fixed parameters. Now the hierarchical model is completed
by independently taking

θ0 | µ, τ
2 ∼ N(µ, τ2), θ | µ, τ2 ∼ N(µ, τ2), (3)

and then taking
µ ∼ N(α, ν2), (4)

where α, ν2, and τ2 are all fixed hyperparameters. Within the development of this
hierarchical model, our goal is to make inferences about the current study through the
marginal posterior distribution [θ|y,y0] ([a|b] denotes the marginal distribution of a
given b throughout). Here, θ is the parameter of interest for the current study, such as
a treatment effect, and θ0 denotes the corresponding parameter based on the historical
study. The following theorem gives the form of the marginal posterior distribution
[θ|y,y0] obtained from (2), (3), and (4).
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Theorem 2.1 Letting ȳ0 = 1
n0

∑n0
i=1 y0i and ȳ = 1

n
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2
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. (7)

The proof of Theorem 2.1 is given in Appendix B. Now we consider a power prior
formulation of the model in (2). To do this, we set θ0 = θ, and the resulting model
becomes

yi = θ + εi, and y0i = θ + ε0i. (8)

Thus in the power prior formulation, the εi are i.i.d. N(0, σ2), and the ε0i are i.i.d.
N(0, σ2

0) and independent of the εi’s, where σ2 and σ2
0 are fixed. Under this model, the

power prior based on the historical data y0 using the initial prior π0(θ) ∝ 1, is given by

π(θ|y0) ∝ exp

{
−

a0
2σ2

0

n0∑

i=1

(y0i − θ)2

}
. (9)

Straightforward calculations show that

(θ|y,y0) ∼ N(µp, σ
2
p), (10)

where

µp =

nȳ
σ2

+ a0
n0ȳ0
σ20

n
σ2

+ a0
n0
σ20

, (11)

and

σ2
p =

1
n
σ2

+ a0
n0
σ20

. (12)

We now examine the relationship between (5) and (10). To do this, we need to find
an explicit relationship between µh and µp as well as a relationship between σ2

h and σ2
p.

We are led to the following theorem which characterizes this relationship.
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Theorem 2.2 The posteriors in (5) and (10) match, i.e., µh = µp and σ2
h = σ2

p if and
only if α = 0 and ν2 →∞ in (4), and

a0 =
1

2τ2n0
σ20

+ 1
. (13)

The proof of Theorem 2.2 is given in Appendix B.

Corollary 2.1 The choice of a0 given in (13) satisfies 0 < a0 < 1.

Corollary 2.2 The result in Theorem 2.2 can be alternatively obtained by taking a
uniform improper prior for µ at the outset, i.e., π(µ) ∝ 1.

The proofs of Corollaries 2.1 and 2.2 are straightforward. Theorem 2.2 gives us
a useful characterization of the explicit relationship between the power prior and the
hierarchical model, and we see from this theorem that the two models are equivalent
if a0 is chosen as (13). We see from (13) that a0 is a monotonic function of τ , and if
τ2 → 0, then a0 → 1. This implies that if θ = θ0 with probability 1, the historical
and current data should be weighted equally. Also, the larger the sample size for the
historical data, the less the weight given to the historical data. This is a desirable
property since, in general, we would never want the historical data to dominate the
posterior distribution of θ by simply increasing n0.

2.2 Regression Model

We now extend the normal hierarchical model in (2) to the normal hierarchical regression
model by setting θ = x′iβ and θ0 = x′0iβ0. This leads to the model

yi = x′iβ + εi, i = 1, 2, . . . , n, and y0i = x′0iβ0 + ε0i, i = 1, 2, . . . , n0, (14)

where β is a p× 1 vector of regression coefficients for the current data, β0 is the p× 1
vector of regression coefficients for the historical data, xi is a p× 1 vector of covariates
for the ith subject in the current dataset, and x0i is a p× 1 vector of covariates for the
ith subject in the historical dataset. Similar to (2), we further assume that the εi are
i.i.d. N(0, σ2) and the ε0i are i.i.d. N(0, σ2

0) and independent of the εi’s, where σ2 and
σ2
0 are fixed. In addition, we take

β | µ,Ω ∼ Np(µ,Ω), β0 | µ,Ω ∼ Np(µ,Ω), and π(µ) ∝ 1, (15)

where Ω is fixed. Here, β is the parameter vector of interest for the current study, and
β0 denotes the corresponding parameter based on the historical study. The following
theorem gives the form of the marginal posterior distribution [β|y,y0] obtained from
(14) and (15).
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Theorem 2.3 The marginal posterior distribution of β is given by

(β | y, X,y0, X0) ∼ Np(A
−1
h Bh, A

−1
h ), (16)

where

Ah = σ−2X ′X +Ω−1 − Ω−1
(
2Ω−1 − Ω−1

(
Ω−1 + σ−2

0 X ′
0X0

)−1
Ω−1

)−1

Ω−1, (17)

Bh = σ−2X ′y+
[
Ω−1

(
2Ω−1 − Ω−1

(
Ω−1 + σ−2

0 X ′
0X0

)−1
Ω−1

)−1

×Ω−1
(
Ω−1 + σ−2

0 X ′
0X0

)−1
σ−2
0 X ′

0y0

]
, (18)

X = (x1,x2, . . . ,xn)
′, and X0 = (x01,x02, . . . ,x0n0)

′.

The proof of Theorem 2.3 is given in Appendix B. Now we consider a power prior
formulation of the model in (14). To do this, we set β0 = β, and the resulting model
becomes

yi = x′iβ + εi, and y0i = x′0iβ + ε0i. (19)

Thus in the power prior formulation, the εi are i.i.d. N(0, σ2), and the ε0i are i.i.d.
N(0, σ2

0) and independent of the εi’s, where σ2 and σ2
0 are fixed. Under this model, the

power prior based on the historical data (n0,y0, X0) using the initial prior π0(β) ∝ 1 is
given by

π(β|y0, X0, a0) ∝ exp

{
−

a0
2σ2

0

(y0 −X0β)
′(y0 −X0β)

}
, (20)

and the posterior distribution of β is given by

(β|y, X,y0, X0, a0) ∼ Np(A
−1
p Bp, A

−1
p ), (21)

where

Ap = σ−2X ′X + a0σ
−2
0 X ′

0X0 (22)

and

Bp = σ−2X ′y + a0σ
−2
0 X ′

0y0. (23)

To match (16) and (21), we need to find an explicit relationship between Ah and Ap

as well as a relationship between Bh and Bp. Clearly for the hierarchical model and the
power prior to have identical distributions, we need Ah = Ap and Bh = Bp. We are led
to the following theorem which characterizes this relationship.

Theorem 2.4 Assume that X0 is of full rank. Then, the posteriors in (16) and (21)
match, i.e., Ah = Ap and Bh = Bp if and only if

a0(I + 2σ−2
0 ΩX ′

0X0) = I. (24)
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The proof of Theorem 2.4 is given in Appendix B. We note that when p = 1, (24)
reduces to (13). Specifically, setting setting Ω = τ 2 and X0 = (1, 1, . . . , 1)′, (24) reduces
to

a0(1 + 2σ−2
0 τ2n0) = 1,

and thus, the condition for a0 given by (13) is a special case of (24). We also see that
Theorem 2.4 implies that for the two models to match, Ω(X ′

0X0) must be proportional
to the identity matrix; that is, Ω must be of the form Ω = c(X ′

0X0)
−1, where c ≥ 0

is a scalar. This form of Ω is quite attractive especially in model selection contexts,
and has been discussed by several authors as prior covariance matrix, including Zellner
(1986), Ibrahim and Laud (1994), and Laud and Ibrahim (1995). Precisely, the form
Ω = c(X ′

0X0)
−1 corresponds to Zellner’s g-prior, and has several nice properties as

discussed in Zellner (1986), Ibrahim and Laud (1994), and Laud and Ibrahim (1995).
Taking Ω = c(X ′

0X0)
−1 is actually quite attractive in practice since it has the inter-

pretation that, if there is historical data D0 = (n0, y0, X0) for which a linear model
is fit, Y0 = X0β + ε, ε ∼ N(0, σ2

0I), then the information contained in β in the data
D0 is the Fisher information, given by σ−2

0 (X ′
0X0). Thus, based on Fisher information

arguments, it makes scientific sense to assign c(X ′
0X0)

−1 as the prior covariance matrix
for β. Our prior does indeed imply that the variation in β0 and β are linked via X0.
This is reasonable since β and β0 do have the same prior covariance matrix Ω, and β
and β0 represent the same unobservable phenomenon. Therefore, allowing a multiple
of the Fisher information in β0 to be the prior precision matrix makes scientific and
intuitive sense. We are now led to the following theorem.

Theorem 2.5 If the g-prior form is taken for Ω, that is, Ω = c(X ′
0X0)

−1, then the
power prior and the hierarchical model are identical when a0 is taken to satisfy

a0(I + 2σ−2
0 cI) = I or a0 =

1

1 + 2c
σ20

.

This theorem yields a very appealing result in that it shows the power prior and the
hierarchical model are equivalent in the regression setting when a g-prior is chosen for
Ω and a0 is chosen as in Theorem 2.4. This result thus gives more appeal to the g-prior
for use in Bayesian inference.

3 Hierarchical Generalized Linear Models

The analytic relationships given in the previous section can be extended to any non-
normal model that has an asymptotically normal likelihood. To be specific, we demon-
strate the nature of such approximations for the class of generalized linear models.
Consider the hierarchical generalized linear model given by

p(yi|θi, τ) = exp
{
a−1
i (τ)(yiθi − b(θi)) + c(yi, τ)

}
, i = 1, . . . , n,

and
p(y0i|θ0i, τ) = exp

{
a−1
i (τ)(y0iθ0i − b(θ0i)) + c(y0i, τ)

}
, i = 1, . . . , n0,
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indexed by the canonical parameter θi (θ0i) and the scale parameter τ . The functions b
and c determine a particular family in the class, such as the binomial, normal, Poisson,
etc. The functions ai(τ) are commonly of the form ai(τ) = τ−1w−1

i , where the wi’s
are known weights. For ease of exposition, we assume that wi = 1 and τ is known
throughout. We further assume the θi’s and θ0i’s satisfy the equations

θi = θ(ηi) , i = 1, 2, . . . , n, θ0i = θ(η0i) , i = 1, 2, . . . , n0,

and

η = Xβ and η0 = X0β0,

where η = (η1, . . . , ηn), and η0 = (η01, . . . , η0n0). The function θ(ηi) is called the θ-link,
and for a canonical link, θi = ηi. Given (β,β0), (y,y0) are independent, and thus we
can write the joint likelihood of (β,β0) in vector notation for the generalized linear
model (GLM) as

p(y,y0|β,β0) = exp{τ
(
y′θ(Xβ)− b[θ(Xβ)]

)
+ c(y, τ)}

× exp{τ
(
y′0θ(X0β0)− b[θ(X0β0)]

)
+ c(y0, τ)}, (25)

where θ(Xβ) is a componentwise function of Xβ that depends on the link. When a
canonical link is used, θ(Xβ) = Xβ. To complete the hierarchical GLM specification,
we specify priors for (β,β0) as in the normal linear regression model. That is, we
independently take

β ∼ N(µ,Ω) and β0 ∼ N(µ,Ω), (26)

where Ω is fixed. We further take π(µ) ∝ 1. The marginal posterior distribution of
β is required to make inferences about β in this framework. Due to the complexity of
the hierarchical GLM specification, it is not possible to obtain a closed form expression
for the marginal posterior distribution of β. To overcome this difficulty, we consider
an asymptotic approximation to the posterior similar to that of Chen (1985). In the
context considered here, “asymptotic” means n0 → ∞ and n → ∞. Toward this goal,
let

p(β|y, X) = exp{τ
(
y′θ(Xβ)− τb[θ(Xβ)]

)
+ c(y, τ)}

and

p(β0|y0, X0) = exp{τ
(
y′0θ(X0β0)− b[θ(X0β0)]

)
+ c(y0, τ)}.

Following Chen (1985) and ignoring constants that are free of the parameters, we have

p(β|y, X) ≈ exp
{
−

1

2
(β − β̂)′Σ̂−1(β − β̂)

}
(27)

and

p(β0|y0, X0) ≈ exp
{
−

1

2
(β0 − β̂0)

′Σ̂−1
0 (β0 − β̂0)

}
, (28)
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where β̂ and β̂0 are the respective maximum likelihood estimators (MLEs) of β and β0

based on the data (n,y, X) and (n0,y0, X0) under the GLM,

Σ̂ =



−

∂2 ln p(β|y, X)

∂β∂β′

∣∣∣∣∣
β=

ˆβ





−1

, and Σ̂0 =



−

∂2 ln p(β0|y0, X0)

∂β0∂β
′
0

∣∣∣∣∣
β

0
=
ˆβ
0





−1

.

It is straightforward to show that under the model in (25),

Σ̂−1 = τX ′∆̂2V̂ X and Σ̂−1
0 = τX ′

0∆̂
2
0V̂0X0, (29)

where ∆̂ and V̂ are n× n diagonal matrices with ith diagonal elements δi = δi(x
′
iβ) =

dθi/dηi and vi = vi(x
′
iβ) = d2b(θi)/dθ

2
i evaluated at β̂, and ∆̂0 and V̂0 are n0 × n0

diagonal matrices with ith diagonal elements δ0i = δ0i(x
′
0iβ0) = dθi/dηi and v0i =

v0i(x
′
0iβ0) = d2b(θ0i)/dθ

2
0i evaluated at β̂0. The approximations in (27) and (28) are

valid for large n and large n0, respectively.

Using (27) and (28) and the proof of Theorem 2.3, the marginal posterior distribution
of β is then approximated by

(β|y,y0, X,X0)
approx.
∼ Np(Â

−1
h B̂h, Â

−1
h ), (30)

where

Âh = Σ̂−1 +Ω−1 − Ω−1

(
2Ω−1 − Ω−1

(
Ω−1 + Σ̂−1

0

)−1

Ω−1

)−1

Ω−1 (31)

and

B̂h = Σ̂−1β̂ +Ω−1

(
2Ω−1 − Ω−1

(
Ω−1 + Σ̂−1

0

)−1

Ω−1

)−1

Ω−1
(
Ω−1 + Σ̂−1

0

)−1

Σ̂−1
0 β̂0.

(32)

As in the normal linear regression model, we consider a power prior formulation of
the hierarchical GLM given by (25) by setting β0 = β. The power prior based on the
historical data (n0,y0, X0) using the initial prior π0(β) ∝ 1 is then given by

π(β|y0, X0, a0) ∝ exp{a0τ
(
y′0θ(X0β0)− b[θ(X0β0)]

)
+ c(y0, τ)}, (33)

and the posterior distribution of β is given by

π(β|y, X,y0, X0, a0) ∝ exp{τ
(
y′θ(Xβ)− τb[θ(Xβ)]

)
+ c(y, τ)}

× exp{a0τ
(
y′0θ(X0β)− b[θ(X0β)]

)
+ c(y0, τ)}. (34)

Using (27) and (28), and after some algebra, the posterior distribution of β given by
(34) is approximated by

β|y,y0, X,X0, a0
approx.
∼ Np(Â

−1
p B̂p, Â

−1
p ), (35)
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where
Âp = Σ̂−1 + a0Σ̂

−1
0 , B̂p = Σ̂−1β̂ + a0Σ̂

−1
0 β̂0, (36)

β̂ and β̂0 are the MLEs, and Σ̂ and Σ̂0 are defined by (29).

Similar to the normal linear regression model, we now match the approximate pos-
terior distributions of β under the GLM. We are now led to the following theorem.

Theorem 3.1 The approximate posteriors in (30) and (35) match, i.e., Âh = Âp and

B̂h = B̂p if and only if

a0(I + 2ΩΣ̂−1
0 ) = I. (37)

The proof of Theorem 3.1 is similar to that of Theorem 2.4, and therefore the details
are omitted for brevity. If a generalized g-prior form is taken for Ω, i.e., Ω = cΣ̂0,
then the approximate power prior and the hierarchical model are identical when a0 =
1/(1+2c). Thus, again, we see that for the class of GLM’s, the connection between the
hierarchical model and the power prior is facilitated by taking a generalized g-prior for
Ω.

4 Extensions to Multiple Historical Datasets

In this section, we generalize the results given in Theorems 2.2, 2.4, and 3.1 to multiple
historical datasets. First, we generalize the hierarchical model in (14) and the power
prior in (20) to multiple historical datasets as follows. Suppose we have L0 historical
datasets. For the current study, the hierarchical model can be written as

yi = θ + εi, (38)

where i = 1, 2, . . . , n, and the εi’s are i.i.d. N(0, σ2) random variables, where σ2 is fixed.
For the historical data, the hierarchical model can be written as

y0ki = θ0k + ε0ki, (39)

where i = 1, 2, . . . , n0k, the ε0ki’s are i.i.d. N(0, σ2
0k) and independent of the εi’s, and

the σ2
0k’s are fixed for k = 1, 2, . . . , L0. Further, we assume that

θ | µ, τ2 ∼ N(µ, τ2) (40)

and the θ0k are independently distributed as

θ0k | µ, τ
2 ∼ N(µ, τ2), (41)

where k = 1, 2, . . . , L0, and τ2 is a fixed hyperparameter. Based on the results estab-
lished in Theorem 2.2, we take a uniform improper prior for µ, i.e., π(µ) ∝ 1, and
let θ0 = (θ01, . . . , θ0L0

)′, y = (y1, y2, . . . , yn)
′, and y0 = (y′01,y

′
02, . . . ,y

′
0L0

)′, where
y0k = (y0k1, y0k2, . . . , y0kn0k)

′ for k = 1, 2, . . . , L0.

The following theorem gives the form of the marginal posterior distribution [θ|y,y0]
under the model given by (38), (39), (40), and (41).
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Theorem 4.1 Using (38), (39), (40), and (41), the marginal posterior distribution of
θ is given by

θ | y,y0 ∼ N(µmh, σ
2
mh), (42)

where

µmh = σ2
mh





nȳ

σ2
+

[
L0∑

k=1

n0kȳ0k
σ2
0k

n0k
σ2
0k

+ 1
τ2

][
τ4

(
L0 + 1

τ2
−

L0∑

k=1

1

τ4(n0k
σ2
0k

+ 1
τ2
)

)]−1


 , (43)

σ2
mh =




n

σ2
+

1

τ2
−

1

τ4
(

L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

)




−1

, (44)

ȳ = 1
n

∑n
i=1 yi, and ȳ0k = 1

n0k

∑n0k
i=1 y0ki for k = 1, 2, . . . , L0.

The proof of Theorem 4.1 is given in Appendix B. The power prior formulation of
the model with multiple historical datasets can be obtained by letting θ0k = θ in (40)
and (41). The model for the current data can be written as

yi = θ + εi, (45)

and the model for the historical data can be written as

y0ki = θ + ε0ki, (46)

where the ε0ki are i.i.d. N(0, σ2
0k) for k = 1, 2, . . . , L0. Now the power prior for θ under

multiple historical datasets is given by

π(θ|y0k, k = 1, 2, . . . , L0,a0) ∝ exp

{
−
1

2

L0∑

k=1

a0k
σ2
0k

n0k∑

i=1

(y0ki − θ)2

}
, (47)

where a0 = (a01, a02, . . . , a0L0
)′ with 0 < a0k < 1 for k = 1, 2, . . . , L0. Using (45) and

(46) along with a uniform improper initial prior for θ, (i.e., π0(θ) ∝ 1), we are led to

(θ | y,y0,a0) ∼ N(µmp, σ
2
mp), (48)

where

µmp =

nȳ
σ2

+
∑L0

k=1 a0k
n0kȳ0k
σ2
0k

n
σ2

+
∑L0

k=1 a0k
n0k
σ2
0k

(49)

and

σ2
mp =

1
n
σ2

+
∑L0

k=1 a0k
n0k
σ2
0k

. (50)

We are now led to the following theorem characterizing the relationship between the
power prior and the hierarchical model with multiple historical datasets.
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Theorem 4.2 Suppose we take π0(θ) ∝ 1 for the power prior and π(µ) ∝ 1 for the
hierarchical model. Then µmh = µmp in (43) and (49), and σ2

mh = σ2
mp in (44) and

(50) if and only if

a0k = τ−4

(
n0k
σ2
0k

+
1

τ2

)−1
(

L0 + 1

τ2
−

L0∑

i=1

τ−4

(
n0i
σ2
0i

+
1

τ2

)−1
)−1

. (51)

The proof of Theorem 4.2 is given in Appendix B.

Corollary 4.1 The choice of a0k given in (51) satisfies 0 < a0k < 1. Furthermore,

if τ2 ≥
σ20k
n0k

for k = 1, 2, . . . , L0, then the choice of a0k given in (51) also satisfies
∑L0

k=1 a0k < 1.

The proof of Corollary 4.1 is straightforward. We also note that when L0 = 1, then
with some obvious adjustments in notation, µmh in (43), σ2

mh in (44), and a01 in (51)
all reduce to µh in (6), σ2

h in (7), and a0 in (13), respectively.

Next, we extend the normal hierarchical regression model (14) to multiple historical
datasets as follows. Suppose we have L0 historical datasets. In the vector notation, we
assume

y = Xβ + ε and y0k = X0kβ0k + ε0k, k = 1, 2, . . . , L0, (52)

where X is an n× p matrix, X0k is an n0k × p matrix for k = 1, 2, . . . , L0, β and β0k,
k = 1, 2, . . . , L0, are the p× 1 vectors of regression coefficients, ε ∼ Nn(0, σ

2I) with σ2

fixed, ε0k ∼ Nn0k(0, σ
2
0kI) with σ2

0k fixed for k = 1, 2, . . . , L0, and ε is independent of
ε0k. The following theorem gives the marginal posterior distribution of β under this
setting.

Theorem 4.3 Assume that β and β0k, k = 1, 2, . . . , L0, are i.i.d. Np(µ,Ω) random
vectors, where Ω is fixed, and π(µ) ∝ 1. Using (52), the marginal posterior distribution
of β is given by

β ∼ Np(A
−1
mhBmh, A

−1
mh), (53)

where

Amh =
1

σ2
X ′X+Ω−1−Ω−1

[
(L0 + 1)Ω−1 −

L0∑

k=1

Ω−1
(
Ω−1 +

1

σ2
0k

X ′
0kX0k

)−1

Ω−1

]−1

Ω−1

(54)
and

Bmh =
1

σ2
X ′y +

{
Ω−1

[
(L0 + 1)Ω−1 −

L0∑

k=1

Ω−1
(
Ω−1 +

1

σ2
0k

X ′
0kX0k

)−1

Ω−1

]−1

×Ω−1
( L0∑

k=1

(
Ω−1 +

1

σ2
0k

X ′
0kX0k

)−1 1

σ2
0k

X ′
0ky0k

}
. (55)



M.-H. Chen and J. G. Ibrahim 563

The proof of Theorem 4.3 is similar to that of Theorem 2.3 for the normal hierarchical
model with a single historical dataset. Thus, the proof is omitted for brevity. By letting
β = β01 = · · · = β0k in (52), the power prior for the normal linear model with multiple
historical datasets can be obtained as

π(β|(y0k, X0k), k = 1, 2, . . . , L0,a0) ∝ exp

{
−
1

2

L0∑

k=1

a0k
σ2
0k

(y0k −X0kβ)
′(y0k −X0kβ)

}
,

(56)
where 0 < a0k < 1 for k = 1, 2, . . . , L0. Assuming π0(β) ∝ 1, the posterior distribution
of β is given by

(β | y, X, (y0k, X0k), k = 1, 2, . . . , L0) ∼ Np(A
−1
mpBmp, A

−1
mp), (57)

where

Amp =
1

σ2
X ′X +

L0∑

k=1

a0k
σ2
0k

X ′
0kX0k and Bmp =

1

σ2
X ′y +

L0∑

k=1

a0k
σ2
0k

X ′
0ky0k.

The following theorem characterizes the relationship between the power prior and the
normal hierarchical regression model with multiple historical datasets.

Theorem 4.4 The posterior distribution of β in (57) under the power prior (56)
matches (53) under the normal hierarchical regression model if and only if

a0k

[
(L0 + 1)I −

L0∑

k=1

(
I +

1

σ2
0k

ΩX ′
0kX0k

)−1
]
=
(
I +

1

σ2
0k

ΩX ′
0kX0k

)−1

(58)

for k = 1, 2, . . . , L0.

The proof of Theorem 4.4 directly follows from that of Theorem 2.4. We note that
when L0 = 1, (58) reduces to (24), and if p = 1, Ω = τ2, and X = X01 = · · · = X0L0

=
(1, 1, . . . , 1)′, (58) reduces to (51). Finally, the result given in Theorem 3.1 for GLM’s
can be extended to multiple historical datasets, and details of this extension can be
found in Appendix A.

5 Elicitation of a0

In this section, we discuss two methods for specifying Ω in a Bayesian analysis: (i) using
the analytic relationship between the power prior and hierarchical models, and taking
a fixed value for Ω — namely Ω = c(X ′

0X0)
−1 — where c is a fixed hyperparameter, as

well as a fixed value for σ2
0 , and (ii) taking Ω (and σ2

0) to be random, in which a prior
is specified for Ω (and σ2

0).

We first consider situation (i). The results of the previous section, yielding equiv-
alence between the power prior and hierarchical models, shed light on how to elicit a
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guide value for a0 using the historical data. The basic idea is to use the relationship
between the power prior and the hierarchical model to specify a guide value for a0 from
the hyperparameters of the hierarchical model. Specifically, we can use the relationship
given by (24) to elicit a0. One natural way to specify a0 is take the trace of both sides
of (24) and take a0 to be the solution to that equation. Upon taking traces of both
sides of equation (24), we are led to

a0tr(I + 2σ−2
0 ΩX ′

0X0) = tr(I). (59)

Since I is a p × p matrix, tr(I) = p, and thus (59) implies that a guide value of a0 is
taken to be

â0 =
p

p+ 2σ−2
0 tr(ΩX ′

0X0)
. (60)

If Ω = c(X ′
0X0)

−1, (60) reduces to

â0 =
1

1 + 2σ−2
0 c

. (61)

We see that (61) corresponds to the relationship between the power prior and the
hierarchical model in the case that θ is a univariate parameter, i.e., the i.i.d. case.
We can clearly see that (59) satisfies 0 < a0 < 1. The guide value for a0 given in (60)
provides a very useful benchmark value for a0 from which further sensitivity analyses can
be conducted. This guide value has a solid theoretical justification and motivation: it is
the value of a0 that results in equivalence between the power prior and the hierarchical
model. In the example of Section 6, we show that the guide value given by (60) works
quite well in practice.

We now consider situation (ii). If Ω (and σ2
0) are random, then (60) can be easily

modified. In this case, our guide value for a0 would be the posterior expectation of (60)
with respect to the joint posterior distribution of (σ2

0 ,Ω), thus leading to

â0 = E

(
p

p+ 2σ−2
0 tr(ΩX ′

0X0)

)
, (62)

where the expectation is taken with respect to the joint posterior distribution of (σ2
0 ,Ω).

Similar formulas for the guide value for a0 are available for GLM’s using (37). For
the class of GLM’s under situation (i), the guide value for a0 is given by

â0 =
p

p+ 2tr(ΩΣ̂−1
0 )

. (63)

When Ω is random under situation (ii) for GLM’s, the guide value is obtained by taking
the expectation of (63) with respect to the posterior distribution of Ω, leading to

â0 = E

(
p

p+ 2tr(ΩΣ̂−1
0 )

)
. (64)
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Finally, we briefly discuss how to obtain a guide value for a0k in the presence of
multiple historical datasets under situation (ii). For ease of exposition, we consider the
normal linear model with multiple historical datasets. Using (58), we take the guide
value for a0k as

â0k = E





tr
[(

I + 1
σ2
0k

ΩX ′
0kX0k

)−1]

(L0 + 1)p−
∑L0

k=1 tr
[(

I + 1
σ2
0k

ΩX ′
0kX0k

)−1]





,

where the expectation is taken with respect to the joint posterior distribution of (Ω, σ2
01,

. . . , σ2
0L0

). After some matrix algebra, it can be shown that â0k < 1 for k = 1, 2, . . . , L0.
When multiple historical datasets are available, we have more information to estimate
Ω, and thus Ω is estimated with more precision in this case. In this sense, inference with
multiple historical datasets can be quite advantageous in eliciting the power parameter
in the power prior.

6 AIDS Data

We consider the two AIDS studies ACTG019 and ACTG036, where ACTG036 repre-
sents the current data and ACTG019 represents the historical data. The purpose of
this example is to demonstrate the proposed methodology for obtaining the guide value
for a0 discussed in Section 5 in the context of logistic regression.

The ACTG019 study was a double blind placebo-controlled clinical trial comparing
zidovudine (AZT) to placebo in persons with CD4 counts less than 500. The sample size
for this study, excluding cases with missing data, was n0 = 823. The response variable
(y0) for these data is binary with a 1 indicating death, development of AIDS, or AIDS
related complex (ARC), and a 0 indicates otherwise. Several covariates were also mea-
sured. The ones we use here are CD4 count (x01) (cell count per mm3 of serum), age
(x02), and treatment, (x03). The covariates CD4 count and age are continuous, whereas
the treatment covariate is binary. The ACTG036 study was also a placebo-controlled
clinical trial comparing AZT to placebo in patients with hereditary coagulation disor-
ders. The sample size in this study, excluding cases with missing data, was n = 183.
The response variable (y) for these data is binary with a 1 indicating death, develop-
ment of AIDS, or AIDS related complex (ARC), and a 0 indicates otherwise. Several
covariates were measured for these data. The ones we use here are CD4 count (x1), age
(x2), and treatment (x3).

We consider the hierarchical logistic regression model to fit the ACTG019 and
ACTG036 data. In (26), we take Ω to be a 4 × 4 diagonal matrix and we further

assume that Ωjj
i.i.d.
∼ IG(1, 0.005), j = 0, 1, . . . , 3. Using (64), we specify a0 by

â0 = E
[ 4

4 + 2tr(ΩΣ̂−1
0 )

]
, (65)

where Σ̂−1
0 is computed via (29), and the expectation is taken with respect to the

posterior distribution of Ω under the hierarchical logistic regression model. The Gibbs
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sampling algorithm is used to sample β = (β0, β1, β2, β3)
′, β0 = (β00, β01, β02, β03)

′,
µ = (µ0, µ1, µ2, µ3)

′, and Ω from their respective posterior distributions under the
hierarchical model. Table 1 gives the posterior estimates of β, β0, µ, and Ω based
on 20,000 Gibbs iterations after a “burn-in” of 1,000 iterations. Using (65), we obtain
â0 = 0.415. Table 1 shows the posterior estimates of β using the power prior in (33) with
several values of a0, including a0 = â0 = 0.415. From Tables 1 and 2, we can see that the
posterior estimates of β using the power prior with a0 = 0.415 are fairly close to those
obtained under the hierarchical model. From Table 2, we also see that the posterior
estimates are slightly different for the different values of a0. In particular, when more
weight is given to the historical data, age and treatment become more “significant”,
that is, their 95% Highest Posterior Density (HPD) intervals do not include 0. Thus,
the power prior gives the investigator great flexibility for incorporating the historical
data to analyze the ACTG036 trial.

Posterior Posterior Posterior Posterior
Parameter Mean Std Dev Parameter Mean Std Dev

β0 -3.128 0.238 β00 -3.044 0.177
β1 -0.728 0.161 β01 -0.671 0.129
β2 0.261 0.138 β02 0.323 0.118
β3 -0.336 0.184 β03 -0.387 0.144
µ0 -3.083 0.224 Ω00 0.031 0.227
µ1 -0.702 0.170 Ω11 0.021 0.091
µ2 0.293 0.149 Ω22 0.020 0.134
µ3 -0.361 0.179 Ω33 0.021 0.104

Table 1: Posterior Estimates Under the Hierarchical Logistic Regression Model

Posterior Posterior 95% HPD
a0 Parameter Mean Std Dev Interval
0 β0 -4.781 0.849 (-6.461, -3.223)

β1 -1.636 0.449 (-2.539, -0.791)
β2 0.122 0.234 (-0.334, 0.587)
β3 -0.057 0.380 (-0.802, 0.698)

0.415 β0 -3.196 0.253 (-3.691, -2.708)
β1 -0.779 0.175 (-1.121, -0.434)
β2 0.259 0.142 (-0.026, 0.531)
β3 -0.344 0.196 (-0.724, 0.043)

1 β0 -3.041 0.169 (-3.379, -2.722)
β1 -0.677 0.123 (-0.917, -0.437)
β2 0.302 0.110 ( 0.083, 0.513)
β3 -0.377 0.139 (-0.654, -0.109)

Table 2: Posterior Estimates Using the Power Prior for the Logistic Regression Model
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Appendix A: Extension to Multiple Historical Datasets for

GLMs

In this appendix, we generalize the result given in Theorem 3.1 to multiple historical
datasets.

First, we consider the hierarchical GLM with multiple historical datasets. In vector
notation, the likelihood function of (β,β0) given (y,y01, . . . ,y0L0

) is given by

p(y,y01, . . . ,y0L0
|β,β0) = exp{τ

(
y′θ(Xβ)− b[θ(Xβ)]

)
+ c(y, τ)}

×

L0∏

k=1

exp{τ
(
y′0kθ(X0kβ0k)− b[θ(X0kβ0k)]

)
+ c(y0k, τ)}.

We independently take β ∼ Np(µ,Ω), β0k ∼ Np(µ,Ω) for k = 1, 2, . . . , L0, and π(µ) ∝
1. Using (3.3), (3.4), and Theorems 2.3 and 4.3, the marginal posterior distribution of
β is approximated by (i.e., for n and n0 large)

(β|y, X, (y0k, X0k), k = 1, 2, . . . , L0)
approx.
∼ Np(Â

−1
mhB̂mh, Â

−1
mh), (A.1)

where

Âmh = Σ̂−1 +Ω−1 − Ω−1

[
(L0 + 1)Ω−1 −

L0∑

k=1

Ω−1
(
Ω−1 + Σ̂−1

)−1

Ω−1

]−1

Ω−1,

B̂mh = Σ̂−1β̂ +

{
Ω−1

[
(L0 + 1)Ω−1 −

L0∑

k=1

Ω−1
(
Ω−1 + Σ̂−1

0k

)−1

Ω−1

]−1

×Ω−1
( L0∑

k=1

(
Ω−1 + Σ̂−1

0k

)−1

Σ̂−1
0k β̂0k

}
,

β̂ is the MLE of β based on the data D = (n,y, X), and β̂0k is the MLE of β0k based on
the data D0k = (n0k,y0k, X0k), k = 1, . . . , L0 under the GLM, Σ̂−1 and Σ̂−1

0k are defined
by (3.5) based on the current data D and the historical data D0k, for k = 1, 2 . . . , L0.

The power prior based on the L0 historical datasets {(y0k, X0k), k = 1, 2, . . . , L0}
using the initial prior π0(β) ∝ 1 is given by

π(β|(y0k,X0k), k = 1, 2, . . . , L0,a0)

∝

L0∏

k=1

exp{a0kτ
(
y′0kθ(X0kβ)− b[θ(X0kβ)]

)
+ c(y0, τ)}, (A.2)
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and the posterior distribution of β is given by

π(β|y, X, (y0k,X0k), k = 1, 2, . . . , L0,a0)

∝ exp{τ
(
y′θ(Xβ)− τb[θ(Xβ)]

)
+ c(y, τ)}

×

L0∏

k=1

exp{a0kτ
(
y′0kθ(X0kβ0k)− b[θ(X0kβ)]

)
+ c(y0, τ)}. (A.3)

Using (3.3) and (3.4) and after some algebra, the posterior distribution of β given by
(A.3) is approximated by (i.e., for large n and n0k, k = 1, . . . , L0)

(β | y, X, (y0k, X0k) = 1, 2, . . . , L0,a0)
approx.
∼ Np(Â

−1
p B̂p, Â

−1
p ), (A.4)

where

Âp = Σ̂−1 +

L0∑

k=1

a0kΣ̂
−1
0k and B̂p = Σ̂−1β̂ +

L0∑

k=1

a0kΣ̂
−1
0k β̂0k.

Then we are now led to the following theorem.

Theorem A.1 The posterior distribution of β in (A.4), based on the power prior (A.2),
matches (A.1) under the hierarchical GLM if and only if

a0k

[
(L0 + 1)I −

L0∑

k=1

(
I +ΩΣ̂−1

0k

)−1
]
=
(
I +ΩΣ̂−1

0k

)−1

(A.5)

for k = 1, 2, . . . , L0.

Appendix B: Proofs of Theorems

Proof of Theorem 2.1:

Under the hierarchical model in (2.1), (2.2), and (2.3), we can write the joint poste-
rior of (θ, θ0) as

π(θ, θ0, µ|y,y0) ∝ exp

{
−

n(ȳ − θ)2

2σ2
−

n0(ȳ0 − θ0)
2

2σ2
0

−
(θ − µ)2 + (θ0 − µ)2

2τ2
−

(µ− α)2

2ν2

}
.

Integrating out µ gives

π(θ, θ0|y,y0) ∝ exp




−

nθ2 − 2nȳθ

2σ2
−

n0θ
2
0 − 2n0ȳ0θ0

2σ2
0

−
θ2 + θ20
2τ2

−

(
θ+θ0
τ2

+ α
ν2

)2

2( 1
ν2

+ 2
τ2
)





.
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After integrating out θ0, straightforward calculations lead to

π(θ|y,y0)

∝ exp

{
−

1

2

[(
n

σ2
+

1

τ2
−

1

τ4( 1
ν2

+ 2
τ2
)

)
θ2 − 2

(
nȳ

σ2
+

α

τ2ν2( 1
ν2

+ 2
τ2
)

)
θ

−

(
n0ȳ0
σ20

+ α
τ2ν2( 1

ν2
+ 2

τ2
)
+ θ

τ4( 1

ν2
+ 2

τ2
)

)2

n0
σ20

+ 1
τ2
− 1

τ4( 1

ν2
+ 2

τ2
)

]}

∝ exp

{
−

1

2

[
 n

σ2
+

1

τ2
−

1

τ4( 1
ν2

+ 2
τ2
)
−

1

(τ4( 1
ν2

+ 2
τ2
))2(n0

σ20
+ 1

τ2
− 1

τ4( 1

ν2
+ 2

τ2
)
)


 θ2

−2


nȳ

σ2
+

α

τ2ν2
(

1
ν2

+ 2
τ2

) +
1

τ4( 1

ν2
+ 2

τ2
)
(n0ȳ0

σ20
+ α

τ2ν2( 1

ν2
+ 2

τ2
)
)

n0
σ20

+ 1
τ2
− 1

τ4( 1

ν2
+ 2

τ2
)


 θ

]}
. (B.1)

Thus, (2.4) directly follows from (B.1).

Proof of Theorem 2.2:

It is easy to show that µh in (2.5) equals µp in (2.10) if and only if α = 0. When
α = 0, µh reduces to

µh = σ2
h

[
nȳ

σ2
+

1

τ4( 1

ν2
+ 2

τ2
)
· n0ȳ0

σ20

n0
σ20

+ 1
τ2
− 1

τ4( 1

ν2
+ 2

τ2
)

]
. (B.2)

To match (B.2) to µp in (2.10), we have to set

a0 =
1

τ4( 1
ν2

+ 2
τ2
)(n0

σ20
+ 1

τ2
− 1

τ4( 1

ν2
+ 2

τ2
)
)

(B.3)

and
n

σ2
+ a0

n0
σ2
0

= σ−2
h . (B.4)

Note that (B.4) directly yields that σ2
h in (2.6) is equal to σ2

p in (2.11) Now, using (B.3),
(B.4) reduces to

n0
σ20

τ4( 1
ν2

+ 2
τ2
)(n0

σ20
+ 1

τ2
− 1

τ4( 1

ν2
+ 2

τ2
)
)

=
1

τ2
−

1

τ4
(

1
ν2

+ 2
τ2

) − 1
(
τ4
(

1
ν2

+ 2
τ2

))2 (n0
σ20

+ 1
τ2
− 1

τ4( 1

ν2
+ 2

τ2
)

) . (B.5)



570 Power Prior and Hierarchical Models

After some algebra, we obtain
n0
σ20

τ4( 1
ν2

+ 2
τ2
)(n0

σ20
+ 1

τ2
− 1

τ4( 1

ν2
+ 2

τ2
)
)

=
1

τ4
(

1
ν2

+ 2
τ2

) −
τ2

ν2
+ 1

(
τ4
(

1
ν2

+ 2
τ2

))2 (n0
σ20

+ 1
τ2
− 1

τ4( 1

ν2
+ 2

τ2
)

) .

Thus, (B.5) holds if and only if ν2 →∞. When ν2 →∞, (B.3) reduces to (2.12), which
completes the proof of Theorem 2.2.

Proof of Theorem 2.3:

Using (2.13) and (2.14), we have

π(β,β0,µ|y, X,y0, X0)

∝ exp{−
1

2σ2
(y −Xβ)′(y −Xβ)} exp{−

1

2σ2
0

(y0 −X0β0)
′(y0 −X0β0)}

× exp{−
1

2
(β − µ)′Ω−1(β − µ)} exp{−

1

2
(β0 − µ)

′Ω−1(β0 − µ)}.

Integrating out β0 leads to

π(β,µ|y, X,y0, X0) ∝ exp{−
1

2σ2
(y −Xβ)′(y −Xβ)−

1

2
(β − µ)′Ω−1(β − µ)}

× exp
{
−

1

2

[
µ′(Ω−1 − Ω−1(Ω−1 +

1

σ2
0

X ′
0X0)

−1Ω−1)µ

−2µ′Ω−1(Ω−1 +
1

σ2
0

X ′
0X0)

−1 1

σ2
0

X ′
0y0

]}
.

To obtain the marginal distribution of β, we need to integrate out µ. After some further
algebra, we obtain

π(β|y, X,y0, X0)

∝ exp

{
−

1

2

(
β′
[ 1

σ2
X ′X +Ω−1 − Ω−1(2Ω−1 − Ω−1(Ω−1 +

1

σ2
0

X ′
0X0)

−1Ω−1)−1Ω−1
]
β

−2β′
[ 1

σ2
X ′Y +

(
Ω−1(2Ω−1 − Ω−1(Ω−1 +

1

σ2
0

X ′
0X0)

−1Ω−1)−1Ω−1

×(Ω−1 +
1

σ2
0

X ′
0X0)

−1 1

σ2
0

X ′
0y0

)])}
.

Thus, (2.15) directly follows from the above equation.

Proof of Theorem 2.4:

Ah in (2.16) matches (equals) Ap in (2.21) if and only if

a0
σ2
0

X ′
0X0 = Ω−1 − Ω−1

(
2Ω−1 − Ω−1

(
Ω−1 + σ−2

0 X ′
0X0

)−1
Ω−1

)−1

Ω−1. (B.6)
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After some algebra, (B.6) can be written as

a0
σ2
0

ΩX ′
0X0 = I −

(
2I −

(
I + σ−2

0 ΩX ′
0X0

)−1
)−1

,

which is equivalent to

a0
σ2
0

ΩX ′
0X0

(
2I −

(
I + σ−2

0 ΩX ′
0X0

)−1
)
= I −

(
I + σ−2

0 ΩX ′
0X0

)−1
. (B.7)

Multiplying both sides of (B.7) by (I + σ−2
0 ΩX ′

0X0) gives

a0
σ2
0

ΩX ′
0X0

[
2(I + σ−2

0 ΩX ′
0X0)− I

]
= σ−2

0 ΩX ′
0X0. (B.8)

Since X ′
0X0 is invertible, then (B.8) reduces to (2.23). We further note that if (2.23)

holds, Bh in (2.17) automatically matches Bp in (2.22) which completes the proof.

Proof of Theorem 4.1:

Let θ0 = (θ01, θ02, . . . , θ0k)
′. Under the hierarchical model in (4.1), (4.2), (4.3), and

(4.4), we can write the joint posterior of (θ,θ0, µ) as

π(θ,θ0, µ|y,y0) ∝ exp
{
−

n(ȳ − θ)2

2σ2
−
1

2

L0∑

k=1

n0k(ȳ0k − θ0k)
2

σ2
0k

−
(θ − µ)2

2τ2
−

1

2τ2

L0∑

k=1

(θ0k−µ)2
}
.

After integrating out θ0, we obtain

π(θ, µ|y,y0) ∝ exp

{
−
1

2

[
n(ȳ − θ)2

σ2
+
(θ − µ)2

τ2
+

L0µ
2

τ2
−

L0∑

k=1

(
n0kȳ0k
σ2
0k

+ µ
τ2

)2

n0k
σ2
0k

+ 1
τ2

]}
. (B.9)

Integrating out µ from (B.9) yields

π(θ|y,y0) ∝ exp

{
−

1

2

[( n

σ2
+

1

τ2

)
θ2 −

2nȳθ

σ2
−

(
θ
τ2

+
∑L0

k=1

n0kȳ0k

σ2
0k

τ2(
n0k

σ2
0k

+ 1

τ2
)

)2

L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

]}

∝ exp

{
−

1

2

[( n

σ2
+

1

τ2
−

τ−4

L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

)
θ2

−2
(nȳ
σ2

+

∑L0

k=1
n0kȳ0k
σ2
0k

(
n0k
σ2
0k

+ 1
τ2

)−1

τ4
(
L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

)
)
θ

]}
. (B.10)

Thus, (4.5) directly follows from (B.10).

Proof of Theorem 4.2:
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To show µmh = µmp in (4.6) and (4.12) and σ2
mh = σ2

mp in (4.7) and (4.13), we take
a0k in (4.14). It suffices to show

n

σ2
+

L0∑

k=1

a0k
n0k
σ2
0k

= σ−2
mh. (B.11)

Note that if (B.11) is true, then we have σ2
mh = σ2

mp. Using (4.13), (B.11) reduces to

L0∑

k=1

a0k
n0k
σ2
0k

=
1

τ2
−

1

τ4
(
L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

) . (B.12)

Using (4.14), we are led to

L0∑

k=1

a0k
n0k
σ2
0k

=

∑L0

k=1

n0k

σ2
0k

+ 1

τ2
− 1

τ2

n0k

σ2
0k

+ 1

τ2

τ4
(
L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

) =

L0 −
1
τ2

∑L0

k=1
1

n0k

σ2
0k

+ 1

τ2

τ4
(
L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

)

=

τ2
[
L0+1
τ2

− 1
τ4

∑L0

k=1
1

n0k

σ2
0k

+ 1

τ2

− 1
τ2

]

τ4
(
L0+1
τ2

−
∑L0

k=1
1

τ4(
n0k

σ2
0k

+ 1

τ2
)

) ,

which is equal to the right-hand side of (B.12). This completes the proof.
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