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A One-Pass Sequential Monte Carlo Method

for Bayesian Analysis of Massive Datasets

Suhrid Balakrishnan∗ and David Madigan†

Abstract. For Bayesian analysis of massive data, Markov chain Monte Carlo
(MCMC) techniques often prove infeasible due to computational resource con-
straints. Standard MCMC methods generally require a complete scan of the
dataset for each iteration. Ridgeway and Madigan (2002) and Chopin (2002b)
recently presented importance sampling algorithms that combined simulations
from a posterior distribution conditioned on a small portion of the dataset with
a reweighting of those simulations to condition on the remainder of the dataset.
While these algorithms drastically reduce the number of data accesses as compared
to traditional MCMC, they still require substantially more than a single pass over
the dataset. In this paper, we present “1PFS,” an efficient, one-pass algorithm.
The algorithm employs a simple modification of the Ridgeway and Madigan (2002)
particle filtering algorithm that replaces the MCMC based “rejuvenation” step
with a more efficient “shrinkage” kernel smoothing based step. To show proof-
of-concept and to enable a direct comparison, we demonstrate 1PFS on the same
examples presented in Ridgeway and Madigan (2002), namely a mixture model for
Markov chains and Bayesian logistic regression. Our results indicate the proposed
scheme delivers accurate parameter estimates while employing only a single pass
through the data.

Keywords: Sequential Monte Carlo, One-Pass,Massive Datasets

1 Introduction

Routine Bayesian data analysis relies on Monte Carlo algorithms that perform thousands
or even millions of laps through the data. This can preclude Bayesian analyses of massive
datasets. The Bayesian approach does, however, lend itself naturally to sequential
algorithms. The posterior after the ith observation becomes the prior for the i + 1st
observation, and so on. For analyses that adopt conjugate prior distributions, this can
provide a simple, scalable approach for dealing with massive datasets. However, this
conjugate setup describes only a small fraction of today’s Bayesian applications.

In this paper we propose a general algorithm that performs a rigorous Bayesian
computation on a small, manageable portion of the dataset and then sequentially adapts
those calculations with the remaining observations. The algorithm loads each of these
remaining observations into memory only once yet maintains inferential fidelity.

There exists a small literature focussed on scaling up Bayesian methods to massive
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datasets. A number of authors have proposed large-scale Bayesian network learning
algorithms, although most of this work is not actually Bayesian per se (see, for example,
Friedman et al. 1999) and none to our knowledge is one-pass. Posse (2001) presents an
algorithm for large-scale Bayesian mixture modelling. DuMouchel (1999) presents an
algorithm for learning a Gamma-Poisson empirical Bayes model from massive frequency
tables.

Our work improves and extends the previously proposed scheme
in Ridgeway and Madigan (2002) (which is essentially the same as that outlined for
static models in Chopin 2002b) and formulates a one-pass method of analysis.

2 Bayesian computation for massive datasets

The outputs of Bayesian data analyses often take the form of estimates of expectations.
Specifically, we compute the expected value of the quantity of interest, h(θ), using

E(h(θ)|x1, . . . , xN ) =

∫
h(θ)f(θ|x1, . . . , xN )dθ (1)

where f(θ|x), is the posterior density of the parameters given the observed data. An-
alytic expressions for such integrals exist only in the simplest of cases leading to a de
facto reliance on Monte Carlo methods. Monte Carlo integration methods sample from
the posterior, f(θ|x), and then estimate E(h(θ)|x1, . . . , xN ) as 1

M

∑M

i=1
h(θi) where

θ1, . . . , θM comprise a sample of M “particles” from f(θ|x). The law of large numbers
ensures convergence:

lim
M→∞

1

M

M∑

i=1

h(θi) =

∫
h(θ)f(θ|x1, . . . , xN )dθ. (2)

Importance sampling methods sample from a different density, say g(θ), and take
weighted averages:

∫
h(θ)f(θ|x1, . . . , xN )dθ =

∫
h(θ)

f(θ|x)

g(θ)
g(θ)dθ (3)

= lim
M→∞

1

M

M∑

i=1

wih(θi) (4)

where θi is now a draw from g(θ) and wi = f(θi|x)/g(θi), is a weight associated with
a particular particle θi. Since the expected value of wi under g(θ) is 1, we need only
compute weights up to a constant of proportionality and then normalize, leading to:

Ê(h(θ|x1, . . . , xN )) =

∑M

i=1
wih(θi)∑M

i=1
wi

. (5)

Geweke (1989) provides conditions under which these estimates are asymptotically con-
sistent.
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The algorithm in Ridgeway and Madigan (2002), essentially consists of partitioning
the data {x1, . . . , xN} into two pieces, a manageable portion D1:n = x1, . . . , xn where
n � N , and the remainder of the data, Dn+1:N = xn+1, . . . , xN , and then applying
importance sampling with g(θ) = f(θ|x1, . . . , xn). Now, if the observations are condi-
tionally independent given the parameters θ, i.e. f(x1, . . . , xn|θ) =

∏n

i=1
f(xi|θ), the

corresponding importance sampling weights have a particularly simple form:

wi ∝ f(Dn+1:N |θi) =
∏

xj∈Dn+1:N

f(xj |θi). (6)

This is just the likelihood of the observations in Dn+1:N evaluated at each particle.

Unfortunately, the Monte Carlo variance of the resulting importance sampling esti-
mates grows quickly. Since all of the terms are positive in:

V ar(θ|D1:n) = E(V ar(θ|D1:n, Dn+1:N)) + V ar(E(θ|D1:n, Dn+1:N)), (7)

the posterior variance with the additional observations in Dn+1:N is, in expectation,
smaller than the posterior variance conditioned only on D1:n. Therefore, although the
location of the sampling density should be close to the target density, its spread will most
likely be wider than that of the target. As additional observations become available,
f(θ|D1:n, Dn+1:N ) becomes much narrower than f(θ|D1:n). The result of this narrowing
is that the weights of many of the original draws from the sampling density approach
zero and so we have few effective draws from the target density, a phenomenon also
known as degeneracy of the sample. Figure 1 demonstrates the problem schematically.
The wider density represents the sampling density f(θ|D1:n) that generates the particles.
However, the target density, f(θ|D1:n, Dn+1:N), shown as a dashed curve, is shifted and
narrower. About half of the draws from f(θ|D1:n) will have importance weight near
zero.

Figure 1: Comparison of f(θ|D1:n, Dn+1:N ) (dashed) and f(θ|D1:n) (solid).
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Ridgeway and Madigan (2002) monitor this degeneracy via the so-called effective
sample size or ESS. Kong et al. (1994) provided a simple approximation for the ESS:

ESS =
M

1 + V ar(w)
=

(
∑
wi)

2

∑
w2

i

.

When the ESS drops below some pre-specified level, Ridgeway and Madigan (2002)
counter the degeneracy via a resample-move or “rejuvenation” step, an idea that bor-
rows from the particle filtering/sequential Monte Carlo literature – see, for example
Doucet et al. (2001) and Gilks and Berzuini (2001). The resample-move step first re-
samples the particles with probabilities proportional to the weights and then applies a
single Metropolis-Hastings “move” step to each particle. Each move requires a complete
scan of all the data. Figure 2 provides an outline of the algorithm.

1. Load as much data into memory as possible to form D1:n

2. Draw M times from f(θ|D1:n) via Monte Carlo or Markov chain Monte Carlo

3. Iterate through the remaining observations (those that comprise Dn+1:N). For
each observation, xj , update the log-weights on all of the draws from f(θ|D1:n).
Set j = n+ 1 and p ∈ (0, 1) to the allowable decrease in ESS
While j < N

Set wi = 1, i = 1, . . . ,M
While ESS > pM

j ← j + 1
for i in 1, . . . ,M do wi ← wi × f(xj |θi)

Resample M times with replacement from θ1, . . . , θM

with probability proportional to wi

for i in 1, . . . ,M do one MCMC step to move θi

conditioned on n+ j observations

Figure 2: The Ridgeway and Madigan (2002) algorithm for massive datasets

While the Ridgeway and Madigan (2002) scheme decreases the number of data ac-
cesses by up to 99% as compared to vanilla MCMC, it is not a one-pass algorithm since
the move portion of the rejuvenation scheme, i.e. the single MCMC step, involves condi-
tioning on all of the data processed thus far. Although Ridgeway and Madigan provide
arguments that show that rejuvenations become less frequent as more data accumulate,
this is still a significant flaw since the number of repeated data accesses per observation
grows without bound.
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3 One-pass Particle Filtering for Massive Datasets

Our proposed one-pass particle filtering algorithm 1PFS (One-pass Particle Filter with
Shrinkage) differs from the Ridgeway and Madigan algorithm of Figure 2 only in the
rejuvenation step. The new rejuvenation step uses a “shrinkage” kernel smoothing
approximation to the current importance sampling distribution.

Thus 1PFS starts out with Steps 1 and 2 of the Ridgeway and Madigan (2002)
algorithm (see Figure 2). Then, as with Ridgeway and Madigan, 1PFS iterates the
outer loop of Step 3 until the ESS deteriorates below some tolerance limit (10% of M ,
say). Assuming that this occurs after absorbing n1 observations, 1PFS then resamples
M times with replacement the particles from the posterior conditioned on the first n+n1

data points. The resample selects each particle θi with probability proportional to wi.

Note that these draws still represent a sample, albeit a dependent one, from the
posterior conditioned on the first n + n1 data points. Several of the θi will appear
multiple times in this new sample. For the most part this refreshed sample will be
devoid of those θi not supported by the data.

In order to rejuvenate the sample, we propose to approximate the distribution of
the resampled θi using kernel smoothing. Liu and West (2001) note that centering the
kernels at the standard locations (i.e., at the existing particles) systematically results
in a density estimate that is over-dispersed. Liu and West (2001) propose a shrinkage
scheme to correct for this over-dispersion via a weighted shift of the location of the
particles towards the sample mean.

More precisely, 1PFS uses kernel smoothing to approximate the importance sampling
posterior density f(θ|D1:n+n1

) of the parameters as per:

f̂(θ|D1:n+n1
) =

M∑

i=1

K(θ; θ̃i, b
2V ) (8)

where K(θ; s, T ) is the value at θ of the kernel function (e.g., Gaussian) with mean s

and variance matrix T . θ̃i and V are the shifted sample/particle values and the sample
Monte Carlo variance respectively with b being the kernel bandwidth. Note that the
wi’s, are all identically equal to 1 in the above formula because a resample step preceded
the rejuvenation step. The shrinkage rule specifies the shifted sample locations as:

θ̃i = aθi + (1− a)θ (9)

where a =
√

1− b2 and θ is the current Monte Carlo mean θi value. The sample drawn
from the kernels placed at the shrinkage locations will not only have the correct mean
(which is the original sample mean, θ and is unchanged) but also the correct variance
(the sample variance, V ).

Therefore, to rejuvenate the sample, for each of the new θi’s we simply sample
from the shrinkage kernel density based approximation to the importance sample dis-
tribution that we currently have, f̂(θ|D1:n+n1

). Our rejuvenated θi’s now represent a
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more diverse set of parameter values with an effective sample size closer to M again.
Figure 4 graphically walks through the resample-move process for this “smooth boot-
strap” step-by-step and Figure 3 shows the new reweighting step to replace step 3 of
the Ridgeway and Madigan (2002) algorithm.

3. Iterate through the remaining observations (those that comprise Dn+1:N). For
each observation, xj , update the log-weights on all of the draws from f(θ|D1:n).
Set j = n + 1, p ∈ (0, 1) to the allowable decrease in ESS and b, the kernel
bandwidth (Note: enables computation of a =

√
1− b2)

While j < N
Set wi = 1, i = 1, . . . ,M
While ESS > pM

j ← j + 1
for i in 1, . . . ,M do wi ← wi × f(xj |θi)

Resample M times with replacement from θ1, . . . , θM

with probability proportional to wi

Compute θ, V
for i in 1, . . . ,M do

Compute θ̃i = aθi + (1− a)θ
Sample new θi from K(θ̃i, b

2V )

Figure 3: One-pass Particle Filtering for Massive Datasets

After rejuvenating the set of θi, we can continue where we left off, on observation
n+ n1 + 1, absorbing additional observations until either we include the entire dataset
or the ESS again has dropped too low and we need to preform a new rejuvenation step.

3.1 Convergence of the Smooth Bootstrap; Bandwidth Selection

There exist established asymptotic (as the number of particles tends to infinity, i.e.,
M →∞) Central Limit Theorems for Sequential Monte Carlo methods – see
Moral and Guionnet (1999), Gilks and Berzuini (2001), and Chopin (2002a). These
results deal with the more general version of the sequential inference problem involving
unseen state variables in addition to static model parameters. These results also apply
to the simpler version of the problem we are concerned with, namely filtering for static
model parameters. Indeed, the static-only case is better behaved and more tractable
than the general problem (Chopin 2002a). Further, since we don’t have a general state-
space model (and the sequential updating is only an artifact to reduce the number
of data accesses) we are concerned solely with the convergence properties of the final
posterior distribution estimate that our algorithm returns.

These Central Limit Theorems hold true for sequential Monte Carlo methods involv-
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Figure 4: The resample-move step. (a) Generate an initial sample from f(θ|D1:n)
(the solid curve). The stars mark the particles, the sampled θi. (b) Weight based on
f(θ|D1:n, Dn+1:N ) (the dashed density) and resample, the length of the vertical lines
indicate the number of times resampled. Shrink these locations towards θ (the open
diamond) 3) For each θi sample from the now shifted kernel density distribution and
thus diversify and obtain the new sample (the stars mark these locations).
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ing sampling-importance resampling and MCMC (rejuvenation) moves as per Ridgeway
and Madigan. 1PFS, however, employs an “extra” approximation step involving the ker-
nel smoothing approximation to the importance sampling posterior distribution, f̂(θ|x).
Intuitively, this extra approximation will be inconsequential if, in the limit as the number
of particles tend to infinity, the particles sampled from the kernel smoothed approxi-
mation to the posterior distribution will resemble random samples from the importance
sampling posterior f(θ|x).

Stavropoulos and Titterington (2001) prove a restricted version of the above state-
ment formally. Their theorem states:

Theorem 1 Under mild conditions, for univariate θ and the Normal kernel K, the

cumulative distribution function of the values generated by the kernel approximation to

the posterior distribution f̂(θ|x), converges to that of the target density, f(θ|x).

The proof has an easy multivariate generalization and can be adapted for non-Normal
K as well. The assumptions under which theorem 1 holds are fairly mild, essentially
the same as those required by Geweke (1989) for the importance sample estimates to
converge, with the additional requirement that the kernel functions variance should
shrink to zero as the number of particles tends to infinity.

For Normal kernels (where K(s, T ) = ϕ(s, T ), the Gaussian density function), kernel
density estimation literature Silverman (1986) suggests a choice of T = V bM

2, with

bM =

(
4

(d+ 2)M

) 1
d+4

(10)

where d is the dimensionality of the samples, M is the number of samples and V is
the sample Monte Carlo variance estimate. This choice of bandwidth is asymptotically
optimal if the density being approximated is multivariate-Normal, and the samples had
been obtained from this distribution Stavropoulos and Titterington (2001).

The following sections of the paper present two examples (both of which were pre-
viously analyzed in Ridgeway and Madigan 2002) that elucidate the application of the
algorithm in practice, followed by a discussion of the method and conclusions.

4 Example I - Fully Bayes Logistic Regression

The first example we consider concerns Bayesian logistic regression. The training data
comprise vectors xi = [xi1 , . . . , xid

]T in R
d and yi ∈ {0, 1}, i = 1, . . . , N. We consider a

model of the form:
p(y = 1|x) = ψ(βT

x) (11)

where β is a vector of regression coefficients and ψ(·) is the logistic link function. Fol-
lowing some recent literature on so-called “sparse” models (Tibshirani 1995; Figueiredo
2001) we use an independent Laplace prior for each component of β:

π(βi|γ) =
1

2

√
γe−γ|βi|, λ > 0, i = 1, . . . , d.
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This prior typically results in posterior modes of zero for many parameters and as such
accomplishes simultaneous shrinkage and variable selection. Our interest here however is
not in obtaining the posterior mode (see Genkin et al. 2004) but rather in fully Bayesian
inference for arbitrary characteristics of the posterior distribution of β. In the example
below we set γ = 5; Genkin et al. (2004) discuss approaches for selecting γ.

Following Ridgeway and Madigan (2002) we report fully Bayesian logistic regression
analysis of the “outpic data” comprising 744,963 customer records, 57 Mb when stored
in double precision. Thus, in our notation, N = 744, 963. These data originated in a
major telecommunications company. The binary response variable identifies customers
who have switched to a competitor. There are seven predictor variables. Five of these
are continuous and two are 3-level categorical variables. Thus for logistic regression there
are d = 10 parameters. This dataset is small enough that regular MCMC to compute
f(β|D1:N ), while cumbersome, is still feasible. We also used MCMC to generate the
initial particles from f(β|D1:n). In both cases we used a straightforward Metropolis-
within-Gibbs sampler. Ridgeway and Madigan (2002) describe this sampler in detail.
The key point is that the MCMC sampler requires one complete pass through the data
per iteration.

1PFS used a Gaussian kernel function. Formula 10 defines the kernel bandwidth.
Conditioning on the first 10,000 observations (i.e., n = 10, 000), we generated 25,000
initial particles using the MCMC algorithm, dropping the first 5,000 (i.e. M = 20, 000).
Thus we accessed each of the first 10,000 observations 25,000 times. 1PFS executed a
rejuvenation step whenever the ESS dropped below 10,000 (which occurred 51 times
until the whole dataset was processed) corresponding to the tolerance limit p = 0.5.
By construction, 1PFS accessed observations 10,001-744,963 just once. Ridgeway and
Madigan’s algorithm with the same rejuvenation schedule also accessed the first 10,000
observations 25,000 times each, but then accessed the remaining 734,963 observations
a total of 2,352,460 times or 3.2 times per observation.

In addition to 1PFS, we also fit the logistic regression model using maximum like-
lihood and using a full MCMC run on the entire dataset. Table 1 shows the resulting
estimates.

β(1) β(2) β(3) β(4) β(5) β(6) β(7) β(8) β(9) β(10)
MLE -0.574 0.155 0.056 0.220 -0.087 0.361 -0.358 -0.204 0.079 0.079
MCMC -0.574 0.155 0.056 0.220 -0.087 0.360 -0.358 -0.204 0.080 0.078
1PFS -0.574 0.156 0.056 0.221 -0.087 0.360 -0.357 -0.204 0.079 0.079

Table 1: Mean β estimates obtained from Bayesian logistic regression analysis of the
outpic data.

Table 2 shows the total number of data accesses.

1PFS not only scans (most of) the dataset only once but also produces parameter
estimates that are very close to the desired values. Indeed, on smaller subsets of the
data, the maximum likelihood estimates for the parameter values and those obtained
via 1PFS are very similar as well (Figure 5).
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Algorithm first 10,000 next 734,963
MCMC 2.5 ×108 1.8 ×1010

R&M 2.5 ×108 2.4 ×106

1PFS 2.5 ×108 7.3 ×105

Table 2: Total number of data accesses for MCMC (Markov chain Monte Carlo on the
entire dataset), R&M (Ridgeway and Madigan’s Particle Filter), and 1PFS (One-pass
Kernel-based Particle Filter).
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Figure 5: Plot showing the representative mean posterior parameter values (β(1) and
β(7)) determined via 1PFS as a function of the amount of data processed. Also shown
on the plot is the corresponding MLE for the same amount of data.
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5 Example II - Mixtures of Transition Models

Mixtures of first-order transition models (i.e., finite state Markov chains) have attracted
recent attention in a variety of applications such as web user modelling (Cadez et al.
2000; Ridgeway 1997) and unsupervised training of robots (Ramoni et al. 2002). This
mixture model assumes that the data comprise N state sequences of random length
and that one of C transition matrices generated each sequence. However, neither the
transition matrices nor the mixing proportions are known. Thus the unknown parame-
ters of this model are the C transition matrices (each S × S, where S is the size of the
state space), P1, . . . , PC , the mixing vector of length C, and the N cluster assignments,
zj ∈ {1, . . . , C}, j = 1, . . . , N . A Bayesian analysis estimates the posterior distribution
of these unknowns given a set of observed sequences. We assume that both C and S
are fixed.

Ridgeway and Madigan (2002) describe a simple-to-implement Gibbs sampler that
generates draws from this posterior distribution. However, each iteration requires two
scans of the entire dataset, one for the matrix update and one for the cluster assignment
update. Consequently, computation time becomes prohibitive for any N much bigger
than a few tens of thousands. Ridgeway and Madigan (2002) propose a particle filtering
algorithm for this model and, as with the logistic regression example, the number of
data accesses decreases dramatically compared to the Gibbs sampler. However each
rejuvenation step requires a complete scan of the data to that point. Here we apply the
1PFS algorithm to this model in the context of a particular example.

Specifically we generated N = 1 million sequences of length between 5 and 20 from
two 4×4 transition matrices. We used the first n = 1000 sequences to obtain the initial
sample of M = 1000 particles. For this example 1PFS executes a rejuvenation step
each time ESS drops below 100 (i.e. p = 0.1). Because both the rows of the transition
matrices and the vector of mixing proportions must sum to one, the kernel function,
K(., .), we chose for this example was Dirichlet. Following Aitchison and Lauder (1985),
we choose the bandwidth b that maximizes the pseudo-likelihood (the average leave-one-
out cross validation approximated likelihood).

The use of the Dirichlet kernel involves one extra detail. The Liu and West (2001)

shrinkage rule requires a parametrization of the kernel K(θ̃i, b
2V ) in terms of its mean

θ̃i and variance b2V . Unfortunately, starting from a mean and variance, a closed-
form expression for the corresponding Dirichlet distribution Dirichlet(α) does not exist.
Following Ronning (1989) we compute an approximation to α by matching first and
second moments. Specifically, the parameter values αisc for the ith row of the transition
matrix Pc are:

αisc = θ̃isc

∑

s

αisc (12)

log
∑

s

αisc =
1

S − 1

S−1∑

s=1

log

(
θ̃isc(1− θ̃isc)

b2Visc

− 1

)
(13)

Here we model each row independently. A similar set of equations exists for the mixing
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vector’s parameters (implying a total of d = 25 independent parameters).

Except for the first 1000 observations, which generate the initial set of particles,
1PFS accesses each of the remaining observations once. Once again, this represents a
substantial computational savings as compared to the Ridgeway and Madigan (2002)
scheme. A Gibbs sampler, conditioned on the entire dataset, would need to access each
observation 2000 times.

0.222 0.224 0.019 0.02 0.538 0.54 0.216 0.218

0.1165 0.1173 0.5165 0.5185 0.238 0.239 0.24 0.126 0.127

0.394 0.396 0.1605 0.1625 0.2115 0.2135 0.2305 0.2325

1.15 1.35
x 10−3

0.864 0.866 0.0785 0.08 0.054 0.055

Figure 6: The posterior distribution of the transition probabilities for one of the tran-
sition matrices. 1PFS generated these densities. The vertical line marks the true value
used to simulate the dataset.

While efficiency as measured by the number of data accesses is important in the
analysis of massive datasets, precision of parameter estimates is also important. Figure 6
shows the marginal posterior densities for the 16 transition probabilities from the first
mixture component’s transition matrix. The smooth density plot is based on the M =
1000 1PFS particles. The figure also marks the location of the parameter value that
generated the data. All of these values are within the region with most of the posterior
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mass.

With 1,000,000 observations, a Gibbs sampler here is prohibitively expensive (scaling
computational time linearly and disregarding memory constraints leads to an estimate
of around 2 months CPU time). On a subset of the data comprising the first 10,000
observations, the two methods produced nearly identical posterior distributions – see
Figure 7.

0.2 0.22 0.24 0.015 0.02 0.025 0.52 0.54 0.56 0.2 0.22

0.11 0.12 0.51 0.52 0.53 0.23 0.24 0.25 0.12 0.13

0.39 0.4 0.41 0.15 0.16 0.17 0.21 0.22 0.23 0.215 0.235

2 4
x 10−3

0.86 0.87 0.88 0.07 0.08 0.09 0.045 0.06

Figure 7: The posterior distribution of the transition probabilities for one of the tran-
sition matrices for a smaller subset of the whole dataset (the first 10,000 observations).
The posterior density found via MCMC is represented by the blue solid line and that
of the particle filter by the red dashed line.

Note that increasing M does not change the number of data accesses for 1PFS while
each additional draw represents yet another scan for the standard implementation.
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6 Discussion

MCMC has established itself as a standard tool for the statistical analysis of complex
models. Data mining research, by contrast, rarely features MCMC. Indeed, for data
mining applications involving massive datasets, computational barriers essentially pre-
clude routine use of MCMC. MCMC is however an indispensable tool for Bayesian
analysis, especially in those applications where the inferential targets are more complex
than posterior means or modes. As such we contend that extension of MCMC methods
to larger datasets is an important research challenge. We have presented one particular
line of attack. Working with samples from massive datasets represents an alternative
strategy for large-scale Bayesian data analysis and may be viable for some applications.
In high dimensional applications, however, throwing data away may be too costly.

Indeed, high dimensionality is well known to be the bane of all kernel density based
approximation methods. However, it should be pointed out here that our proposed
scheme utilizes kernel smoothing (and not density estimation per se) and thus should
be applicable even in medium dimension problems (Liu and West 2001, have examples
where they apply kernel smoothing in dimension around 30).

By reducing the number of data accesses by a huge amount (one-pass for all but a
small fraction of the data), MCMC becomes viable for a large class of models useful in
data mining. We note that 1PFS can bypass the exhaustive analysis of an initial portion
of the training data by sampling initial particles from the prior distribution of the
parameters. While this doesn’t affect any of the analysis, we have seen in practice, that
it is often a good idea to start the particle filter with a reasonable set of particles. The
sequential nature of the algorithm also allows the analyst to stop when uncertainty in
the parameters of interests has dropped below a required tolerance limit. Parallelization
of the algorithm is straightforward. Each processor manages a small set of the weighted
draws from the posterior and is responsible for updating their weights and computing
the refresh step.

Appendix

A Empirical Justification of Bandwidth Selection Rule

As stated in the manuscript, the bandwidth selection rule in Equation 10 is (on average)
an optimal finite sample size bandwidth selection rule (minimizes the AIMSE) when the
distribution being estimated is known to be multivariate Normal and we are using a
Gaussian kernel. Since the addition of observations forces the posterior distribution to
asymptotically approach a multivariate Normal, and as we know that for a Gaussian
kernel, no other bandwidth selection rule will behave better uniformly (because then
it would also be better on average) we believe the choice of bandwidth to be very
reasonable (and indeed continually improving as more data is assimilated).

In order to empirically validate this claim, we performed 10 simulations of 1PFS with
parameters exactly as specified in the manuscript, except for the bandwidth parameter,
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which we varied uniformly in the [0-1] interval in increments of 0.1. We then calculated
the MSE error between the mean posterior parameter values obtained from regular
MCMC and those obtained from the use of 1PFS. The following table (Table 3) shows
the mean error (averaged over the 10 runs per bandwidth) and associated standard
deviations.

Bandwidth (bM ) Mean MSE STD MSE
0.10 0.0436 0.0169
0.20 0.0151 0.0029
0.30 0.0074 0.0012
0.40 0.0063 0.0007
0.50 0.0062 0.0008
0.60 0.0057 0.0008
0.70 0.0062 0.0007
0.80 0.0064 0.0006
0.90 0.0065 0.0008

Table 3: The effect of bandwidth bM on the mean MSE error estimates (and standard
deviations) obtained between regular MCMC and 1PFS for Bayesian logistic regression
analysis of the outpic data.

Figure 8 shows the same data on a plot. The results of our limited number of
simulations point to the fact that while the bandwidth specified per Equation 10, bM =
0.4557, doesn’t give the lowest error (that appears to be at bM = 0.6), it still clearly
does provide a reasonable choice.
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