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Summary

In this paper we derive approximate formulae for the skewness and kurtosis of the
maximum likelihood estimator in the one-parameter exponential family. The key
idea underlying these formulae is that they indicate when the normal approxi-
mation usually employed with maximum likelihood estimators can be misleading
in small samples. We apply our main result to a number of special distributions
of this family. We also use a graphical analysis to examine how the skewness and
kurtosis vary with the true value of the parameter in some special cases.
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1 Introduction

The assumption of symmetry plays a crucial role in many statistical pro-
cedures. The notion of skewness of a distribution is related to a symmetry
property. The most commonly used measure of skewness is the standard-
ized third cumulant. In fact, the classical tests of symmetry make use of
the standardized third sample cumulant measure and a departure from the
normal value of zero then indicates skewness. Intuitively, we think of a
distribution as being skewed if it systematically deviates from symmetrical
form. Kurtosis is a measure of a type of departure from normality. The
kurtosis is given by the standardized fourth cumulant which equals zero for

85



86 Brazilian Journal of Probability and Statistics, 15, 2001

any normal distributions. Often “peaked” (as compared with normal) dis-
tributions have positive kurtosis, and flat-topped-ones have negative kur-
tosis.

Any distribution expressed in standardized form has zero mean and
unit variance. The standardized distributions can be readily compared in
regard to form, its departure from symmetry (skewness) and other qualities,
though not of course in regard to mean and variance. Commonly used
indices of the shape of a distribution are the moment ratios, namely the

indices of skewness y; and kurtosis 5 defined by v, = Iﬁlg/ﬁg/Z and v, =
k4/K3, respectively, where , is the 7th cumulant of the distribution. The
indices y; and 79 are widely used as measures of departure from normality
since y; = 72 = 0 for the normal distribution. These univariate measures
are constructed such that they are invariant under change of scale and
origin, ; is a function of k3, the lowest cumulant measuring symmetry and
vz is a function of k4, the lowest cumulant measuring “peakedness”. When
71 > 0 (71 < 0) the distribution is positively (negatively) skewed and will
have a longer (shorter) right tail and a shorter (longer) left tail. Clearly,
if the distribution is symmetrical, «y; vanishes and therefore its value will
give some indication of the extent of departure from symmetry. According
to van Zwet (1964), if we transform Y to ¢(Y) then we increase right-
skewness if ¢ is convex, while we decrease right-skewness if ¢ is concave.
Therefore, ¢(Y) will have a greater or smaller skewness coefficient than
Y if ¢ is convex or concave. Distributions for which 9 = 0 are called
mesokurtic. The distributions for which v > 0 are called leptokurtic and
those for which 5 < 0 are called platykurtic. The leptokurtic distribution
has a sharper peak at the mode and more extended tails, whereas the
platykurtic distribution is characterized by a flatter top and more abrupt
terminals than the normal curve. It is impossible to have ¥? > 2 + v, and
thus 9 > —2 always. We note that v, can be interpreted as a nonnormality
adjustment for the variance of (Y — E(Y))? since Var{(Y — E(Y))?} =
k4 + 263 = 263(1 + 72/2). The moment ratios ; and v, have the same
values for any linear function a + bY with b > 0. When b < 0, the absolute
values are not altered, but ratios of odd order cumulants have their signs
reversed.

Consider a general uniparametric model f(y; #) indexed by an unknown
scalar parameter 6 € ©, where © is an open set of IR. Let y be the data vec-
tor of n observations which are assumed independent identically distributed
with log likelihood for a single observation defined by [(6;y) = log f(y;0).

We know that the maximum likelihood estimator (M LE) 6 of an unknown
scalar parameter 6 in regular problems is asymptotically distributed as
2 .
N(0, (nkcg_j)) with an error of order O(n~'/2), where gy = E{—%}
is the expected information for . Our main purpose here is to obtain sim-

ple asymptotic formulae for the indices ; (f) and v2(8) of the distribution
of the MLE 6 in one-parameter exponential family models up to orders



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 87

n~'/2 and n=!, respectively. The values of the indices v (6) and 7,() can
be used as measures of nonnormality of the distribution of 6 since they

vanish when 0 is normally distributed. These include many important and
commonly used distributions and only require knowledge of simple func-
tions and their first few derivatives with respect to 6. It is possible to use

~ ~

the values of v1(f) and () to examine for what exponential models the

~

distribution of 6 is closer to the normal distribution. The dependence of

the finite-sample distribution of the M LE 6 on the sample size and on the
value of 0 is assessed by numerical and graphical inspection for some of the
distributions considered.

The plan of the paper is as follows. In Section 2 we give simple

~ ~

asymptotic formulae for the standardized cumulants y;(0) and 2(f) in
one-parameter exponential family models. We also discuss the effects that
these standardized cumulants have on coverage of confidence intervals for
f and review two different higher-order refinements to obtain highly ac-
curate small-sample confidence intervals for this parameter. However, the
method employed here is both simpler and more direct than higher-order
methods which give near-exact results. In Section 3 we present a number
of special cases thus showing that our main result covers a wide range of
important distributions. A graphical analysis that shows the dependence

of the skewness 7;(f) and kurtosis 72() on 6 is performed in Section 4.
Concluding comments are in Section 5.

2 Basic formula

Consider a general uniparametric model indexed by an unknown scalar
parameter 6. Suppose there are n independent and identically distributed
observations yi,...,y, and define the log likelihood function for a single
observation by [(f) = [(6;y). We assume that [(0) satisfies the regularity
conditions stated in Rao (1973, p.364) and Serfling (1980, p.144). The
derivatives of the log likelihood [(#) are denoted by Uy = di(0)/d6, Uy =
d?1(0)/dh?, etc., and we use the following notation for their cumulants
(Lawley, 1956): rgg = E(Upg), rooo = E(Ugog). ro9 = E(UZ). Koo =
E(UgUyg), kgo00 = E(UZy) — Kig, ko000 = E(Ugogs), K0,0.00 = E(UiUpg) —
Ko 0500 k0,000 = E(Ug) — 315 9 and kg 999 = E(UpUpgo)-
(0)

We denote the derivatives of the cumulants with superscripts as ky, =
dkgg/df, etc. All k's refer to a single observation and are of order O(1).
Under these regularity conditions the asymptotic distribution of the M LFE
0 is normal N (6, n~'x, 5) with an error of order O(n~'/2). The 's satisfy
certain Bartlett identities such as Kgp = —Kgg, K0,0,0 = —Keog — 3K9,00 =

0 0
2/‘»‘999—3%5;9), K900 = ﬁég)—h‘eaa y K0,0,0,0=—Ko909—4K9,000—6K0,0,00 —3K00,00 =
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0)

(0 (06) 0) , (0
o 1 3K00,00, K0,0,00= K000 — 2K 999+ Ky

—3Kggge + 8/699)9— 6y
(see Lawley, 1956).
Let pr(0) = E{(# —6)"} for r = 3 and 4 be the third and fourth central

—FKgg,99 > €tc.

moments of 6, respectively. Using the general formulae for p3(0) and u4(6)
given by Shenton and Bowman (1963, equations (17c)-(17d); 1977) and
some Bartlett identities, which usually simplify the computation of the

K 5 we can express the third and fourth central moments of 6 to orders

n~? and n~3, respectively, by

A 3/%'4(9%) — Koo
p3() = — 55— (2.1)
n ﬁ:gye
and
A 3 9%9,0,0,0 + 36k9.9,00 + 10K9 900
pa(0) = S5 - 3.4

n ﬁ:gye n Kjg’g

2
54k 3K2 . 24kpgerl?)
+ 00 000 0007 g9 ) (22)

3.5
n l‘ﬁ:a’g

Equations (2.1) and (2.2) are in agreement with the formulae in Peers
and Igbal (1985) who give the asymptotic expansions of the second, third
and fourth cumulants of the M LE for a general p—dimensional model,
p>1

The third cumulant of 6 is simply k3(f) = u3(f) whereas the fourth
cumulant of § to order O(n~3) is given by the last two terms in equation
(2.2) since k4(0) = p4(0) — 3Var(h)?. Our aim here is to give formulae for

the skewness r3(#) and kurtosis k4(0) of 6 in the one-parameter exponential
model which are algebraically more appealing for applications than the
general formulae (2.1) and (2.2). Unlike these formulae, our results can be
readily used by applied researchers since they only require trivial operations
on suitably defined functions and their derivatives.

Let Y1,...,Y, be a set of n independent and identically distributed
random variables with probability or density function in the one-parameter
exponential family, that is,

1
fy;0) = @efcp{—a(@d(y) +u(y)}, (2.3)

where 0 is a scalar parameter, «(.),((.),d(.) and v(.) are known functions
and 6 € ©, O being an open set of IR. We also assume that the support
of f(y;0) does not depend on the unknown parameter 6 and that «(.) and
¢(.) have continuous first four derivatives with respect to 0, and that ¢



Cysneiros, Santos and Cordeiro: Skewness and kurtosis 89

is positive valued. Further, we require that da(f)/df and dg3(6)/df are
different from zero for all values of # € ©, where 3(0) = E{—d(y)} is

given by () = %(C(G)d‘z—(;))_l. From now on we omit the dependence
of a(f), ¢(f) and () on 6 with primes denoting derivatives with respect

to the unknown parameter 6.

Many commonly used distributions in applied research are special cases
of (2.3). Also, this family of distributions enjoys important mathematical
properties; see Bickel and Doksum (1977) and Barndorff-Nielsen (1978). As
is well known exponential family models allow for a unified treatment of
several important distributions and have a number of interesting statistical
properties for estimation, testing and inference problems.

Let y1,...,yn be the data set of n observations from (2.3). The max-
imum likelihood estimator (MLE) 6 of § comes from n !3""  d(y;) =
—p(0) if the solution to this equation belongs to ©. For several impor-

tant distributions in (2.3) the MLE 6 cannot be expressed as an explicit
function of the data. To circumvent this problem we usually use iterative
techniques to derive approximate solutions to the exact MLE.

Bias correction for the MLE 6 is discussed by Firth (1993). Ferrari et
al. (1996) obtained the bias and variance of the M LE 6 in the exponential
family (2.3) up to order n=2. Here, “to order n~P” means that terms of
order smaller than n™P are neglected. The expressions for the bias and
variance of 6 only require knowledge of a(f) and ¢(6) and their first five
derivatives with respect to . Cribari-Neto et al. (1998) give closed-form

expressions for the second and third order biases of 6 for a number of distri-
butions in (2.3). Cordeiro et al. (1999) proposed a pivotal quantity which

is a function of # and whose distribution is standard normal up to order
n~3/2. The proposed pivot takes the form of a polynomial transformation

of the standardized M LFE of at most third degree. In this section we give
asymptotic formulae for the standardized skewness and kurtosis of the dis-

tribution of the MLE 6 in the one-parameter exponential family (2.3) up

to orders n~ /2 and n 1, respectively. In the next section we use these
formulae to obtain approximate closed-form expressions for the skewness

and kurtosis of 6 for a number of important distributions in this family.

Now, the log likelihood I(f) = [(#;y) for the model (2.3) is I() =
—a(f)d(y) — log((f) + v(y). From the first four derivatives of [(#) with
respect to 6 and using the Bartlett identities we obtain: kg9 = o' B, Kege =

"l ! QN 0 Q! | all} Q! 1 QN "l
—20" — o/ B", wly) = —a"B' — o'B", kggs = o"B, Kggp = o'B" — "B,
_ n ol _ "N n2 nl / _ n Q! "N
k00 = "', kg9 = """ —"*f' /' and kg9 = - B — 3" " +
o' B" + 30" B' /a’. Finally, replacing these cumulants in the expressions
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(2.1) and (2.2), we get after some algebra

—20/,3" _ Oz”ﬁ'

and
R 27(a1611)2 _ 6(0/16/)2 + 24&”&’,6”6,
H4(0) = 3(~! A5
n’ (o' f')
alllalﬁl + 90{”&',6" + gaIQIBHI _ 9a1126/
- n3a/5 34 : (2.5)

~

More convenient quantities than rg(f) and k4(6) for certain purposes

are the standardized cumulants v,() = k3(8)/Var(9)*? and ~y(f) =

k4(0)/Var(0)?, where Var(f) = #,5, is the asymptotic variance of 6. From

~ ~

(2.4) and (2.5) we then obtain the standardized cumulants y;(0) and y2(6)

to orders n~ /2 and n 1, respectively, as
R —20/,3” o 05”,3’
9) = 2.6
71( ) \/ﬁ(alﬁl\/a,—ﬁ,) ( )
and
. 27 alﬁl’ 2 + 3 O{”BI 2 + 15&”&’,6”6, _ O[IBI aIIIIBI + galﬁﬂl
Y2(0) = @F) +3F) ( ). (2.7)

n(oz’,B’)3

Some features of the formulae (2.4)-(2.7) are noteworthy. First, the asymp-
totic expressions for the skewness and kurtosis of the distribution of the

MLE 6 are now very easy to compute for any exponential family model.
They depend on the model through the functions «(f) and () and their
first three derivatives with respect to 6. Second, although the calculation

of us(0), pa(f), v1(0) and ~,(0) is straightforward for any distribution in
(2.3), it is rather difficulty to explain the general structures of their for-
mulae. The main difficulty in interpreting these formulae is that their
individual terms are not invariant under reparameterization and therefore
they have no geometric interpretation which is independent of the coor-
dinate system chosen. Third, by entering equations (2.6) and (2.7) into
a computer algebra system such as MATHEMATICA (Wolfram, 1996) or
MAPLE (Abell and Braselton, 1994), one can obtain the standardized cu-

~ ~

mulants -y (6) and y2(0) for several models with minimal effort (see Section
3). Further, a simple application of our method can be performed easily
by hand using directly equations (2.6) and (2.7), although application of
near-exact higher-order methods usually require computer algebra. Fourth,
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when «(f) = 0, which corresponds to the natural exponential family, 71(@)
and 7, (0) reduce to

. _2/3//
0) = —F— .
and 27 "2 9 1 QI
() = 2P 9B (2.9)

nﬁ’3 ’

where ((0) = dlog((0)/df. Finally, if the distribution of 6 is approxi-

mately normal, both coefficients v1(f) and 72(f) should be close to zero
and departure from this value is evidence to the contrary.

Often one is interested in the estimation of a function of 6, say 7 = ¢(6),
which does not depend on n. One can reparameterize the model in terms
of 7 and then use the results (2.6)-(2.7) to obtain the skewness 7;(7) and

kurtosis 7, (7) of the distribution of the MLE 7 = g(0). Alternatively, we
can express 71 (7) and 72(7) as functions of the standardized cumulants

v1(8) and 5 () of 6. After some algebra, we obtain

3"

T (72) = '71(@) + \/W

and

—427",(&,,6”) _ ].8’7'”(0[”6’) + 257’”2(a',6') + ].07"”’7"(0[’6,)
n(alﬁl)Z ’

Formulae (2.6) and (2.7) are useful in telling when it is safe to base

inference on the asymptotic normal distribution of the MLE 6 and to
compute first-order confidence intervals for 6 from 6 & 1.96(nrg )~ "/2. In

Y2(7) = 72(0) +

~

real-life situations, if the values of the skewness and kurtosis indices 7, (6)
and 9(f) are large, the first-order normal approximation for # will be
probably poor in samples of small to moderate size, and therefore may
deliver inaccurate inference. In these cases, we have to work with second-
order distributional refinements for the cumulative distribution function
of the MLE 0. Two different methods of adjustments to improve the

asymptotic standard normal approximation to the distribution of 6 are
considered below. Despite their usefulness, the improved intervals based
on these methods entail more algebra than those intervals based on the

asymptotic normal N (0, n';’é) distribution of \/n(6 — 6).

2.1 The Edgeworth expansion

The second-order asymptotic distribution theory associated with Edgeworth
expansion for the distribution function of 8 is summarized by Hill and Davis
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(1968). Provided some regularity conditions hold, they showed that the dis-
tribution function of the pivot statistic S = \/ﬁ(é — 9)/<c;7/92 is given to order
O(n~!) by

P(S<zy) = @(z) — ¢(2) [{6m + n3ha(z)} /6
+{3607]2h1(2)+30’)74h3 (Z)+776h5 (Z)} /24] , (2.10)

where ®(.) and ¢(.) are the cumulative distribution function and the density
function of the standard normal variate, respectively, and h;(z) is the jth
degree Hermite polynomial. The coefficients in (2.10) are given by 1, =

(nﬁe,a)l/QBl(é)Aa n = nrge{Va(0) + Bil(é)g}a N3 = :Yl(é)a = 12(0) +
4(nrg )2 B1(0)y1(9) and ng = 107 (0)?, where B;(0) and V5(f) are the
n~! and n~? terms in the bias and variance of é, respectively. Expressions

~ ~

for B1(f) and V2(#) under the one-parameter exponential model (2.3) are
given by Ferrari et al. (1996). The coefficients 7; and 73 are of order

O(n~1/2) whereas 7, 74 and ng are of order O(n~1).
Confidence intervals for  computed from (2.10), which take into ac-

count the formulae of By (0), V2(0),v1(0) and y2(0), can be viewed as mean-
ingful improvements over the usual confidence intervals {6; | S |< z}, where
z is the appropriate upper point of a standard normal distribution. Equa-
tion (2.10) shows clearly that the bias term B () and skewness v, (6) affect
both the corrected terms of orders O(n~'/2) and O(n~") in the distribu-
tion function of S. However, the kurtosis vo(f) only affects the correction
term of order O(n~!). It is then clear from the degrees of the polynomials
in (2.10) that the inference based on the asymptotic normal distribution

of § can be innacurate in the tails of the distribution of S, when | z | is

not very small, if any of the basic quantities By (6),1(0) and y2(#), which
correspond to terms involving 2® and 2°, is large.

2.2 The modified direct likelihood

We now outline the modified direct likelihood method that yields approx-
imate interval probabilities of one-dimensional distribution functions. Un-
der a one-dimensional exponential family model, the cumulative distribu-
tion function of § can be approximated by (Barndorff-Nielsen, 1990; Fraser,
1990; Barndorff-Nielsen and Cox, 1994, Chapter 6)

P(6 < 0:9) = B(r) + $(r) (= — =) + O(mY/2), (2.11)

T Uu

where 7 is the modified direct likelihood given by

r=sgn(0 —0) [2{1(6:y) - Z(G;y)}]l/2
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Here 1(0;y) is the log likelihood function and the likelihood quantity w is
easily calculated from

where j(0) = —825(092”’) is the observed information and k() = aya(g;y)‘

The derivation of (2.11) using saddlepoint techniques is reviewed in
Barndorff-Nielsen and Cox (1994, Chapter 6). Note that r is the signed
square root of the log likelihood ratio statistic, and w is the standard-
ized MLE. Here, u is the Wald statistic only if the exponential family
is a natural one, i.e. if a(f) = 6 and d(y) = y!. To first order both r
and u have standard normal distributions and the correction term involv-
ing ¢(.) in (2.11) provides the improvement from O(n~'/2) to O(n=3/?).
Approximation (2.11) can be unstable near # = 6 and some care must
be taken if the distribution function is to be computed over its entire
domain. Confidence intervals calculated from (2.11) are highly accurate
in possibly very small samples and they typically have much better cov-

erage than those based on the asymptotic distribution of 6. For model

(2.3) we obtainAr = sgn(0 — 0) [{a(G)A— a(é)} v d(y;) +nlog {%H ,
u={a(8) - @)} X, d'(yi)k(0) " 5(0)'/%, k(6) = —a/(8) Ty d' (i), and
§(0) = na/(0)B'(), where d'(y) = 24U,

3 Special cases

In this section, we use equations (2.6) and (2.7) to obtain approximate
expressions for the skewness 71 () and kurtosis y2(f) of the distribution

of the MLE 6 for a number of important distributions that belong to the
one-parameter exponential family (2.3). Twelve special distributions are
considered and we give closed-form expressions for the standardized third

and fourth cumulants of the M LE 6. The MAPLE code used to perform
the algebraic calculations is available on a web page (www.de.ufpe.br/~
cysneiros/) so it can be download if anyone wants it. Distributions (i)
through (i1i) involve discrete random variables whereas continuous random
variables are considered in cases (iv) through (xii). The special cases listed
below have a wide range of practical applications in various fields such as
engineering, biology, medicine, economics, among others (Johnson, Kotz
and Balakrishnan, 1994, 1995; Johnson, Kotz and Kemp, 1992). We

considered below some distributions whose values of v;(6) and 5() do
not depend on # and some distributions for which these values are very
complicated functions of . The formulae derived which yield constants are
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compared in a chart given in Figure 1. For those distributions whose values

~ ~

of v1(0) and y2(#) are complicated functions of 6, we show graphically the
dependence of these indices on 6 in Section 4.
(i) Truncated Poisson (0 > 0,y = 1,2,...): a(f) = —logh, ((0) =
(1 —e %), d(y) =y, v(y) = —log(y!), @ is obtained as solution of
the equation 1/{0(1 —e~%)} = 1/7,
6) = (—=14+e9){(26% — 30 +2)e™? + (26 + 30 — 1)e 2/ — 1}
" a V-ne?0—1+e )30 (-1 +e7)2 ’
1 (f) = —{1+e?(—4+ 280 — 420 + 96%) + ¢~2%(6 — 846 + 1216°
—3960° 4 180%) + 730 (—4 + 846 — 1166> — 276° + 186%)

+e™ (1 - 286+3762+5763+1894)}/{9n(6_99 —1+e7")%

(ii) Logarithmic series (0 < 6 <1,y =1,2,...): «a(f) = —logh, ((0) =
—log(1—0), d(y) =y, v(y) = —logy, 6 is obtained as solution of the
equation g = —0/{(1 — 0) log(1 — 0)},

v(6) = —{log(1—8)(=1+6)[36% log(1—6)+ 50 log>(1 — )
+46? 4+ 36 log(1 — 6) —log®(1 — 6)]}
Ji=n[+1og (1 - 0)}9 (~1+6)° log>(1 - )}'/2,

v2(0) = —{log"(1—6) + 232 log’(1 — 0) 6 + 116 log®(1 — 0) 6°
+786°% log(1 — 0) — 5 log?(1 — 6) 6> — 286 log® (1 — 6)
+856% log* (1 — ) + 846* log(1 — ) — 32 log*(1 —0) 6
+2560% log?(1 — ) + 836° log®(1 — 0) + 546*}

/{an 0+ log(1 — 6)]°1.

(iii) Zeta (0 >0,y =1,2,...): a(f) =0+ 1, ((0) = Zeta(6 + 1), d(y)
logy, v(y) = 0, where ((6) is the Riemann zeta function, i.e., {(9)
S, i~ 0+ (see, e.g., Patterson, 1988) and g=g(#) =dlog Zeta(0+
1)/de, 0 is obtained as solution of the equation g(é) =—-n"197, logy;,

. —Zg” . _g(glll gl -3 gIIQ)
11(0) = , 72(0) = 13 :
/ng’?’ ng
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(iv) Gamma (k >0, 6 > 0, y > 0):
(a) k known: a(0) =61, ((0) = 0%, d(y) = ky, v(y) = (k—1)logy—
log{T'(k)}, where I'(-) is the gamma function , § =7,

- 2 A 6
)= ——, ~(f) = —.
(b) 0 known: a(k) = 1—k, ((k) = 0 "T(k), d(y) = logy. v(y) = 0y,
k is obtained as solution of the equation ¢( k) = n~!log (6" / [T’ vi),
where 9(-) is the digamma function,

(v) Rayleigh (8 > 0,y > 0): a(f) = 072, ((0) = 62, d(y) = ¢*, v(y) =
log(2y),
b=(n"yr, )",

3

dn’

7 (0) = 12 (0) = -

1
2/
(vi) Extreme value (—oo < 0 < 00, ¢ > 0, ¢ known, —oo < y < o0):

a(f) = exp(0/¢), C(0) = ¢ exp(=0/¢), d(y) = exp(—y/¢), v(y) =
—y/0, 0 = —¢log {n~" TiL, exp(-yi/¢)} .
1
T

5

’Yl(é) = 72(é) = n

(vii) Lognormal (# > 0, —c0 < p < oo, p known, y > 0): «(f) =
072, ((0) = 0, d(y) = (logy — 1)?/2, v(y) = —logy — {log(2m)}/2,
0= [n"' S, (logy: — w4)'?,

1

71(é) = \/—Q—na 72(é) =

=.
(viii) Normal (f > 0, —oo < pt < 00, —00 < Yy < 00):
(a) p known: a(f) = (20)7", ¢(0) = 02, d(y) = (y — p)? v(y) =
—{log(2m)}/2, 0 =n ' T (yi — n)*,

2/2
v

12

’Yl(é) = ) 72(9) = P
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(b) 6 known: a(u) = —u/9 C(n) = exp{u®/(20)}, d(y) = y. v(y) =
—{y? +log(2m0)}/2, i

71()—0 Y2 (ft) = 0.

(ix) Inverse Gaussian (0 >0, u > 0, y > 0):

(a) p known: a(f) =67, C( ) =02, d(y) = (y—p)?/(2uy), v(y) =
—{log(2my*)}/2, 6 = n [ X0y { (i — )/ (vin?) }]

" (0) = % ) = 2

(b) 6 known: a(u) = 0(2u2)71, ¢

C(p)
~6(2y)~" + [log{6/ 2w y*)}]/2. i =

xp(—0/p), d(y) =y, v(y) =

?

3 . 15p

(x) McCullagh (0 > —1/2, -1 < p < 1, g known, 0 < y < 1):

a(f) = =0, ¢(0) = 4~ B(6+1/2, 1/2), d(y) = log[y(1—y) /{(1+p)>—
dpy}], vy ) —[log{y(1 — y)}]/2, where B(:,-) is the beta function

(see McCullagh, 1989), 0 is obtalned as solution of the equation 1) ( 0+
1/2)=1p(6+1) =logd—n 1 log[{ys(1 — pi)}/{(1+1)* = 4zl

2{y" (1+6) -y (6+1/2)}
JIW(0+1/2) —¢/ (1 +0)pn
¥2(0) = 9=y (1+0)¢ (0+1/2)+¢" (1+0)¢ (1+06)
1 (0 +1/2) (0+1/2) — " (0 +1/2) (1 +6)
—3¢p 2(14+6)+6¢ (1+0)¢ (6+1/2)

=3y 2(0+1/2)} [n{y (1+0) - ¢'(0+1/2)}".

71(9) =

(xi) von Mises (# > 0,0 < p < 2w, p known, 0 < y < 27): «a(f) =
—0, C(0) = 27 Iy(0), d(y) = cos(y — p), v(y) = 0, where I,(-) is the
modified Bessel function of first kind and vth order, and r = r(f) =

Iy(8)/1o(6), 6 = x" {n~" 1L cos (yi — )},

. _2rll . _9 r/l/ r/ _3]:.”2
wl) =2 ) - ( ),

nr's
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(xii) Log gamma (6 >0, —oo < pu < 00, —00 < y < 00):
a) u known : a(0) = —0,C(0) = 67'T(0),d(y) = y —  — exply —
u),v(y) = 0, where I'(.) is the gamma function, 6 is obtained as
solution of the equation ¢(6) — 07! —p=7—n"t 30 evi=h,

2{2 — 4" (0) 6%}
NN RO
9{—¢p" (6) 6" — 4" (8) 654 (8) + 6 — 64 (6) 6

n{l+4'(0)62}3
—124"(0) 6 + 3¢"2(0) 65}
n{l+4'(0)62}3

’Yl(é) =

’72(é) =

b) 6 known : a(u) = exp(—pu), ¢ (1) =exp(u), d(y) =6 exp(y), v(y) =
0y +1og 6 — log{T(0)}, i = log (n~' X} e¥) ,

. N 5
() = —ﬁa Y2 (1) = o

For some of the special cases considered here, the asymptotic formulae
for the skewness ~y;(f) and kurtosis v, (6) of the standardized distribution

of 6 are very simple and for some of them the formulae do not even depend
on 6. For these cases, it is easier to verify the degree of departure from nor-

mality of the standardized distribution of 0. In some cases, however, the

asymptotic formulae for v, (6) and y2(0) are very complicated functions of
# and can vary substantially depending on the true value of the parameter

6. We give in Table 1 the values of \/n~y;(0) and nys(0), when 6 = 1,2,5,10
and 15, for the following distributions: truncated Poisson, von Mises, log
gamma and gamma (€ here represents k in case iv-b). For the von Mises,
log gamma and gamma distributions, there is the greatest departure from

normality for both n and @ small. In Table 2 the values of \/ny,(f) and

ny9(f) are given when 6 = 0.1,0.2,0.5,0.7,0.9 for the logarithmic series
and zeta distributions and when 6 = —0.2,-0.1,0,0.1,0.2 for the Mc-

Cullagh distribution. For the logarithmic series distribution, v, (6) (v2(f))
changes from positive (negative) to negative (positive) values when 6 varies
from 0 to 1. For the logarithmic series, zeta and McCullagh distributions,

the kurtosis of 6 is significantly large.
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Table 1
Skewness (\/ny1) and kurtosis (nys) of MLEs for some distributions
truncated Poisson von Mises log gamma gamma
0] von ny2| vVon | Vi myp| Ve ny
110.6683  —0.9283]2.1268 31.2961|2.0477 12.2297|2.2791 13.4613
210.3407 0.52234.1126 76.4142|1.5452 6.3530|1.5605 5.7494
510.3558 0.6409 5.5847 113.8179|0.9700 2.2618|0.9372 1.9914
10(0.3140 0.1233]5.6833 108.58280.6678 1.02890.6478 0.9465
15(0.2582 0.0671|5.6664 106.8515|0.5376 0.6588|0.5249 0.6204
Table 2
Skewness (\/ny1) and kurtosis (nys) of MLESs for some distributions
logarithmic series zeta McCullagh
0] vmm ny: | Vo ny 0] vVon nys

0.1 25734 -—22.7753|4.0105 54.3750 || —0.2 | 4.5171 71.5131
0.2 0.4213 -21.3393 | 4.0394 55.4020 || —0.1 | 4.6894 77.3013
0.5 —2.6839  14.7915 | 4.2094 61.4948 0]4.8347 82.1760
0.7 —4.2951  54.0575 | 4.3761 67.6370 0.1]4.9557 86.2129
0.9 —6.3359 127.0926 | 5.4173 101.1454 0.2 5.0557 89.5333

~

It is possible to check by direct calculation that the formulae for +;(6)

N

and 7, (0) are correct for some distributions which have closed-form M LEs,
namely: gamma (case a), extreme value, normal (cases viii-a and b) and
inverse Gaussian (cases ix-a and b). The normal N (u, 6) distribution with
known variance 6 (case viii-b) is the only case for which the moment ratios
vanish, since the MLFE [ has an exact normal distribution. In a few

cases, the distribution of a certain multiple of the M LE 6 has the same
distribution proposed for the data. It is then possible to obtain by direct
calculation the moment ratios of 6 from the corresponding moment ratios
of the data. In this situation we have the following case: inverse Gaussian
with known precision parameter 6 (case ix-b) for which the M LE fi of the
mean j has an inverse Gaussian IG(u,nf) distribution with parameters
1 and n@. The invariance property also holds for other distributions, not
included in the above examples, such as: binomial B(m, 6) for which nm#é

has a binomial B(nm,) distribution and Poisson P(f) where nf has a
Poisson P(n#) distribution.

For the gamma with known index k& and unknown mean (case iv-a),
extreme value, normal with known mean p and unknown variance (case
viii-a) and inverse Gaussian with known mean and unknown dispersion
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parameter (case ix-a) distributions, the M LE 6 is proportional to a chi-

squared random variable and we can easily obtain ~y;(f) and ~2(8) from

the corresponding moment ratios i (x2) = 2\‘//2 and y2(x2) = % of a x2

distribution.
The division of the (y/nvy1,n7y2) plane among the various distributions

for which v1(f) and 2(f) do not depend on the value of 6 is shown in
Figure 1. Good agreement with normal asymptotic theory happens when

the point (71,72) is close to the origin. Departure of () and v2(d) from
the normal value of zero is an indication of nonnormality in the distribution

of the MLE 6.

o 5
1-Normal b)
2-Extreme value
2 3-Gamma a)
4-Rayleigh
5-Normal a), Inverse Gaussian a)
© 6-Log gamma b)
7-Log normal
ny, ©7 3
6 2
<
~
© 1
4
7
N
! T T T T
1 0 1 2
Jmy,
Figure 1

A chart relating the distribution of 0 to the values of /ny1(0) and nys(6)

4 Graphical analysis

~

It is clear from the results in Section 3 that for several distributions ~;(6)
and y2(0) are not constant but functions of . We now discuss the depen-

~ ~

dence of these indices on 0 by plotting /ny; (6) and nys(0) versus 6 for the
following distributions: truncated Poisson, logarithmic series, von Mises,
McCullagh and zeta. These plots are given in Figures 2 through 6, respec-
tively, to shed some light on how different values of 6 affect the behavior
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of the standardized cumulants of 6 for these distributions and hence the
normal approximation for §. Figure 2 shows that \/n~y; () and nvyy(0) be-
come very small for large values of 6 for the truncated Poisson distribution
in agreement with the fact that the normal approximation for 8 is better

when 6 is large. The distribution of 0 is always positively skewed and is

platykurtic for (approximately) 0.2567 < 6 < 1.5123. /n~y;(0) and ny2(6)
increase quite fast when 8 — 0 showing that the normal approximation for
the distribution of 8 breaks down for very small 6. In the case of the loga-
rithmic series distribution (Figure 3), the absolute skewness and kurtosis of

6 become very large for values of 8 close to zero or one and, as might be ex-
pected, very marked departures from normality would occur in these cases

for most sample sizes. In particular, 71(@) vanishes for 6 around 0.2293
and -y (6) vanishes for values of # around 0.0407 and 0.3994. The distribu-

tion of 6 is positively (negatively) skewed for 6 < 0.2293 (6 > 0.2293) and
platykurtic for 0.0407 < 6 < 0.3994.
The case of the von Mises distribution (Figure 4) shows a rather in-

teresting behavior. Both curves of \/nvy;(#) and ny(6) increase quite fast
for small 6 and after reaching peaks at approximately 4.4586 and 3.7466,
respectively, decrease continuously approaching asymptotic values around
5.67 and 106.85 as 6 increases. This is shown via computational methods.

For 6 > 15, ny(f) has an instable behavior. The distribution of 6 is
always positively skewed and leptokurtic. Figure 5 displays y/ny;(#) and
n7y2(f) versus 6 for the McCullagh distribution. Both moment ratios -, (6)

and 2(f) are positive and increase from 4.002 and 54.067 to 5.657 and
108, respectively, as 6 increases from —1/2. In fact, limg_, fyl(é) :%

and limy_,~ 72(6) = 108/n (see Section 5) showing that both moment ra-
tios approach asymptotic levels as 6 increases to oo. Finally, consider the

zeta distribution (Figure 6). For small values of 6, it can be shown (see
also Section 5) thaﬁ limg_,q 7{(9) :%
moment ratios 71 (f) and 3 (6) diverge to oo as 6 becomes large. Figures 5

and limg_, 72(9) :%. However, the

and 6 show that the normal approximation for the distribution of 6 deteri-
orates when 6 increases for the McCullagh and zeta distributions. In fact,
because of the large kurtosis for any 6, the distribution of 6 is far from the
normal distribution for these cases except if n is very large.
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Logarithmic Series Distribution
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von Mises Distribution
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McCullagh Distribution
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Figure 6
Zeta Distribution

5 Concluding remarks

We derive simple formulae for the asymptotic skewness 71(@) and kurtosis

v2(6) of the maximum likelihood estimator 6 in the one-parameter expo-
nential model. We apply the formulae to a number of distributions, thus
giving closed-form expressions for these moment ratios for the purposes of
computing first-order confidence intervals for 6 from the normal distribu-
tion of 8. We also review two second-order methods to obtain improved
confidence intervals for & when the normal approximation for the distribu-

tion of  is probably bad. A graphical analysis that shows the dependence
of these moment ratios on 6 is performed for some distributions. This
analysis is useful to examine to which intervals of the parameter space
correspond smaller values of | 71 (6) | and | y2(0) | in order to guarantee
approximate normality for the distribution of 6. The distribution of the
MLE for all of the given distributions (other than the normal) will have
some degree of departure from normality. For some distributions, it may
be possible to specify intervals of 6 for which the distribution of 8 is more
likely to departure from normality.

The knowledge of v1(#) and ~2(6) can be used to reduce skewness and

kurtosis of the distribution of # to insignificance by making the sample
size n large enough. For example, if these moment ratios are less than
1/10, then one might consider that approximate normality of § has been
achieved. From this point of view, it is very simple to recommend the
minimum value of n if both moment ratios do not depend on 6. If this
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is not the case, the critical sample size needed to make the asymptotic
skewness and kurtosis less than 1/10 can be evaluated if we have any prior
idea of the neighbourhood where the true parameter lies. Two illustrative
examples are now given. A critical sample size of 143 would be needed to
control these moment ratios for the von Mises distribution when 6 < 0.20.
Far larger samples may be required whenever 8 exceeds 0.20. The smallest
sample size needed for the truncated Poisson distribution when 6 > 0.2 is
719, although we require far smaller sample size when 6 becomes large.
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