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a, UFBA, Av. Adhemar de Barros, s/n, On-dina, 40170-110, Salvador - BA, Brazil. E-mail: gauss�ufba.brSummaryIn this paper we derive approximate formulae for the skewness and kurtosis of themaximum likelihood estimator in the one-parameter exponential family. The keyidea underlying these formulae is that they indi
ate when the normal approxi-mation usually employed with maximum likelihood estimators 
an be misleadingin small samples. We apply our main result to a number of spe
ial distributionsof this family. We also use a graphi
al analysis to examine how the skewness andkurtosis vary with the true value of the parameter in some spe
ial 
ases.Key Words: Asymptoti
 expansion; exponential family; kurtosis; maximumlikelihood estimator; skewness.1 Introdu
tionThe assumption of symmetry plays a 
ru
ial role in many statisti
al pro-
edures. The notion of skewness of a distribution is related to a symmetryproperty. The most 
ommonly used measure of skewness is the standard-ized third 
umulant. In fa
t, the 
lassi
al tests of symmetry make use ofthe standardized third sample 
umulant measure and a departure from thenormal value of zero then indi
ates skewness. Intuitively, we think of adistribution as being skewed if it systemati
ally deviates from symmetri
alform. Kurtosis is a measure of a type of departure from normality. Thekurtosis is given by the standardized fourth 
umulant whi
h equals zero for85
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s, 15, 2001any normal distributions. Often \peaked" (as 
ompared with normal) dis-tributions have positive kurtosis, and 
at-topped-ones have negative kur-tosis.Any distribution expressed in standardized form has zero mean andunit varian
e. The standardized distributions 
an be readily 
ompared inregard to form, its departure from symmetry (skewness) and other qualities,though not of 
ourse in regard to mean and varian
e. Commonly usedindi
es of the shape of a distribution are the moment ratios, namely theindi
es of skewness 
1 and kurtosis 
2 de�ned by 
1 = �3=�3=22 and 
2 =�4=�22; respe
tively, where �r is the rth 
umulant of the distribution. Theindi
es 
1 and 
2 are widely used as measures of departure from normalitysin
e 
1 = 
2 = 0 for the normal distribution. These univariate measuresare 
onstru
ted su
h that they are invariant under 
hange of s
ale andorigin, 
1 is a fun
tion of �3; the lowest 
umulant measuring symmetry and
2 is a fun
tion of �4; the lowest 
umulant measuring \peakedness". When
1 > 0 (
1 < 0) the distribution is positively (negatively) skewed and willhave a longer (shorter) right tail and a shorter (longer) left tail. Clearly,if the distribution is symmetri
al, 
1 vanishes and therefore its value willgive some indi
ation of the extent of departure from symmetry. A

ordingto van Zwet (1964), if we transform Y to '(Y ) then we in
rease right-skewness if ' is 
onvex, while we de
rease right-skewness if ' is 
on
ave.Therefore, '(Y ) will have a greater or smaller skewness 
oeÆ
ient thanY if ' is 
onvex or 
on
ave. Distributions for whi
h 
2 = 0 are 
alledmesokurti
. The distributions for whi
h 
2 > 0 are 
alled leptokurti
 andthose for whi
h 
2 < 0 are 
alled platykurti
. The leptokurti
 distributionhas a sharper peak at the mode and more extended tails, whereas theplatykurti
 distribution is 
hara
terized by a 
atter top and more abruptterminals than the normal 
urve. It is impossible to have 
21 > 2 + 
2 andthus 
2 � �2 always. We note that 
2 
an be interpreted as a nonnormalityadjustment for the varian
e of (Y � E(Y ))2 sin
e V arf(Y � E(Y ))2g =�4 + 2�22 = 2�22(1 + 
2=2). The moment ratios 
1 and 
2 have the samevalues for any linear fun
tion a+ bY with b > 0: When b < 0; the absolutevalues are not altered, but ratios of odd order 
umulants have their signsreversed.Consider a general uniparametri
 model f(y; �) indexed by an unknowns
alar parameter � 2 �; where � is an open set of IR: Let y be the data ve
-tor of n observations whi
h are assumed independent identi
ally distributedwith log likelihood for a single observation de�ned by l(�; y) = log f(y; �):We know that the maximum likelihood estimator (MLE) �̂ of an unknowns
alar parameter � in regular problems is asymptoti
ally distributed asN(�; (n��1�;�)) with an error of order O(n�1=2); where ��;� = Ef�d2l(�;y)d�2 gis the expe
ted information for �: Our main purpose here is to obtain sim-ple asymptoti
 formulae for the indi
es 
1(�̂) and 
2(�̂) of the distributionof the MLE �̂ in one-parameter exponential family models up to orders
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tively. The values of the indi
es 
1(�̂) and 
2(�̂) 
anbe used as measures of nonnormality of the distribution of �̂ sin
e theyvanish when �̂ is normally distributed. These in
lude many important and
ommonly used distributions and only require knowledge of simple fun
-tions and their �rst few derivatives with respe
t to �: It is possible to usethe values of 
1(�̂) and 
2(�̂) to examine for what exponential models thedistribution of �̂ is 
loser to the normal distribution. The dependen
e ofthe �nite-sample distribution of the MLE �̂ on the sample size and on thevalue of � is assessed by numeri
al and graphi
al inspe
tion for some of thedistributions 
onsidered.The plan of the paper is as follows. In Se
tion 2 we give simpleasymptoti
 formulae for the standardized 
umulants 
1(�̂) and 
2(�̂) inone-parameter exponential family models. We also dis
uss the e�e
ts thatthese standardized 
umulants have on 
overage of 
on�den
e intervals for� and review two di�erent higher-order re�nements to obtain highly a
-
urate small-sample 
on�den
e intervals for this parameter. However, themethod employed here is both simpler and more dire
t than higher-ordermethods whi
h give near-exa
t results. In Se
tion 3 we present a numberof spe
ial 
ases thus showing that our main result 
overs a wide range ofimportant distributions. A graphi
al analysis that shows the dependen
eof the skewness 
1(�̂) and kurtosis 
2(�̂) on � is performed in Se
tion 4:Con
luding 
omments are in Se
tion 5.2 Basi
 formulaConsider a general uniparametri
 model indexed by an unknown s
alarparameter �: Suppose there are n independent and identi
ally distributedobservations y1; : : : ; yn and de�ne the log likelihood fun
tion for a singleobservation by l(�) = l(�; y). We assume that l(�) satis�es the regularity
onditions stated in Rao (1973, p.364) and Ser
ing (1980, p.144). Thederivatives of the log likelihood l(�) are denoted by U� = dl(�)=d�; U�� =d2l(�)=d�2; et
., and we use the following notation for their 
umulants(Lawley, 1956): ��� = E(U��); ���� = E(U���); ��;� = E(U2� ); ��;�� =E(U�U��); ���;�� = E(U2��) � �2��; ����� =E(U����); ��;�;�� = E(U2�U��) ���;����; ��;�;�;� = E(U4� )� 3�2�;� and ��;���=E(U�U���).We denote the derivatives of the 
umulants with supers
ripts as �(�)�� =d���=d�; et
. All �0s refer to a single observation and are of order O(1).Under these regularity 
onditions the asymptoti
 distribution of the MLE�̂ is normal N(�; n�1��1�;�) with an error of order O(n�1=2). The �0s satisfy
ertain Bartlett identities su
h as ��;� = ����; ��;�;� = ������ 3��;�� =2�����3�(�)�� ; ��;��=�(�)�� ����� , ��;�;�;�=�������4��;����6��;�;���3���;��=
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s, 15, 2001�3�����+ 8�(�)���� 6�(��)�� + 3���;��; ��;�;��=������2�(�)���+�(��)�� ����;�� , et
.(see Lawley, 1956).Let �r(�̂) = Ef(�̂��)rg for r = 3 and 4 be the third and fourth 
entralmoments of �̂; respe
tively. Using the general formulae for �3(�̂) and �4(�̂)given by Shenton and Bowman (1963, equations (17
)-(17d); 1977) andsome Bartlett identities, whi
h usually simplify the 
omputation of the�0s, we 
an express the third and fourth 
entral moments of �̂ to ordersn�2 and n�3, respe
tively, by�3(�̂) = 3�(�)�� � ����n2�3�;� (2.1)and �4(�̂) = 3n2�2�;� � 9��;�;�;� + 36��;�;�� + 10��;���n3�4�;�+54�(�)2�� � 3�2��� � 24�����(�)��n3�5�;� : (2.2)Equations (2.1) and (2.2) are in agreement with the formulae in Peersand Iqbal (1985) who give the asymptoti
 expansions of the se
ond, thirdand fourth 
umulants of the MLE for a general p�dimensional model,p > 1.The third 
umulant of �̂ is simply �3(�̂) = �3(�̂) whereas the fourth
umulant of �̂ to order O(n�3) is given by the last two terms in equation(2.2) sin
e �4(�̂) = �4(�̂)� 3V ar(�̂)2: Our aim here is to give formulae forthe skewness �3(�̂) and kurtosis �4(�̂) of �̂ in the one-parameter exponentialmodel whi
h are algebrai
ally more appealing for appli
ations than thegeneral formulae (2.1) and (2.2). Unlike these formulae, our results 
an bereadily used by applied resear
hers sin
e they only require trivial operationson suitably de�ned fun
tions and their derivatives.Let Y1; : : : ; Yn be a set of n independent and identi
ally distributedrandom variables with probability or density fun
tion in the one-parameterexponential family, that is,f(y; �) = 1�(�)expf��(�)d(y) + v(y)g; (2.3)where � is a s
alar parameter, �(:); �(:); d(:) and v(:) are known fun
tionsand � 2 �; � being an open set of IR. We also assume that the supportof f(y; �) does not depend on the unknown parameter � and that �(:) and�(:) have 
ontinuous �rst four derivatives with respe
t to �; and that �



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 89is positive valued. Further, we require that d�(�)=d� and d�(�)=d� aredi�erent from zero for all values of � 2 �; where �(�) = E f�d(y)g isgiven by �(�) = d�(�)d� (�(�)d�(�)d� )�1: From now on we omit the dependen
eof �(�), �(�) and �(�) on � with primes denoting derivatives with respe
tto the unknown parameter �.Many 
ommonly used distributions in applied resear
h are spe
ial 
asesof (2.3). Also, this family of distributions enjoys important mathemati
alproperties; see Bi
kel and Doksum (1977) and Barndor�-Nielsen (1978). Asis well known exponential family models allow for a uni�ed treatment ofseveral important distributions and have a number of interesting statisti
alproperties for estimation, testing and inferen
e problems.Let y1; : : : ; yn be the data set of n observations from (2.3). The max-imum likelihood estimator (MLE) �̂ of � 
omes from n�1Pni=1 d(yi) =��(�̂) if the solution to this equation belongs to �. For several impor-tant distributions in (2.3) the MLE �̂ 
annot be expressed as an expli
itfun
tion of the data. To 
ir
umvent this problem we usually use iterativete
hniques to derive approximate solutions to the exa
t MLE.Bias 
orre
tion for the MLE �̂ is dis
ussed by Firth (1993). Ferrari etal. (1996) obtained the bias and varian
e of the MLE �̂ in the exponentialfamily (2.3) up to order n�2. Here, \to order n�p" means that terms oforder smaller than n�p are negle
ted. The expressions for the bias andvarian
e of �̂ only require knowledge of �(�) and �(�) and their �rst �vederivatives with respe
t to �: Cribari-Neto et al. (1998) give 
losed-formexpressions for the se
ond and third order biases of �̂ for a number of distri-butions in (2.3). Cordeiro et al. (1999) proposed a pivotal quantity whi
his a fun
tion of �̂ and whose distribution is standard normal up to ordern�3=2. The proposed pivot takes the form of a polynomial transformationof the standardized MLE of at most third degree. In this se
tion we giveasymptoti
 formulae for the standardized skewness and kurtosis of the dis-tribution of the MLE �̂ in the one-parameter exponential family (2.3) upto orders n�1=2 and n�1; respe
tively. In the next se
tion we use theseformulae to obtain approximate 
losed-form expressions for the skewnessand kurtosis of �̂ for a number of important distributions in this family.Now, the log likelihood l(�) = l(�; y) for the model (2.3) is l(�) =��(�)d(y) � log �(�) + v(y): From the �rst four derivatives of l(�) withrespe
t to � and using the Bartlett identities we obtain: ��;� = �0�0; ���� =�2�00�0 � �0�00; �(�)�� = ��00�0 � �0�00; ��;�� = �00�0; ��;�;� = �0�00 � �00�0;��;��� = �000�0; ��;�;�� = �00�00 � �002�0=�0 and ��;�;�;� = ��000�0 � 3�00�00 +�0�000 + 3�002�0=�0: Finally, repla
ing these 
umulants in the expressions
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s, 15, 2001(2.1) and (2.2), we get after some algebra�3(�̂) = �2�0�00 � �00�0n2(�0�0)3 (2.4)and �4(�̂) = 27(�0�00)2 � 6(�00�0)2 + 24�00�0�00�0n3(�0�0)5��000�0�0 + 9�00�0�00 + 9�02�000 � 9�002�0n3�05�04 : (2.5)More 
onvenient quantities than �3(�̂) and �4(�̂) for 
ertain purposesare the standardized 
umulants 
1(�̂) = �3(�̂)=V ar(�̂)3=2 and 
2(�̂) =�4(�̂)=V ar(�̂)2; where V ar(�̂) = 1n�0�0 is the asymptoti
 varian
e of �̂: From(2.4) and (2.5) we then obtain the standardized 
umulants 
1(�̂) and 
2(�̂)to orders n�1=2 and n�1; respe
tively, as
1(�̂) = �2�0�00 � �00�0pn(�0�0p�0�0) (2.6)and
2(�̂) = 27(�0�00)2 + 3(�00�0)2 + 15�00�0�00�0 � �0�0(�000�0 + 9�0�000)n(�0�0)3 : (2.7)Some features of the formulae (2.4){(2.7) are noteworthy. First, the asymp-toti
 expressions for the skewness and kurtosis of the distribution of theMLE �̂ are now very easy to 
ompute for any exponential family model.They depend on the model through the fun
tions �(�) and �(�) and their�rst three derivatives with respe
t to �: Se
ond, although the 
al
ulationof �3(�̂); �4(�̂); 
1(�̂) and 
2(�̂) is straightforward for any distribution in(2.3), it is rather diÆ
ulty to explain the general stru
tures of their for-mulae. The main diÆ
ulty in interpreting these formulae is that theirindividual terms are not invariant under reparameterization and thereforethey have no geometri
 interpretation whi
h is independent of the 
oor-dinate system 
hosen. Third, by entering equations (2.6) and (2.7) intoa 
omputer algebra system su
h as MATHEMATICA (Wolfram, 1996) orMAPLE (Abell and Braselton, 1994), one 
an obtain the standardized 
u-mulants 
1(�̂) and 
2(�̂) for several models with minimal e�ort (see Se
tion3). Further, a simple appli
ation of our method 
an be performed easilyby hand using dire
tly equations (2.6) and (2.7), although appli
ation ofnear-exa
t higher-order methods usually require 
omputer algebra. Fourth,
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h 
orresponds to the natural exponential family, 
1(�̂)and 
2(�̂) redu
e to 
1(�̂) = �2�00�0pn�0 (2.8)and 
2(�̂) = 27�002 � 9�0�000n�03 ; (2.9)where �(�) = d log �(�)=d�: Finally, if the distribution of �̂ is approxi-mately normal, both 
oeÆ
ients 
1(�̂) and 
2(�̂) should be 
lose to zeroand departure from this value is eviden
e to the 
ontrary.Often one is interested in the estimation of a fun
tion of �; say � = g(�);whi
h does not depend on n. One 
an reparameterize the model in termsof � and then use the results (2.6){(2.7) to obtain the skewness 
1(�̂) andkurtosis 
2(�̂ ) of the distribution of the MLE �̂ = g(�̂). Alternatively, we
an express 
1(�̂ ) and 
2(�̂) as fun
tions of the standardized 
umulants
1(�̂) and 
2(�̂) of �̂: After some algebra, we obtain
1(�̂) = 
1(�̂) + 3� 00pn�0�0and
2(�̂ ) = 
2(�̂) + �42� 00(�0�00)� 18� 00(�00�0) + 25� 002(�0�0) + 10� 000� 0(�0�0)n(�0�0)2 :Formulae (2.6) and (2.7) are useful in telling when it is safe to baseinferen
e on the asymptoti
 normal distribution of the MLE �̂ and to
ompute �rst-order 
on�den
e intervals for � from �̂ � 1:96(n��;�)�1=2: Inreal-life situations, if the values of the skewness and kurtosis indi
es 
1(�̂)and 
2(�̂) are large, the �rst-order normal approximation for �̂ will beprobably poor in samples of small to moderate size, and therefore maydeliver ina

urate inferen
e. In these 
ases, we have to work with se
ond-order distributional re�nements for the 
umulative distribution fun
tionof the MLE �̂. Two di�erent methods of adjustments to improve theasymptoti
 standard normal approximation to the distribution of �̂ are
onsidered below. Despite their usefulness, the improved intervals basedon these methods entail more algebra than those intervals based on theasymptoti
 normal N(0; ��1�;�) distribution of pn(�̂ � �):2.1 The Edgeworth expansionThe se
ond-order asymptoti
 distribution theory asso
iated with Edgeworthexpansion for the distribution fun
tion of �̂ is summarized by Hill and Davis
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s, 15, 2001(1968). Provided some regularity 
onditions hold, they showed that the dis-tribution fun
tion of the pivot statisti
 S = pn(�̂��)�1=2�;� is given to orderO(n�1) byP (S � z; y) = �(z)� �(z) [f6�1 + �3h2(z)g =6+f360�2h1(z)+30�4h3(z)+�6h5(z)g =24℄ ; (2.10)where �(:) and �(:) are the 
umulative distribution fun
tion and the densityfun
tion of the standard normal variate, respe
tively, and hj(z) is the jthdegree Hermite polynomial. The 
oeÆ
ients in (2.10) are given by �1 =(n��;�)1=2B1(�̂); �2 = n��;�fV2(�̂) + B1(�̂)2g; �3 = 
1(�̂); �4 = 
2(�̂) +4(n��;�)1=2B1(�̂)
1(�̂) and �6 = 10
1(�̂)2; where B1(�̂) and V2(�̂) are then�1 and n�2 terms in the bias and varian
e of �̂; respe
tively. Expressionsfor B1(�̂) and V2(�̂) under the one-parameter exponential model (2.3) aregiven by Ferrari et al. (1996). The 
oeÆ
ients �1 and �3 are of orderO(n�1=2) whereas �2; �4 and �6 are of order O(n�1).Con�den
e intervals for � 
omputed from (2.10), whi
h take into a
-
ount the formulae of B1(�̂); V2(�̂); 
1(�̂) and 
2(�̂); 
an be viewed as mean-ingful improvements over the usual 
on�den
e intervals f�; j S j� zg; wherez is the appropriate upper point of a standard normal distribution. Equa-tion (2.10) shows 
learly that the bias term B1(�̂) and skewness 
1(�̂) a�e
tboth the 
orre
ted terms of orders O(n�1=2) and O(n�1) in the distribu-tion fun
tion of S. However, the kurtosis 
2(�̂) only a�e
ts the 
orre
tionterm of order O(n�1): It is then 
lear from the degrees of the polynomialsin (2.10) that the inferen
e based on the asymptoti
 normal distributionof �̂ 
an be inna
urate in the tails of the distribution of S; when j z j isnot very small, if any of the basi
 quantities B1(�̂); 
1(�̂) and 
2(�̂); whi
h
orrespond to terms involving z3 and z5, is large.2.2 The modi�ed dire
t likelihoodWe now outline the modi�ed dire
t likelihood method that yields approx-imate interval probabilities of one-dimensional distribution fun
tions. Un-der a one-dimensional exponential family model, the 
umulative distribu-tion fun
tion of �̂ 
an be approximated by (Barndor�-Nielsen, 1990; Fraser,1990; Barndor�-Nielsen and Cox, 1994, Chapter 6)P (�̂ � �; y) = �(r) + �(r)(1r � 1u) +O(n�3=2); (2.11)where r is the modi�ed dire
t likelihood given byr = sgn(�̂ � �) h2nl(�̂; y)� l(�; y)oi1=2 :
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tion and the likelihood quantity u iseasily 
al
ulated fromu = ��l(�; y)�y ����̂ � �l(�; y)�y � k(�̂)�1j(�̂)1=2;where j(�) = ��2l(�;y)��2 is the observed information and k(�) = �2l(�;y)���y :The derivation of (2.11) using saddlepoint te
hniques is reviewed inBarndor�-Nielsen and Cox (1994, Chapter 6). Note that r is the signedsquare root of the log likelihood ratio statisti
, and u is the standard-ized MLE. Here, u is the Wald statisti
 only if the exponential familyis a natural one, i.e. if �(�) = � and d(y) = y!. To �rst order both rand u have standard normal distributions and the 
orre
tion term involv-ing �(:) in (2.11) provides the improvement from O(n�1=2) to O(n�3=2):Approximation (2.11) 
an be unstable near � = �̂ and some 
are mustbe taken if the distribution fun
tion is to be 
omputed over its entiredomain. Con�den
e intervals 
al
ulated from (2.11) are highly a

uratein possibly very small samples and they typi
ally have mu
h better 
ov-erage than those based on the asymptoti
 distribution of �̂: For model(2.3) we obtain r = sgn(�̂ � �) �n�(�)� �(�̂)oPni=1 d(yi) + n log� �(�)�(�̂)�� ;u = f�(�)��(�̂)gPni=1 d0(yi)k(�̂)�1j(�̂)1=2; k(�) = ��0(�)Pni=1 d0(yi); andj(�) = n�0(�)�0(�); where d0(y) = �d(y)�y :3 Spe
ial 
asesIn this se
tion, we use equations (2.6) and (2.7) to obtain approximateexpressions for the skewness 
1(�̂) and kurtosis 
2(�̂) of the distributionof the MLE �̂ for a number of important distributions that belong to theone-parameter exponential family (2.3). Twelve spe
ial distributions are
onsidered and we give 
losed-form expressions for the standardized thirdand fourth 
umulants of the MLE �̂. The MAPLE 
ode used to performthe algebrai
 
al
ulations is available on a web page (www.de.ufpe.br/�
ysneiros/) so it 
an be download if anyone wants it. Distributions (i)through (iii) involve dis
rete random variables whereas 
ontinuous randomvariables are 
onsidered in 
ases (iv) through (xii). The spe
ial 
ases listedbelow have a wide range of pra
ti
al appli
ations in various �elds su
h asengineering, biology, medi
ine, e
onomi
s, among others (Johnson, Kotzand Balakrishnan, 1994, 1995; Johnson, Kotz and Kemp, 1992). We
onsidered below some distributions whose values of 
1(�̂) and 
2(�̂) donot depend on � and some distributions for whi
h these values are very
ompli
ated fun
tions of �. The formulae derived whi
h yield 
onstants are
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ompared in a 
hart given in Figure 1. For those distributions whose valuesof 
1(�̂) and 
2(�̂) are 
ompli
ated fun
tions of �; we show graphi
ally thedependen
e of these indi
es on � in Se
tion 4:(i) Trun
ated Poisson (� > 0; y = 1; 2; : : :): �(�) = � log �; �(�) =e�(1 � e��); d(y) = y; v(y) = � log(y!); �̂ is obtained as solution ofthe equation 1=f�̂(1� e��̂)g = 1=y;
1(�̂) = (�1 + e��) f(2�2 � 3� + 2)e�� + (2�2 + 3� � 1)e�2� � 1gp�n (e�� � � 1 + e��)3� (�1 + e��)2 ;
2(�̂) = �f1 + e��(�4 + 28� � 42�2 + 9�3) + e�2�(6� 84� + 121�2�39�3 + 18�4) + e�3�(�4 + 84� � 116�2 � 27�3 + 18�4)+e�4�(1� 28�+37�2+57�3+18�4)g.f�n(e��� � 1 + e��)3g:(ii) Logarithmi
 series (0 < � < 1; y = 1; 2; : : :): �(�) = �log �; �(�) =� log(1��), d(y) = y; v(y) = � log y; �̂ is obtained as solution of theequation y = ��̂=f(1 � �̂) log(1� �̂)g;
1(�̂) = �flog(1� �) (�1 + �) [3 �2 log(1� �) + 5 � log2(1� �)+4 �2 + 3 � log(1� �)� log2(1� �)℄g.f�n [� + log3(1� �)℄� (�1 + �)2 log2(1� �)g1=2;
2(�̂) = �flog4(1� �) + 232 log2(1� �) �3 + 116 log3(1� �) �2+78 �3 log(1� �)� 5 log2(1� �) �2 � 28 � log3(1� �)+85 �2 log4(1� �) + 84 �4 log(1� �)� 32 log4(1� �) �+25 �4 log2(1� �) + 83 �3 log3(1� �) + 54 �4g.f� n [� + log(1� �)℄3g:(iii) Zeta (� > 0; y = 1; 2; : : :): �(�) = � + 1; �(�) = Zeta(� + 1); d(y) =log y, v(y) = 0; where �(�) is the Riemann zeta fun
tion, i.e., �(�) =P1i=1 i�(�+1) (see, e.g., Patterson, 1988) and g=g(�)=d logZeta(�+1)=d�, �̂ is obtained as solution of the equation g(�̂)=�n�1�ni=1 log yi,
1(�̂) = �2g00png03 ; 
2(�̂) = �9(g000 g0 � 3 g002)n g03 :



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 95(iv) Gamma (k > 0; � > 0; y > 0):(a) k known: �(�) = ��1; �(�) = �k; d(y) = ky; v(y) = (k�1) log y�logf�(k)g; where �(�) is the gamma fun
tion , �̂ = y;
1(�̂) = 2pkn ; 
2(�̂) = 6n k :(b) � known: �(k) = 1�k; �(k) = ��k�(k); d(y) = log y; v(y) = ��y;k̂ is obtained as solution of the equation  ( k̂) = n�1 log (�n=Qni=1 yi),where  (�) is the digamma fun
tion,
1(k̂) = �2 00( k)pn 03(k) ; 
2(k̂) = 9f3 002( k)�  000( k) 0( k)gn 03( k) :(v) Rayleigh (� > 0; y > 0): �(�) = ��2; �(�) = �2; d(y) = y2; v(y) =log(2y);�̂ = �n�1Pni=1 y2i �1=2 ;
1(�̂) = 12pn; 
2(�̂) = � 34n:(vi) Extreme value (�1 < � < 1; � > 0; � known, �1 < y < 1):�(�) = exp(�=�); �(�) = � exp(��=�); d(y) = exp(�y=�); v(y) =�y=�, �̂ = �� log �n�1Pni=1 exp(�yi=�)	 ;
1(�̂) = 1pn; 
2(�̂) = 5n:(vii) Lognormal (� > 0; �1 < � < 1, � known, y > 0): �(�) =��2; �(�) = �; d(y) = (log y � �)2=2; v(y) = � log y � flog(2�)g=2,�̂ = �n�1Pni=1(log yi � �)2�1=2 ;
1(�̂) = 1p2n; 
2(�̂) = �32n :(viii) Normal (� > 0; �1 < � <1; �1 < y <1):(a) � known: �(�) = (2�)�1; �(�) = �1=2; d(y) = (y � �)2; v(y) =�flog(2�)g=2, �̂ = n�1Pni=1 (yi � �)2 ;
1(�̂) = 2p2pn ; 
2(�̂) = 12n :
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s, 15, 2001(b) � known: �(�) = ��=�; �(�) = expf�2=(2�)g; d(y) = y; v(y) =�fy2 + log(2��)g=2, �̂ = y;
1(�̂) = 0; 
2(�̂) = 0:(ix) Inverse Gaussian (� > 0; � > 0; y > 0):(a) � known: �(�) = ��1; �(�) = �1=2; d(y) = (y��)2=(2�2y); v(y) =�flog(2� y3)g=2, �̂ = n hPni=1 n(yi � �)2 = �yi�2�oi ;
1(�̂) = 2p2pn ; 
2(�̂) = 12n :(b) � known: �(�) = �(2�2)�1; �(�) = exp(��=�); d(y) = y; v(y) =��(2y)�1 + [logf�=(2� y3)g℄=2, �̂ = y;
1(�̂) = 3p�pn� ; 
2(�̂) = 15�n � :(x) M
Cullagh (� > �1=2; �1 � � � 1, � known, 0 < y < 1):�(�) = ��; �(�) = 4��B(�+1=2; 1=2); d(y) = log[y(1�y)=f(1+�)2�4� yg℄; v(y) = �[logfy(1 � y)g℄=2; where B(�; �) is the beta fun
tion(see M
Cullagh, 1989), �̂ is obtained as solution of the equation  ( �̂+1=2)� (�̂+1)=log 4�n�1Pni=1 loghfyi(1� yi)g=n(1+�)2 � 4�yioi,
1(�̂) = 2f 00( 1 + �)�  00( � + 1=2)gqf 0( � + 1=2) �  0(1 + �)g3 n;
2(�̂) = 9f� 000(1 + �) 0( � + 1=2) +  000( 1 + �) 0( 1 + �)+ 000( � + 1=2) 0 (� + 1=2) �  000(� + 1=2) 0 (1 + �)�3 002( 1 + �) + 6 00( 1 + �) 00( � + 1=2)�3 002( � + 1=2)g.n f 0( 1 + �)�  0( � + 1=2)g3:(xi) von Mises (� > 0; 0 < � < 2�, � known, 0 < y < 2�): �(�) =��; �(�) = 2� I0(�); d(y) = 
os(y � �); v(y) = 0; where Iv(�) is themodi�ed Bessel fun
tion of �rst kind and vth order, and r = r(�) =I 00(�)=I0(�), �̂ = r�1 �n�1Pni=1 
os (yi � �)	 ;
1(�̂) = �2r00pn r03 ; 
2(�̂) = �9(r000 r0 � 3 r002)n r03 :



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 97(xii) Log gamma ( � > 0; �1 < � <1;�1 < y <1):a) � known : �(�) = ��; �(�) = ��1�(�); d(y) = y � � � exp(y ��); v(y) = 0, where �(:) is the gamma fun
tion, �̂ is obtained assolution of the equation  (�̂) � �̂�1 � � = y � n�1Pni=1 eyi��,
1(�̂) = 2f2 �  00( �) �3gqn f1 +  0(�) �2g3 ;
2(�̂) = 9f� 000( �) �4 �  000( �) �6  0( �) + 6� 6 0( �) �2n f1 +  0( �) �2g3�12 00( �) �3 + 3 002( �) �6gn f1 +  0( �) �2g3 :b) � known : �(�) = exp(��); �(�)=exp(��); d(y)=� exp(y); v(y) =�y + log � � logf�(�)g, �̂ = log �n�1Pni=1 eyi� ;
1(�̂) = � 1pn� ; 
2(�̂) = 5n � :For some of the spe
ial 
ases 
onsidered here, the asymptoti
 formulaefor the skewness 
1(�̂) and kurtosis 
2(�̂) of the standardized distributionof �̂ are very simple and for some of them the formulae do not even dependon �: For these 
ases, it is easier to verify the degree of departure from nor-mality of the standardized distribution of �̂: In some 
ases, however, theasymptoti
 formulae for 
1(�̂) and 
2(�̂) are very 
ompli
ated fun
tions of� and 
an vary substantially depending on the true value of the parameter�:We give in Table 1 the values of pn
1(�̂) and n
2(�̂), when � = 1; 2; 5; 10and 15; for the following distributions: trun
ated Poisson, von Mises, loggamma and gamma (� here represents k in 
ase iv-b). For the von Mises,log gamma and gamma distributions, there is the greatest departure fromnormality for both n and � small. In Table 2 the values of pn
1(�̂) andn
2(�̂) are given when � = 0:1; 0:2; 0:5; 0:7; 0:9 for the logarithmi
 seriesand zeta distributions and when � = �0:2;�0:1; 0; 0:1; 0:2 for the M
-Cullagh distribution. For the logarithmi
 series distribution, 
1(�̂) (
2(�̂))
hanges from positive (negative) to negative (positive) values when � variesfrom 0 to 1: For the logarithmi
 series, zeta and M
Cullagh distributions,the kurtosis of �̂ is signi�
antly large.
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s, 15, 2001Table 1Skewness (pn
1) and kurtosis (n
2) of MLEs for some distributionstrun
ated Poisson von Mises log gamma gamma� pn
1 n
2 pn
1 n
2 pn
1 n
2 pn
1 n
21 0:6683 �0:9283 2:1268 31:2961 2:0477 12:2297 2:2791 13:46132 0:3407 0:5223 4:1126 76:4142 1:5452 6:3530 1:5605 5:74945 0:3558 0:6409 5:5847 113:8179 0:9700 2:2618 0:9372 1:991410 0:3140 0:1233 5:6833 108:5828 0:6678 1:0289 0:6478 0:946515 0:2582 0:0671 5:6664 106:8515 0:5376 0:6588 0:5249 0:6204Table 2Skewness (pn
1) and kurtosis (n
2) of MLEs for some distributionslogarithmi
 series zeta M
Cullagh� pn
1 n
2 pn
1 n
2 � pn
1 n
20:1 2:5734 �22:7753 4:0105 54:3750 �0:2 4:5171 71:51310:2 0:4213 �21:3393 4:0394 55:4020 �0:1 4:6894 77:30130:5 �2:6839 14:7915 4:2094 61:4948 0 4:8347 82:17600:7 �4:2951 54:0575 4:3761 67:6370 0:1 4:9557 86:21290:9 �6:3359 127:0926 5:4173 101:1454 0:2 5:0557 89:5333It is possible to 
he
k by dire
t 
al
ulation that the formulae for 
1(�̂)and 
2(�̂) are 
orre
t for some distributions whi
h have 
losed-formMLEs;namely: gamma (
ase a), extreme value, normal (
ases viii-a and b) andinverse Gaussian (
ases ix-a and b). The normal N(�; �) distribution withknown varian
e � (
ase viii-b) is the only 
ase for whi
h the moment ratiosvanish, sin
e the MLE �̂ has an exa
t normal distribution. In a few
ases, the distribution of a 
ertain multiple of the MLE �̂ has the samedistribution proposed for the data. It is then possible to obtain by dire
t
al
ulation the moment ratios of �̂ from the 
orresponding moment ratiosof the data. In this situation we have the following 
ase: inverse Gaussianwith known pre
ision parameter � (
ase ix-b) for whi
h the MLE �̂ of themean � has an inverse Gaussian IG(�; n�) distribution with parameters� and n�: The invarian
e property also holds for other distributions, notin
luded in the above examples, su
h as: binomial B(m; �) for whi
h nm�̂has a binomial B(nm; �) distribution and Poisson P (�) where n�̂ has aPoisson P (n�) distribution.For the gamma with known index k and unknown mean (
ase iv-a),extreme value, normal with known mean � and unknown varian
e (
aseviii-a) and inverse Gaussian with known mean and unknown dispersion



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 99parameter (
ase ix-a) distributions, the MLE �̂ is proportional to a 
hi-squared random variable and we 
an easily obtain 
1(�̂) and 
2(�̂) fromthe 
orresponding moment ratios 
1(�2r) = 2p2pr and 
2(�2r) = 12pr of a �2rdistribution.The division of the (pn
1; n
2) plane among the various distributionsfor whi
h 
1(�̂) and 
2(�̂) do not depend on the value of � is shown inFigure 1. Good agreement with normal asymptoti
 theory happens whenthe point (
1; 
2) is 
lose to the origin. Departure of 
1(�̂) and 
2(�̂) fromthe normal value of zero is an indi
ation of nonnormality in the distributionof the MLE �̂:

Figure 1A 
hart relating the distribution of �̂ to the values of pn
1(�̂) and n
2(�̂)4 Graphi
al analysisIt is 
lear from the results in Se
tion 3 that for several distributions 
1(�̂)and 
2(�̂) are not 
onstant but fun
tions of �: We now dis
uss the depen-den
e of these indi
es on � by plotting pn
1(�̂) and n
2(�̂) versus � for thefollowing distributions: trun
ated Poisson, logarithmi
 series, von Mises,M
Cullagh and zeta. These plots are given in Figures 2 through 6, respe
-tively, to shed some light on how di�erent values of � a�e
t the behavior
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s, 15, 2001of the standardized 
umulants of �̂ for these distributions and hen
e thenormal approximation for �̂. Figure 2 shows that pn
1(�̂) and n
2(�̂) be-
ome very small for large values of � for the trun
ated Poisson distributionin agreement with the fa
t that the normal approximation for �̂ is betterwhen � is large. The distribution of �̂ is always positively skewed and isplatykurti
 for (approximately) 0:2567 < � < 1:5123: pn
1(�̂) and n
2(�̂)in
rease quite fast when � ! 0 showing that the normal approximation forthe distribution of �̂ breaks down for very small �: In the 
ase of the loga-rithmi
 series distribution (Figure 3), the absolute skewness and kurtosis of�̂ be
ome very large for values of � 
lose to zero or one and, as might be ex-pe
ted, very marked departures from normality would o

ur in these 
asesfor most sample sizes. In parti
ular, 
1(�̂) vanishes for � around 0:2293and 
2(�̂) vanishes for values of � around 0:0407 and 0:3994: The distribu-tion of �̂ is positively (negatively) skewed for � < 0:2293 (� > 0:2293) andplatykurti
 for 0:0407 < � < 0:3994:The 
ase of the von Mises distribution (Figure 4) shows a rather in-teresting behavior. Both 
urves of pn
1(�̂) and n
2(�̂) in
rease quite fastfor small � and after rea
hing peaks at approximately 4:4586 and 3:7466,respe
tively, de
rease 
ontinuously approa
hing asymptoti
 values around5:67 and 106:85 as � in
reases. This is shown via 
omputational methods.For � > 15, n
2(�̂) has an instable behavior. The distribution of �̂ isalways positively skewed and leptokurti
. Figure 5 displays pn
1(�̂) andn
2(�̂) versus � for the M
Cullagh distribution. Both moment ratios 
1(�̂)and 
2(�̂) are positive and in
rease from 4:002 and 54:067 to 5:657 and108; respe
tively, as � in
reases from �1=2: In fa
t, lim�!1 
1(�̂) =4p2pnand lim�!1 
2(�̂) = 108=n (see Se
tion 5) showing that both moment ra-tios approa
h asymptoti
 levels as � in
reases to 1. Finally, 
onsider thezeta distribution (Figure 6). For small values of �; it 
an be shown (seealso Se
tion 5) that lim�!0 
1(�̂) = 4pn and lim�!0 
2(�̂) =54n : However, themoment ratios 
1(�̂) and 
2(�̂) diverge to 1 as � be
omes large. Figures 5and 6 show that the normal approximation for the distribution of �̂ deteri-orates when � in
reases for the M
Cullagh and zeta distributions. In fa
t,be
ause of the large kurtosis for any �; the distribution of �̂ is far from thenormal distribution for these 
ases ex
ept if n is very large.
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Figure 6Zeta Distribution5 Con
luding remarksWe derive simple formulae for the asymptoti
 skewness 
1(�̂) and kurtosis
2(�̂) of the maximum likelihood estimator �̂ in the one-parameter expo-nential model. We apply the formulae to a number of distributions, thusgiving 
losed-form expressions for these moment ratios for the purposes of
omputing �rst-order 
on�den
e intervals for � from the normal distribu-tion of �̂. We also review two se
ond-order methods to obtain improved
on�den
e intervals for � when the normal approximation for the distribu-tion of �̂ is probably bad. A graphi
al analysis that shows the dependen
eof these moment ratios on � is performed for some distributions. Thisanalysis is useful to examine to whi
h intervals of the parameter spa
e
orrespond smaller values of j 
1(�̂) j and j 
2(�̂) j in order to guaranteeapproximate normality for the distribution of �̂: The distribution of theMLE for all of the given distributions (other than the normal) will havesome degree of departure from normality. For some distributions, it maybe possible to spe
ify intervals of � for whi
h the distribution of �̂ is morelikely to departure from normality.The knowledge of 
1(�̂) and 
2(�̂) 
an be used to redu
e skewness andkurtosis of the distribution of �̂ to insigni�
an
e by making the samplesize n large enough. For example, if these moment ratios are less than1=10; then one might 
onsider that approximate normality of �̂ has beena
hieved. From this point of view, it is very simple to re
ommend theminimum value of n if both moment ratios do not depend on �: If this



104 Brazilian Journal of Probability and Statisti
s, 15, 2001is not the 
ase, the 
riti
al sample size needed to make the asymptoti
skewness and kurtosis less than 1=10 
an be evaluated if we have any prioridea of the neighbourhood where the true parameter lies. Two illustrativeexamples are now given. A 
riti
al sample size of 143 would be needed to
ontrol these moment ratios for the von Mises distribution when � < 0:20.Far larger samples may be required whenever � ex
eeds 0:20. The smallestsample size needed for the trun
ated Poisson distribution when � > 0:2 is719; although we require far smaller sample size when � be
omes large.A
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