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Summary

The poly-Weibull model is a general family which can accommodate not only con-
stant, increasing or decreasing hazard curves with zero or non zero asymptotes,
but also nonmonotones ones, including bathtub-shaped. In this paper we consider
the non-identifiability problem, which arises when the shape parameters of a poly-
Weibull model are close. A graphical method based on the total-time-on-test plot
and its simulated envelop is considered for detecting when a poly-Weibull model
is likely to be identifiable. We also provide a general framework for construct-
ing hypothesis tests for non-identifiability by using parametric bootstrap-based
methods. We set up a simulation study and show that the bootstrap tests have
desirable properties with respect to size and power.
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1 Introduction

Bathtub hazard curves are not uncommon in practice. They correspond
to an initial high failure rate followed by lower odds of failure which in-
crease with age. Real examples with such characteristic can be found in
Ebrahim (1996) and Lagakos and Louis (1988) in the context of cancer sur-
vival, among others. In a recent paper Davison and Louzada-Neto (2000)
considered some approaches to inference for the poly-Weibull model which
was first considered by Canfield and Borgman (1975) and Berger and Sun
(1993). The advantage of such model is its ability of accommodating in-
creasing, constant and decreansing hazard functions and also nonmonotone
ones, such as a bathtub-shaped (Rajarshi and Rajarshi, 1988).

The lifetime T is said to have a poly-Weibull hazard model if the overall
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hazard function is given by (Davison and Louzada-Neto, 2000),

h(t) =
m∑

j=1

hj(t) =
m∑

j=1

βjt
βj−1

µ
βj

j

, (1.1)

where µj > 0 and βj > 0 are unknown parameters. It is easy to show that,
when m = 2 in (1.1) (we call this a bi-Weibull hazard model), the hazard
is decreasing if max(β1, β2) < 1, it is increasing if min(β1, β2) > 1 and it is
bathtub-shaped if β1 < 1 and β2 > 1.

The MLEs of the parameters in (1.1) can be obtained by direct maxi-
mization of the log-likelihood function, log L =

∑n
i=1{δi log h(ti) − H(ti)},

where H(ti) =
∫ ti
0 h(xi)dxi is the cumulative baseline hazard function

(Lawless, 1982) and δi an indicator variable defined by δi = 1 if Ti = ti
is an observed failure time and δi = 0 if it is a right-censored observation.
Those estimates can also be obtained by solving the system of nonlinear
equations given by the partial derivatives of log L with respect to the pa-
rameters. The advantage of direct maximization approach is however that
it runs immediately using existing statistical packages.

The purpose of this paper is to investigate the non-identifiability prob-
lem which arises when the shape parameters of the model (1.1) are close
for the simplest poly-Weibull model (the bi-Weibull). The point is that,
though the number of components m may be larger than two availability
of data capable of detecting more than two causes of failure is unusual and
the bi-hazard model seems likely to be the most useful poly-hazard model
(Davison and Louzada-Neto, 2000).

The non-identifiability problem is decribed in Section 2, where we show
that a graphical method, based on the total-time-on-test plot (Aarset,
1987) and its simulated envelope, can be used for detecting when a poly-
Weibull model is likely to be identifiable in practice. A parametric boot-
strap-based hypothesis tests for non-identifiability is presented in Section
3 where we also present the results of a simulation study on the size and
power of the test statistics. We finish the paper with some concluding re-
marks in Section 4. The methodology is illustrated by some generated and
real datasets.

2 Detecting non-identifiability

A problem with model (1.1) is that a singularity arises if the shape param-
eters βj ’s are equal (Berger and Sun, 1993). In this case, the poly-Weibull
model is a single-Weibull model and the scale parameters µj’s are noniden-
tifiable or the parameters are only identifiable through functions q(µ, β)’s,
where µ′ = (µ1, ..., µm) and β′ = (β1, ..., βm). Also, in our experience,
even if the βj ’s are differents but sufficiently close to each other the non-
identifiability problem will arise. The source of this problem lies in the
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early stage of the model building when a redundant vector of parameters
is kept in the parametrization (Bernardo and Smith, 1994). Therefore fit
of the model is sensible only if there is clear evidence from the data (or a
priori) that separated βj ’s are needed. In this context, as commented by
a referee, it could be feasible to consider a Bayesian approach with proper
priors to avoid nonidentifiability, but this is out of the scope of the paper.

The simplest approach for the non-identifiability problem, which is
developed in the paper, is to detecting it graphically before the fitting.
In many applications there are qualitative information about the hazard
shape, which can help in selecting a particular lifetime model and detecting
possible parameter noindentifiablity. A device called the total time on test
(TTT) plot (Aarset, 1987) is useful in this context. The TTT plot is ob-
tained by plotting G(r/n) = [(

∑r
i=1 Ti:n) + (n − r)Tr:n]/(

∑n
i=1 Ti:n), where

r = 1, . . . , n and Ti:n, i = 1, . . . , n are the order statistics of the sample,
against r/n (Mudholkar, et al, 1996). It is a straight diagonal for constant
hazards leading to an exponential model. It is convex for decreasing haz-
ards and concave for increasing hazards leading to a single-Weibull model.
And it is first convex and then concave if the hazard is bathtub-shaped
leading to a bi-Weibull model. Figure 1 show the TTT plots for five gen-
erated dataset, with 100 observations each, from a bi-Weibull model with
parameters fixed at µ1 = 1, µ2 = 1, 20 (left and right panels, respectively)
and (β1, β2) = (0.5, 8), (0.5, 4), (0.5, 1), (2, 3), (1, 1), representing two sit-
uations where the bi-Weibull model seems to be adequate, two situations
where a single-Weibull model seems suffice for fitting the data and one sit-
uation where an exponential distribution is enough for fitting, respectively.
We also include in the Figure 1 the limits of the 90% TTT diagonal line
simulated envelop, which correspond to the simpler lifetime model among
those considere here (the exponential). The envelop was obtained by gen-
erating 1000 exponential samples with mean equals to 1 and 20 (left and
right panels, respectively). For each sample we caculated the G(r/n) vector
of the TTT plot and obtained G1(·), ...,G1000(·) vectors. After to order the
elements of these vectors by r/n, r = 1, ..., n, we used the ordered values
to directly determine the limits of the 90% simulated envelop (Neter, et
al, 1996). If a more sofisticate hazard model is likely to be feasible, the
sampling TTT plot curve should be, at least in part, out of the envelop
domain. This is particularly true for all four situations considered above,
where the exponential seems to be inadequate. We also note that the dif-
ference between the envelops obtained from an exponential mean equal to
1 and 20 is negligible, indicating that the simulated envelops do not depend
on the exponential mean.
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Figure 1

TTT plots for five generated dataset from a bi-Weibull model with pa-
rameters fixed at µ1 = 1 and µ2 = 1, 20 (left and right panels, respec-
tively) and (—): (β1, β2) = (0.5, 8), (− · − · −): (β1, β2) = (0.5, 4), (–
– –): (β1, β2) = (0.5, 1), (− · · · − · · · −): (β1, β2) = (2, 3), (— – —
– —): (β1, β2) = (1, 1). The two lines (· · ·) represent the lower and
upper limits of the 90% envelop confidence interval for the TTT plot of
an exponential random variable with µ2 = 1, 20 (left and right panels,
respectively).
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3 Tests for non-identifiability

A more general procedure for dealing with the non-identifiability problem is
to assume that the number of components, m, is unknown. This procedure
however raises a difficult issue. For instance, the comparation of m = 2 with
m = 1 in (1.1) introduces two parameters, one of which is meaningless when
m = 1 and the regularity conditions, on which the standard asymptotic
theory is based, will not hold (Cheng and Traylor 1995).

An alternative direct approach is to bootstraping the likelihood ratio
statistics (LRS) for testing m = 1 against m = 2 in order to obtain its
empirical distribution (Davison and Hinkley, 1997). Let w = 2(l2 − l1) be
the LRS for testing two alternative models, denoted by 1 and 2, where l1
and l2 are the log-likelihoods for each model. Large positive values of w give
favorable evidence to model 2. The parametric bootstrap technique consists
of generating R (here assumed equals to 999) datasets from the model under
the null hypothesis (model 1) with the parameters substituted by their
MLEs obtained by considering the procedure discussed in Section 1, record
w∗

1 < · · · < w∗
R, and use w∗

(R+1)(1−α) as the critical point to test the null

hypothesis with size α. For instance, considering the generated datasets in
Section 2 (Figure 1) with parameters µ1 = µ2 = 1 and (β1, β2) = (0.5, 8),
(0.5, 4), (2, 3), the LRSs for testing m = 1 against m = 2 are 17.3, 8.4
and 2.6, with empirical p-values for the null hypothesis of a single-Weibull
model equal to 0.037, 0.062 and 0.373, respectively. These results suggest
that, for the two first datasets the bi-Weibull model is requered, while the
third dataset can be successfully fitted by a single-Weibull model. These
results are in broad agreement with those obtained by using the graphical
approach described in Section 2.

For power calculation purposes we estimate the p-value for the alter-
native hypothesis, in which case we adopt the reverse procedure above
generating datasets from the model under the alternative (model 2) with
the parameter values substituted by their fitted values.

3.1 A simulation study

For a limited assessment of the performance of the bootstrap test procedure
we study its size and power for sample sizes fixed at n = 30, 60 e 100 with
the number of bootstrap replications fixed at 999. For the empirical sizes
we generate samples from single-Weibull models with parameters µ = 1 e
β = 0.5, 1 e 3. For the power calculations the samples were generated from
bi-Weibull models with parameters µ1 = µ2 = 1, β2 = 0.5, 1, 3, and five β1
values assigned appropriately inside the interval (0, 10]. The overall study
described above was repeated with censored samples with 10 and 30% of
righ-censoring.

The empirical sizes and powers of the tests for α = 0.05 were sum-
marized in Tables 1 and 2 for complete and 30% of censoring cases. The
results for the 10% right-censoring cases were always between the complete
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and 30% of censoring cases results and were omitted. The probabilities of
correctly accepting the null hypothesis are near to the nominal size, except
for small samples where we observe some departure from α = 0.05, partic-
ularly if presence of censoring is observed. The empirical powers increase
with the ratio β1/β2 and are bigger for large n. For ratios moving towards
one however the powers are rather low. A phenomenon related to the non-
identifiability problem that arises in such situations. The censoring effect
is to reduce the empirical powers.

Table 1

Empirical sizes.The entry a/b indicates the empirical sizes a and b for
complete and 30% of censoring, respectively.

n
β2 30 60 100

0.5 0.122/0.158 0.065/0.087 0.048/0.065
1 0.118/0.152 0.087/0.099 0.046/0.061
3 0.136/0.161 0.073/0.089 0.053/0.064

Table 2

Empirical powers. The entry a/b indicates the empirical powers a and b
for complete and 30% of censoring, respectively.

n
β2 β1/β2 30 60 100

0.5 0.20 0.748/0.313 0.963/0.497 0.998/0.635
1.50 0.259/0.208 0.273/0.251 0.396/0.352
3.00 0.405/0.350 0.605/0.454 0.842/0.678
6.00 0.791/0.523 0.988/0.621 0.989/0.732
10.0 0.987/0.833 0.999/0.854 0.999/0.899

1 0.25 0.776/0.425 0.953/0.597 0.992/0.714
0.50 0.489/0.197 0.587/0.207 0.649/0.336
1.50 0.244/0.192 0.245/0.223 0.292/0.314
3.00 0.637/0.207 0.707/0.259 0.752/0.353
5.00 0.910/0.411 0.996/0.587 0.999/0.603

3 0.25 0.883/0.430 0.997/0.552 0.999/0.673
0.50 0.490/0.371 0.759/0.621 0.877/0.864
0.83 0.203/0.190 0.367/0.252 0.492/0.370
1.67 0.381/0.221 0.526/0.384 0.768/0.437
5.00 0.989/0.399 0.999/0.424 0.999/0.607
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3.2 A numerical example

The bootstrap test described above was applied to a survival dataset on
the ages of 18 patients classified as other causes of death in a cancer study,
but for whom no specific cause is know (Ebrahimi, 1996). Louzada-Neto
(1999) shows the convex-concave path of the TTT plot for this data, which
indicates that a bi-Weibull model is requered. The LRS, w = 2(lbi − lsin),
for testing a single-Weibull model against a bi-Weibull hazard model, where
l· are the log likelihoods for each model, is 7.0. According to the bootstrap
approach described above the estimated p-value is equal to 0.07, showing
some evidence that the single-Weibull is inadequate. The estimate the p-
value for the alternative hypothesis, obtained by considering the reverse
resampling procedure, is equal to 0.37, which shows no evidence against
the bi-Weibull model.

4 Concluding remarks

The model (1.1) is very attractive from the practical point of view since it
accomodates not only increasing, constant and decreasing hazard curves,
but also bathtub-shaped ones. Care is however needed for handling the
model once the general poly-hazard model can be non-identifiable if the
shape parameters are close and the use of the model is sensible only if
there is clear evidence from the data (or a priori) that separated β’s are
needed.

A important lesson learned from this work is that these conditions leads
to the need of considering a procedure for detecting non-identifiability.
The simpler approach would be always to use a TTT plot for checking
whether determined poly-hazard model is likely to be feasible. Tests for
non-identifiability however can also be considered by bootstraping the LRS
in order to obtain its empirical distribution. Our simulation study results
reveal that the boostrap-based tests seem to work well, even for moderate
size samples and presence of censoring. The bootstrap test is more conclu-
sive than the indicative graphical test and can be implemented straightfor-
wardly on existing statistical packages, with little knowledge of program-
ming. However, from the practical point of view, in our experience, both
approaches are important for handle non-identifiability and should be used
concomitantly when fitting the general poly-hazard model.
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