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86 Brazilian Journal of Probability and Statistis, 15, 2001any normal distributions. Often \peaked" (as ompared with normal) dis-tributions have positive kurtosis, and at-topped-ones have negative kur-tosis.Any distribution expressed in standardized form has zero mean andunit variane. The standardized distributions an be readily ompared inregard to form, its departure from symmetry (skewness) and other qualities,though not of ourse in regard to mean and variane. Commonly usedindies of the shape of a distribution are the moment ratios, namely theindies of skewness 1 and kurtosis 2 de�ned by 1 = �3=�3=22 and 2 =�4=�22; respetively, where �r is the rth umulant of the distribution. Theindies 1 and 2 are widely used as measures of departure from normalitysine 1 = 2 = 0 for the normal distribution. These univariate measuresare onstruted suh that they are invariant under hange of sale andorigin, 1 is a funtion of �3; the lowest umulant measuring symmetry and2 is a funtion of �4; the lowest umulant measuring \peakedness". When1 > 0 (1 < 0) the distribution is positively (negatively) skewed and willhave a longer (shorter) right tail and a shorter (longer) left tail. Clearly,if the distribution is symmetrial, 1 vanishes and therefore its value willgive some indiation of the extent of departure from symmetry. Aordingto van Zwet (1964), if we transform Y to '(Y ) then we inrease right-skewness if ' is onvex, while we derease right-skewness if ' is onave.Therefore, '(Y ) will have a greater or smaller skewness oeÆient thanY if ' is onvex or onave. Distributions for whih 2 = 0 are alledmesokurti. The distributions for whih 2 > 0 are alled leptokurti andthose for whih 2 < 0 are alled platykurti. The leptokurti distributionhas a sharper peak at the mode and more extended tails, whereas theplatykurti distribution is haraterized by a atter top and more abruptterminals than the normal urve. It is impossible to have 21 > 2 + 2 andthus 2 � �2 always. We note that 2 an be interpreted as a nonnormalityadjustment for the variane of (Y � E(Y ))2 sine V arf(Y � E(Y ))2g =�4 + 2�22 = 2�22(1 + 2=2). The moment ratios 1 and 2 have the samevalues for any linear funtion a+ bY with b > 0: When b < 0; the absolutevalues are not altered, but ratios of odd order umulants have their signsreversed.Consider a general uniparametri model f(y; �) indexed by an unknownsalar parameter � 2 �; where � is an open set of IR: Let y be the data ve-tor of n observations whih are assumed independent identially distributedwith log likelihood for a single observation de�ned by l(�; y) = log f(y; �):We know that the maximum likelihood estimator (MLE) �̂ of an unknownsalar parameter � in regular problems is asymptotially distributed asN(�; (n��1�;�)) with an error of order O(n�1=2); where ��;� = Ef�d2l(�;y)d�2 gis the expeted information for �: Our main purpose here is to obtain sim-ple asymptoti formulae for the indies 1(�̂) and 2(�̂) of the distributionof the MLE �̂ in one-parameter exponential family models up to orders



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 87n�1=2 and n�1; respetively. The values of the indies 1(�̂) and 2(�̂) anbe used as measures of nonnormality of the distribution of �̂ sine theyvanish when �̂ is normally distributed. These inlude many important andommonly used distributions and only require knowledge of simple fun-tions and their �rst few derivatives with respet to �: It is possible to usethe values of 1(�̂) and 2(�̂) to examine for what exponential models thedistribution of �̂ is loser to the normal distribution. The dependene ofthe �nite-sample distribution of the MLE �̂ on the sample size and on thevalue of � is assessed by numerial and graphial inspetion for some of thedistributions onsidered.The plan of the paper is as follows. In Setion 2 we give simpleasymptoti formulae for the standardized umulants 1(�̂) and 2(�̂) inone-parameter exponential family models. We also disuss the e�ets thatthese standardized umulants have on overage of on�dene intervals for� and review two di�erent higher-order re�nements to obtain highly a-urate small-sample on�dene intervals for this parameter. However, themethod employed here is both simpler and more diret than higher-ordermethods whih give near-exat results. In Setion 3 we present a numberof speial ases thus showing that our main result overs a wide range ofimportant distributions. A graphial analysis that shows the dependeneof the skewness 1(�̂) and kurtosis 2(�̂) on � is performed in Setion 4:Conluding omments are in Setion 5.2 Basi formulaConsider a general uniparametri model indexed by an unknown salarparameter �: Suppose there are n independent and identially distributedobservations y1; : : : ; yn and de�ne the log likelihood funtion for a singleobservation by l(�) = l(�; y). We assume that l(�) satis�es the regularityonditions stated in Rao (1973, p.364) and Sering (1980, p.144). Thederivatives of the log likelihood l(�) are denoted by U� = dl(�)=d�; U�� =d2l(�)=d�2; et., and we use the following notation for their umulants(Lawley, 1956): ��� = E(U��); ���� = E(U���); ��;� = E(U2� ); ��;�� =E(U�U��); ���;�� = E(U2��) � �2��; ����� =E(U����); ��;�;�� = E(U2�U��) ���;����; ��;�;�;� = E(U4� )� 3�2�;� and ��;���=E(U�U���).We denote the derivatives of the umulants with supersripts as �(�)�� =d���=d�; et. All �0s refer to a single observation and are of order O(1).Under these regularity onditions the asymptoti distribution of the MLE�̂ is normal N(�; n�1��1�;�) with an error of order O(n�1=2). The �0s satisfyertain Bartlett identities suh as ��;� = ����; ��;�;� = ������ 3��;�� =2�����3�(�)�� ; ��;��=�(�)�� ����� , ��;�;�;�=�������4��;����6��;�;���3���;��=



88 Brazilian Journal of Probability and Statistis, 15, 2001�3�����+ 8�(�)���� 6�(��)�� + 3���;��; ��;�;��=������2�(�)���+�(��)�� ����;�� , et.(see Lawley, 1956).Let �r(�̂) = Ef(�̂��)rg for r = 3 and 4 be the third and fourth entralmoments of �̂; respetively. Using the general formulae for �3(�̂) and �4(�̂)given by Shenton and Bowman (1963, equations (17)-(17d); 1977) andsome Bartlett identities, whih usually simplify the omputation of the�0s, we an express the third and fourth entral moments of �̂ to ordersn�2 and n�3, respetively, by�3(�̂) = 3�(�)�� � ����n2�3�;� (2.1)and �4(�̂) = 3n2�2�;� � 9��;�;�;� + 36��;�;�� + 10��;���n3�4�;�+54�(�)2�� � 3�2��� � 24�����(�)��n3�5�;� : (2.2)Equations (2.1) and (2.2) are in agreement with the formulae in Peersand Iqbal (1985) who give the asymptoti expansions of the seond, thirdand fourth umulants of the MLE for a general p�dimensional model,p > 1.The third umulant of �̂ is simply �3(�̂) = �3(�̂) whereas the fourthumulant of �̂ to order O(n�3) is given by the last two terms in equation(2.2) sine �4(�̂) = �4(�̂)� 3V ar(�̂)2: Our aim here is to give formulae forthe skewness �3(�̂) and kurtosis �4(�̂) of �̂ in the one-parameter exponentialmodel whih are algebraially more appealing for appliations than thegeneral formulae (2.1) and (2.2). Unlike these formulae, our results an bereadily used by applied researhers sine they only require trivial operationson suitably de�ned funtions and their derivatives.Let Y1; : : : ; Yn be a set of n independent and identially distributedrandom variables with probability or density funtion in the one-parameterexponential family, that is,f(y; �) = 1�(�)expf��(�)d(y) + v(y)g; (2.3)where � is a salar parameter, �(:); �(:); d(:) and v(:) are known funtionsand � 2 �; � being an open set of IR. We also assume that the supportof f(y; �) does not depend on the unknown parameter � and that �(:) and�(:) have ontinuous �rst four derivatives with respet to �; and that �



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 89is positive valued. Further, we require that d�(�)=d� and d�(�)=d� aredi�erent from zero for all values of � 2 �; where �(�) = E f�d(y)g isgiven by �(�) = d�(�)d� (�(�)d�(�)d� )�1: From now on we omit the dependeneof �(�), �(�) and �(�) on � with primes denoting derivatives with respetto the unknown parameter �.Many ommonly used distributions in applied researh are speial asesof (2.3). Also, this family of distributions enjoys important mathematialproperties; see Bikel and Doksum (1977) and Barndor�-Nielsen (1978). Asis well known exponential family models allow for a uni�ed treatment ofseveral important distributions and have a number of interesting statistialproperties for estimation, testing and inferene problems.Let y1; : : : ; yn be the data set of n observations from (2.3). The max-imum likelihood estimator (MLE) �̂ of � omes from n�1Pni=1 d(yi) =��(�̂) if the solution to this equation belongs to �. For several impor-tant distributions in (2.3) the MLE �̂ annot be expressed as an expliitfuntion of the data. To irumvent this problem we usually use iterativetehniques to derive approximate solutions to the exat MLE.Bias orretion for the MLE �̂ is disussed by Firth (1993). Ferrari etal. (1996) obtained the bias and variane of the MLE �̂ in the exponentialfamily (2.3) up to order n�2. Here, \to order n�p" means that terms oforder smaller than n�p are negleted. The expressions for the bias andvariane of �̂ only require knowledge of �(�) and �(�) and their �rst �vederivatives with respet to �: Cribari-Neto et al. (1998) give losed-formexpressions for the seond and third order biases of �̂ for a number of distri-butions in (2.3). Cordeiro et al. (1999) proposed a pivotal quantity whihis a funtion of �̂ and whose distribution is standard normal up to ordern�3=2. The proposed pivot takes the form of a polynomial transformationof the standardized MLE of at most third degree. In this setion we giveasymptoti formulae for the standardized skewness and kurtosis of the dis-tribution of the MLE �̂ in the one-parameter exponential family (2.3) upto orders n�1=2 and n�1; respetively. In the next setion we use theseformulae to obtain approximate losed-form expressions for the skewnessand kurtosis of �̂ for a number of important distributions in this family.Now, the log likelihood l(�) = l(�; y) for the model (2.3) is l(�) =��(�)d(y) � log �(�) + v(y): From the �rst four derivatives of l(�) withrespet to � and using the Bartlett identities we obtain: ��;� = �0�0; ���� =�2�00�0 � �0�00; �(�)�� = ��00�0 � �0�00; ��;�� = �00�0; ��;�;� = �0�00 � �00�0;��;��� = �000�0; ��;�;�� = �00�00 � �002�0=�0 and ��;�;�;� = ��000�0 � 3�00�00 +�0�000 + 3�002�0=�0: Finally, replaing these umulants in the expressions



90 Brazilian Journal of Probability and Statistis, 15, 2001(2.1) and (2.2), we get after some algebra�3(�̂) = �2�0�00 � �00�0n2(�0�0)3 (2.4)and �4(�̂) = 27(�0�00)2 � 6(�00�0)2 + 24�00�0�00�0n3(�0�0)5��000�0�0 + 9�00�0�00 + 9�02�000 � 9�002�0n3�05�04 : (2.5)More onvenient quantities than �3(�̂) and �4(�̂) for ertain purposesare the standardized umulants 1(�̂) = �3(�̂)=V ar(�̂)3=2 and 2(�̂) =�4(�̂)=V ar(�̂)2; where V ar(�̂) = 1n�0�0 is the asymptoti variane of �̂: From(2.4) and (2.5) we then obtain the standardized umulants 1(�̂) and 2(�̂)to orders n�1=2 and n�1; respetively, as1(�̂) = �2�0�00 � �00�0pn(�0�0p�0�0) (2.6)and2(�̂) = 27(�0�00)2 + 3(�00�0)2 + 15�00�0�00�0 � �0�0(�000�0 + 9�0�000)n(�0�0)3 : (2.7)Some features of the formulae (2.4){(2.7) are noteworthy. First, the asymp-toti expressions for the skewness and kurtosis of the distribution of theMLE �̂ are now very easy to ompute for any exponential family model.They depend on the model through the funtions �(�) and �(�) and their�rst three derivatives with respet to �: Seond, although the alulationof �3(�̂); �4(�̂); 1(�̂) and 2(�̂) is straightforward for any distribution in(2.3), it is rather diÆulty to explain the general strutures of their for-mulae. The main diÆulty in interpreting these formulae is that theirindividual terms are not invariant under reparameterization and thereforethey have no geometri interpretation whih is independent of the oor-dinate system hosen. Third, by entering equations (2.6) and (2.7) intoa omputer algebra system suh as MATHEMATICA (Wolfram, 1996) orMAPLE (Abell and Braselton, 1994), one an obtain the standardized u-mulants 1(�̂) and 2(�̂) for several models with minimal e�ort (see Setion3). Further, a simple appliation of our method an be performed easilyby hand using diretly equations (2.6) and (2.7), although appliation ofnear-exat higher-order methods usually require omputer algebra. Fourth,



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 91when �(�) = �; whih orresponds to the natural exponential family, 1(�̂)and 2(�̂) redue to 1(�̂) = �2�00�0pn�0 (2.8)and 2(�̂) = 27�002 � 9�0�000n�03 ; (2.9)where �(�) = d log �(�)=d�: Finally, if the distribution of �̂ is approxi-mately normal, both oeÆients 1(�̂) and 2(�̂) should be lose to zeroand departure from this value is evidene to the ontrary.Often one is interested in the estimation of a funtion of �; say � = g(�);whih does not depend on n. One an reparameterize the model in termsof � and then use the results (2.6){(2.7) to obtain the skewness 1(�̂) andkurtosis 2(�̂ ) of the distribution of the MLE �̂ = g(�̂). Alternatively, wean express 1(�̂ ) and 2(�̂) as funtions of the standardized umulants1(�̂) and 2(�̂) of �̂: After some algebra, we obtain1(�̂) = 1(�̂) + 3� 00pn�0�0and2(�̂ ) = 2(�̂) + �42� 00(�0�00)� 18� 00(�00�0) + 25� 002(�0�0) + 10� 000� 0(�0�0)n(�0�0)2 :Formulae (2.6) and (2.7) are useful in telling when it is safe to baseinferene on the asymptoti normal distribution of the MLE �̂ and toompute �rst-order on�dene intervals for � from �̂ � 1:96(n��;�)�1=2: Inreal-life situations, if the values of the skewness and kurtosis indies 1(�̂)and 2(�̂) are large, the �rst-order normal approximation for �̂ will beprobably poor in samples of small to moderate size, and therefore maydeliver inaurate inferene. In these ases, we have to work with seond-order distributional re�nements for the umulative distribution funtionof the MLE �̂. Two di�erent methods of adjustments to improve theasymptoti standard normal approximation to the distribution of �̂ areonsidered below. Despite their usefulness, the improved intervals basedon these methods entail more algebra than those intervals based on theasymptoti normal N(0; ��1�;�) distribution of pn(�̂ � �):2.1 The Edgeworth expansionThe seond-order asymptoti distribution theory assoiated with Edgeworthexpansion for the distribution funtion of �̂ is summarized by Hill and Davis



92 Brazilian Journal of Probability and Statistis, 15, 2001(1968). Provided some regularity onditions hold, they showed that the dis-tribution funtion of the pivot statisti S = pn(�̂��)�1=2�;� is given to orderO(n�1) byP (S � z; y) = �(z)� �(z) [f6�1 + �3h2(z)g =6+f360�2h1(z)+30�4h3(z)+�6h5(z)g =24℄ ; (2.10)where �(:) and �(:) are the umulative distribution funtion and the densityfuntion of the standard normal variate, respetively, and hj(z) is the jthdegree Hermite polynomial. The oeÆients in (2.10) are given by �1 =(n��;�)1=2B1(�̂); �2 = n��;�fV2(�̂) + B1(�̂)2g; �3 = 1(�̂); �4 = 2(�̂) +4(n��;�)1=2B1(�̂)1(�̂) and �6 = 101(�̂)2; where B1(�̂) and V2(�̂) are then�1 and n�2 terms in the bias and variane of �̂; respetively. Expressionsfor B1(�̂) and V2(�̂) under the one-parameter exponential model (2.3) aregiven by Ferrari et al. (1996). The oeÆients �1 and �3 are of orderO(n�1=2) whereas �2; �4 and �6 are of order O(n�1).Con�dene intervals for � omputed from (2.10), whih take into a-ount the formulae of B1(�̂); V2(�̂); 1(�̂) and 2(�̂); an be viewed as mean-ingful improvements over the usual on�dene intervals f�; j S j� zg; wherez is the appropriate upper point of a standard normal distribution. Equa-tion (2.10) shows learly that the bias term B1(�̂) and skewness 1(�̂) a�etboth the orreted terms of orders O(n�1=2) and O(n�1) in the distribu-tion funtion of S. However, the kurtosis 2(�̂) only a�ets the orretionterm of order O(n�1): It is then lear from the degrees of the polynomialsin (2.10) that the inferene based on the asymptoti normal distributionof �̂ an be innaurate in the tails of the distribution of S; when j z j isnot very small, if any of the basi quantities B1(�̂); 1(�̂) and 2(�̂); whihorrespond to terms involving z3 and z5, is large.2.2 The modi�ed diret likelihoodWe now outline the modi�ed diret likelihood method that yields approx-imate interval probabilities of one-dimensional distribution funtions. Un-der a one-dimensional exponential family model, the umulative distribu-tion funtion of �̂ an be approximated by (Barndor�-Nielsen, 1990; Fraser,1990; Barndor�-Nielsen and Cox, 1994, Chapter 6)P (�̂ � �; y) = �(r) + �(r)(1r � 1u) +O(n�3=2); (2.11)where r is the modi�ed diret likelihood given byr = sgn(�̂ � �) h2nl(�̂; y)� l(�; y)oi1=2 :



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 93Here l(�; y) is the log likelihood funtion and the likelihood quantity u iseasily alulated fromu = ��l(�; y)�y ����̂ � �l(�; y)�y � k(�̂)�1j(�̂)1=2;where j(�) = ��2l(�;y)��2 is the observed information and k(�) = �2l(�;y)���y :The derivation of (2.11) using saddlepoint tehniques is reviewed inBarndor�-Nielsen and Cox (1994, Chapter 6). Note that r is the signedsquare root of the log likelihood ratio statisti, and u is the standard-ized MLE. Here, u is the Wald statisti only if the exponential familyis a natural one, i.e. if �(�) = � and d(y) = y!. To �rst order both rand u have standard normal distributions and the orretion term involv-ing �(:) in (2.11) provides the improvement from O(n�1=2) to O(n�3=2):Approximation (2.11) an be unstable near � = �̂ and some are mustbe taken if the distribution funtion is to be omputed over its entiredomain. Con�dene intervals alulated from (2.11) are highly auratein possibly very small samples and they typially have muh better ov-erage than those based on the asymptoti distribution of �̂: For model(2.3) we obtain r = sgn(�̂ � �) �n�(�)� �(�̂)oPni=1 d(yi) + n log� �(�)�(�̂)�� ;u = f�(�)��(�̂)gPni=1 d0(yi)k(�̂)�1j(�̂)1=2; k(�) = ��0(�)Pni=1 d0(yi); andj(�) = n�0(�)�0(�); where d0(y) = �d(y)�y :3 Speial asesIn this setion, we use equations (2.6) and (2.7) to obtain approximateexpressions for the skewness 1(�̂) and kurtosis 2(�̂) of the distributionof the MLE �̂ for a number of important distributions that belong to theone-parameter exponential family (2.3). Twelve speial distributions areonsidered and we give losed-form expressions for the standardized thirdand fourth umulants of the MLE �̂. The MAPLE ode used to performthe algebrai alulations is available on a web page (www.de.ufpe.br/�ysneiros/) so it an be download if anyone wants it. Distributions (i)through (iii) involve disrete random variables whereas ontinuous randomvariables are onsidered in ases (iv) through (xii). The speial ases listedbelow have a wide range of pratial appliations in various �elds suh asengineering, biology, mediine, eonomis, among others (Johnson, Kotzand Balakrishnan, 1994, 1995; Johnson, Kotz and Kemp, 1992). Weonsidered below some distributions whose values of 1(�̂) and 2(�̂) donot depend on � and some distributions for whih these values are veryompliated funtions of �. The formulae derived whih yield onstants are



94 Brazilian Journal of Probability and Statistis, 15, 2001ompared in a hart given in Figure 1. For those distributions whose valuesof 1(�̂) and 2(�̂) are ompliated funtions of �; we show graphially thedependene of these indies on � in Setion 4:(i) Trunated Poisson (� > 0; y = 1; 2; : : :): �(�) = � log �; �(�) =e�(1 � e��); d(y) = y; v(y) = � log(y!); �̂ is obtained as solution ofthe equation 1=f�̂(1� e��̂)g = 1=y;1(�̂) = (�1 + e��) f(2�2 � 3� + 2)e�� + (2�2 + 3� � 1)e�2� � 1gp�n (e�� � � 1 + e��)3� (�1 + e��)2 ;2(�̂) = �f1 + e��(�4 + 28� � 42�2 + 9�3) + e�2�(6� 84� + 121�2�39�3 + 18�4) + e�3�(�4 + 84� � 116�2 � 27�3 + 18�4)+e�4�(1� 28�+37�2+57�3+18�4)g.f�n(e��� � 1 + e��)3g:(ii) Logarithmi series (0 < � < 1; y = 1; 2; : : :): �(�) = �log �; �(�) =� log(1��), d(y) = y; v(y) = � log y; �̂ is obtained as solution of theequation y = ��̂=f(1 � �̂) log(1� �̂)g;1(�̂) = �flog(1� �) (�1 + �) [3 �2 log(1� �) + 5 � log2(1� �)+4 �2 + 3 � log(1� �)� log2(1� �)℄g.f�n [� + log3(1� �)℄� (�1 + �)2 log2(1� �)g1=2;2(�̂) = �flog4(1� �) + 232 log2(1� �) �3 + 116 log3(1� �) �2+78 �3 log(1� �)� 5 log2(1� �) �2 � 28 � log3(1� �)+85 �2 log4(1� �) + 84 �4 log(1� �)� 32 log4(1� �) �+25 �4 log2(1� �) + 83 �3 log3(1� �) + 54 �4g.f� n [� + log(1� �)℄3g:(iii) Zeta (� > 0; y = 1; 2; : : :): �(�) = � + 1; �(�) = Zeta(� + 1); d(y) =log y, v(y) = 0; where �(�) is the Riemann zeta funtion, i.e., �(�) =P1i=1 i�(�+1) (see, e.g., Patterson, 1988) and g=g(�)=d logZeta(�+1)=d�, �̂ is obtained as solution of the equation g(�̂)=�n�1�ni=1 log yi,1(�̂) = �2g00png03 ; 2(�̂) = �9(g000 g0 � 3 g002)n g03 :



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 95(iv) Gamma (k > 0; � > 0; y > 0):(a) k known: �(�) = ��1; �(�) = �k; d(y) = ky; v(y) = (k�1) log y�logf�(k)g; where �(�) is the gamma funtion , �̂ = y;1(�̂) = 2pkn ; 2(�̂) = 6n k :(b) � known: �(k) = 1�k; �(k) = ��k�(k); d(y) = log y; v(y) = ��y;k̂ is obtained as solution of the equation  ( k̂) = n�1 log (�n=Qni=1 yi),where  (�) is the digamma funtion,1(k̂) = �2 00( k)pn 03(k) ; 2(k̂) = 9f3 002( k)�  000( k) 0( k)gn 03( k) :(v) Rayleigh (� > 0; y > 0): �(�) = ��2; �(�) = �2; d(y) = y2; v(y) =log(2y);�̂ = �n�1Pni=1 y2i �1=2 ;1(�̂) = 12pn; 2(�̂) = � 34n:(vi) Extreme value (�1 < � < 1; � > 0; � known, �1 < y < 1):�(�) = exp(�=�); �(�) = � exp(��=�); d(y) = exp(�y=�); v(y) =�y=�, �̂ = �� log �n�1Pni=1 exp(�yi=�)	 ;1(�̂) = 1pn; 2(�̂) = 5n:(vii) Lognormal (� > 0; �1 < � < 1, � known, y > 0): �(�) =��2; �(�) = �; d(y) = (log y � �)2=2; v(y) = � log y � flog(2�)g=2,�̂ = �n�1Pni=1(log yi � �)2�1=2 ;1(�̂) = 1p2n; 2(�̂) = �32n :(viii) Normal (� > 0; �1 < � <1; �1 < y <1):(a) � known: �(�) = (2�)�1; �(�) = �1=2; d(y) = (y � �)2; v(y) =�flog(2�)g=2, �̂ = n�1Pni=1 (yi � �)2 ;1(�̂) = 2p2pn ; 2(�̂) = 12n :



96 Brazilian Journal of Probability and Statistis, 15, 2001(b) � known: �(�) = ��=�; �(�) = expf�2=(2�)g; d(y) = y; v(y) =�fy2 + log(2��)g=2, �̂ = y;1(�̂) = 0; 2(�̂) = 0:(ix) Inverse Gaussian (� > 0; � > 0; y > 0):(a) � known: �(�) = ��1; �(�) = �1=2; d(y) = (y��)2=(2�2y); v(y) =�flog(2� y3)g=2, �̂ = n hPni=1 n(yi � �)2 = �yi�2�oi ;1(�̂) = 2p2pn ; 2(�̂) = 12n :(b) � known: �(�) = �(2�2)�1; �(�) = exp(��=�); d(y) = y; v(y) =��(2y)�1 + [logf�=(2� y3)g℄=2, �̂ = y;1(�̂) = 3p�pn� ; 2(�̂) = 15�n � :(x) MCullagh (� > �1=2; �1 � � � 1, � known, 0 < y < 1):�(�) = ��; �(�) = 4��B(�+1=2; 1=2); d(y) = log[y(1�y)=f(1+�)2�4� yg℄; v(y) = �[logfy(1 � y)g℄=2; where B(�; �) is the beta funtion(see MCullagh, 1989), �̂ is obtained as solution of the equation  ( �̂+1=2)� (�̂+1)=log 4�n�1Pni=1 loghfyi(1� yi)g=n(1+�)2 � 4�yioi,1(�̂) = 2f 00( 1 + �)�  00( � + 1=2)gqf 0( � + 1=2) �  0(1 + �)g3 n;2(�̂) = 9f� 000(1 + �) 0( � + 1=2) +  000( 1 + �) 0( 1 + �)+ 000( � + 1=2) 0 (� + 1=2) �  000(� + 1=2) 0 (1 + �)�3 002( 1 + �) + 6 00( 1 + �) 00( � + 1=2)�3 002( � + 1=2)g.n f 0( 1 + �)�  0( � + 1=2)g3:(xi) von Mises (� > 0; 0 < � < 2�, � known, 0 < y < 2�): �(�) =��; �(�) = 2� I0(�); d(y) = os(y � �); v(y) = 0; where Iv(�) is themodi�ed Bessel funtion of �rst kind and vth order, and r = r(�) =I 00(�)=I0(�), �̂ = r�1 �n�1Pni=1 os (yi � �)	 ;1(�̂) = �2r00pn r03 ; 2(�̂) = �9(r000 r0 � 3 r002)n r03 :



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 97(xii) Log gamma ( � > 0; �1 < � <1;�1 < y <1):a) � known : �(�) = ��; �(�) = ��1�(�); d(y) = y � � � exp(y ��); v(y) = 0, where �(:) is the gamma funtion, �̂ is obtained assolution of the equation  (�̂) � �̂�1 � � = y � n�1Pni=1 eyi��,1(�̂) = 2f2 �  00( �) �3gqn f1 +  0(�) �2g3 ;2(�̂) = 9f� 000( �) �4 �  000( �) �6  0( �) + 6� 6 0( �) �2n f1 +  0( �) �2g3�12 00( �) �3 + 3 002( �) �6gn f1 +  0( �) �2g3 :b) � known : �(�) = exp(��); �(�)=exp(��); d(y)=� exp(y); v(y) =�y + log � � logf�(�)g, �̂ = log �n�1Pni=1 eyi� ;1(�̂) = � 1pn� ; 2(�̂) = 5n � :For some of the speial ases onsidered here, the asymptoti formulaefor the skewness 1(�̂) and kurtosis 2(�̂) of the standardized distributionof �̂ are very simple and for some of them the formulae do not even dependon �: For these ases, it is easier to verify the degree of departure from nor-mality of the standardized distribution of �̂: In some ases, however, theasymptoti formulae for 1(�̂) and 2(�̂) are very ompliated funtions of� and an vary substantially depending on the true value of the parameter�:We give in Table 1 the values of pn1(�̂) and n2(�̂), when � = 1; 2; 5; 10and 15; for the following distributions: trunated Poisson, von Mises, loggamma and gamma (� here represents k in ase iv-b). For the von Mises,log gamma and gamma distributions, there is the greatest departure fromnormality for both n and � small. In Table 2 the values of pn1(�̂) andn2(�̂) are given when � = 0:1; 0:2; 0:5; 0:7; 0:9 for the logarithmi seriesand zeta distributions and when � = �0:2;�0:1; 0; 0:1; 0:2 for the M-Cullagh distribution. For the logarithmi series distribution, 1(�̂) (2(�̂))hanges from positive (negative) to negative (positive) values when � variesfrom 0 to 1: For the logarithmi series, zeta and MCullagh distributions,the kurtosis of �̂ is signi�antly large.



98 Brazilian Journal of Probability and Statistis, 15, 2001Table 1Skewness (pn1) and kurtosis (n2) of MLEs for some distributionstrunated Poisson von Mises log gamma gamma� pn1 n2 pn1 n2 pn1 n2 pn1 n21 0:6683 �0:9283 2:1268 31:2961 2:0477 12:2297 2:2791 13:46132 0:3407 0:5223 4:1126 76:4142 1:5452 6:3530 1:5605 5:74945 0:3558 0:6409 5:5847 113:8179 0:9700 2:2618 0:9372 1:991410 0:3140 0:1233 5:6833 108:5828 0:6678 1:0289 0:6478 0:946515 0:2582 0:0671 5:6664 106:8515 0:5376 0:6588 0:5249 0:6204Table 2Skewness (pn1) and kurtosis (n2) of MLEs for some distributionslogarithmi series zeta MCullagh� pn1 n2 pn1 n2 � pn1 n20:1 2:5734 �22:7753 4:0105 54:3750 �0:2 4:5171 71:51310:2 0:4213 �21:3393 4:0394 55:4020 �0:1 4:6894 77:30130:5 �2:6839 14:7915 4:2094 61:4948 0 4:8347 82:17600:7 �4:2951 54:0575 4:3761 67:6370 0:1 4:9557 86:21290:9 �6:3359 127:0926 5:4173 101:1454 0:2 5:0557 89:5333It is possible to hek by diret alulation that the formulae for 1(�̂)and 2(�̂) are orret for some distributions whih have losed-formMLEs;namely: gamma (ase a), extreme value, normal (ases viii-a and b) andinverse Gaussian (ases ix-a and b). The normal N(�; �) distribution withknown variane � (ase viii-b) is the only ase for whih the moment ratiosvanish, sine the MLE �̂ has an exat normal distribution. In a fewases, the distribution of a ertain multiple of the MLE �̂ has the samedistribution proposed for the data. It is then possible to obtain by diretalulation the moment ratios of �̂ from the orresponding moment ratiosof the data. In this situation we have the following ase: inverse Gaussianwith known preision parameter � (ase ix-b) for whih the MLE �̂ of themean � has an inverse Gaussian IG(�; n�) distribution with parameters� and n�: The invariane property also holds for other distributions, notinluded in the above examples, suh as: binomial B(m; �) for whih nm�̂has a binomial B(nm; �) distribution and Poisson P (�) where n�̂ has aPoisson P (n�) distribution.For the gamma with known index k and unknown mean (ase iv-a),extreme value, normal with known mean � and unknown variane (aseviii-a) and inverse Gaussian with known mean and unknown dispersion



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 99parameter (ase ix-a) distributions, the MLE �̂ is proportional to a hi-squared random variable and we an easily obtain 1(�̂) and 2(�̂) fromthe orresponding moment ratios 1(�2r) = 2p2pr and 2(�2r) = 12pr of a �2rdistribution.The division of the (pn1; n2) plane among the various distributionsfor whih 1(�̂) and 2(�̂) do not depend on the value of � is shown inFigure 1. Good agreement with normal asymptoti theory happens whenthe point (1; 2) is lose to the origin. Departure of 1(�̂) and 2(�̂) fromthe normal value of zero is an indiation of nonnormality in the distributionof the MLE �̂:

Figure 1A hart relating the distribution of �̂ to the values of pn1(�̂) and n2(�̂)4 Graphial analysisIt is lear from the results in Setion 3 that for several distributions 1(�̂)and 2(�̂) are not onstant but funtions of �: We now disuss the depen-dene of these indies on � by plotting pn1(�̂) and n2(�̂) versus � for thefollowing distributions: trunated Poisson, logarithmi series, von Mises,MCullagh and zeta. These plots are given in Figures 2 through 6, respe-tively, to shed some light on how di�erent values of � a�et the behavior



100 Brazilian Journal of Probability and Statistis, 15, 2001of the standardized umulants of �̂ for these distributions and hene thenormal approximation for �̂. Figure 2 shows that pn1(�̂) and n2(�̂) be-ome very small for large values of � for the trunated Poisson distributionin agreement with the fat that the normal approximation for �̂ is betterwhen � is large. The distribution of �̂ is always positively skewed and isplatykurti for (approximately) 0:2567 < � < 1:5123: pn1(�̂) and n2(�̂)inrease quite fast when � ! 0 showing that the normal approximation forthe distribution of �̂ breaks down for very small �: In the ase of the loga-rithmi series distribution (Figure 3), the absolute skewness and kurtosis of�̂ beome very large for values of � lose to zero or one and, as might be ex-peted, very marked departures from normality would our in these asesfor most sample sizes. In partiular, 1(�̂) vanishes for � around 0:2293and 2(�̂) vanishes for values of � around 0:0407 and 0:3994: The distribu-tion of �̂ is positively (negatively) skewed for � < 0:2293 (� > 0:2293) andplatykurti for 0:0407 < � < 0:3994:The ase of the von Mises distribution (Figure 4) shows a rather in-teresting behavior. Both urves of pn1(�̂) and n2(�̂) inrease quite fastfor small � and after reahing peaks at approximately 4:4586 and 3:7466,respetively, derease ontinuously approahing asymptoti values around5:67 and 106:85 as � inreases. This is shown via omputational methods.For � > 15, n2(�̂) has an instable behavior. The distribution of �̂ isalways positively skewed and leptokurti. Figure 5 displays pn1(�̂) andn2(�̂) versus � for the MCullagh distribution. Both moment ratios 1(�̂)and 2(�̂) are positive and inrease from 4:002 and 54:067 to 5:657 and108; respetively, as � inreases from �1=2: In fat, lim�!1 1(�̂) =4p2pnand lim�!1 2(�̂) = 108=n (see Setion 5) showing that both moment ra-tios approah asymptoti levels as � inreases to 1. Finally, onsider thezeta distribution (Figure 6). For small values of �; it an be shown (seealso Setion 5) that lim�!0 1(�̂) = 4pn and lim�!0 2(�̂) =54n : However, themoment ratios 1(�̂) and 2(�̂) diverge to 1 as � beomes large. Figures 5and 6 show that the normal approximation for the distribution of �̂ deteri-orates when � inreases for the MCullagh and zeta distributions. In fat,beause of the large kurtosis for any �; the distribution of �̂ is far from thenormal distribution for these ases exept if n is very large.
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Figure 6Zeta Distribution5 Conluding remarksWe derive simple formulae for the asymptoti skewness 1(�̂) and kurtosis2(�̂) of the maximum likelihood estimator �̂ in the one-parameter expo-nential model. We apply the formulae to a number of distributions, thusgiving losed-form expressions for these moment ratios for the purposes ofomputing �rst-order on�dene intervals for � from the normal distribu-tion of �̂. We also review two seond-order methods to obtain improvedon�dene intervals for � when the normal approximation for the distribu-tion of �̂ is probably bad. A graphial analysis that shows the dependeneof these moment ratios on � is performed for some distributions. Thisanalysis is useful to examine to whih intervals of the parameter spaeorrespond smaller values of j 1(�̂) j and j 2(�̂) j in order to guaranteeapproximate normality for the distribution of �̂: The distribution of theMLE for all of the given distributions (other than the normal) will havesome degree of departure from normality. For some distributions, it maybe possible to speify intervals of � for whih the distribution of �̂ is morelikely to departure from normality.The knowledge of 1(�̂) and 2(�̂) an be used to redue skewness andkurtosis of the distribution of �̂ to insigni�ane by making the samplesize n large enough. For example, if these moment ratios are less than1=10; then one might onsider that approximate normality of �̂ has beenahieved. From this point of view, it is very simple to reommend theminimum value of n if both moment ratios do not depend on �: If this
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