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Summary
In carcinogenicity experiments with animals where the tumor is not palpable it
is common to observe only the time of death of the animal, the cause of death
(the tumor or another independent cause, as sacrifice) and whether the tumor
was present at the time of death. These last two indicator variables are evaluated
after an autopsy. Defining the non-negative variables T1 (time of tumor onset), T2

(time of death from the tumor) and C (time of death from an unrelated cause), we
observe (Y,∆1,∆2), where Y = min {T2, C}, ∆1 = 1{T1≤C}, and ∆2 = 1{T2≤C},
T1 and T2 have a joint distribution function F such that P (T1 ≤ T2) = 1, and
are independent of C. Some authors call this model a “survival-sacrifice model”.
The interest here is to estimate the marginal distribution functions F1 and F2 of
T1 and T2, respectively (since F is not identifiable). One possible way of doing
that is by using a consistent estimator F̂2 for F2 (Kaplan-Meier, for example) and
then plugging it in the loglikelihood to obtain F̂1, the nonparametric maximum
pseudo likelihood estimator (NPMPLE) of F1. A characterization theorem of F̂1

is stated here and an algorithm for its calculation is presented.

Key words: Maximum likelihood estimation, nonparametric estimation; sur-

vival-sacrifice.

1 Introduction

In experiments for the study of onset and mortality from undetectable
irreversible diseases (occult tumors, e.g.) a possible data structure consists
of the time of death, whether the disease of interest was present at death,
and if present, whether the disease was a probable cause of death. This data
structure is related to moderately lethal incurable diseases when the cause
of death is known. Defining the non-negative variables T1 (time of disease
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onset), T2 (time of death from the disease) and C (time of death from an
unrelated cause), we observe, for the ith individual, (Yi,∆1,i,∆2,i), where
∆1,i = 1{T1,i≤Ci}, ∆2,i = 1{T2,i≤Ci}, Yi = Ci ∧ T2,i = min{Ci, T2,i}, T1,i and

T2,i have a joint distribution function F such that P (T1,i ≤ T2,i) = 1, Ci

has distribution function G and is independent of (T1,i, T2,i). Some authors
call that model a survival-sacrifice model.

We will suppose, without loss of generality, that Y1 ≤ Y2 ≤ . . . ≤ Yn.
In case of ties it is assumed that the observations with (∆1,i,∆2,i) = (1, 1)
occurs first, followed by the ones with (∆1,i,∆2,i) = (1, 0) and finally by the
ones with (∆1,i,∆2,i) = (0, 0). The case 1 of interval censoring model, also
called ”current status data” (see, e.g., Groeneboom and Wellner (1992)),
can be seen as a particular case of this model when the disease is nonlethal,
i.e., ∆2,i = 0, i = 1, . . . , n. The right censoring problem can also be con-
sidered as a special case of data with the structure above when a lethal
disease is always present at the moment of death, i.e., ∆1,i = 1, i = 1, . . . n.

For this survival-sacrifice model, the parameter space can be defined as

Θ = {(F1, F2) : F1 and F2 are d.f.’s with F1 <s F2} ,

where F1 <s F2 means that F1(x) ≥ F2(x) for every x ∈ IR and F1(x) >
F2(x) for some x ∈ IR, a consequence of P (T1 ≤ T2) = 1. The loglikelihood
function for this data structure is

L(F ) =
n
∑

i=1

{(1 − ∆1,i)(1 − ∆2,i) log (1 − F1(Yi))

+ ∆1,i(1 − ∆2,i) log (F1(Yi) − F2(Yi))

+ (∆1,i∆2,i) log f2(Yi)} +K(g,G)

where K(g,G) is a term involving only the distribution function G and the
probability density function g of variable C.

Kodell, Shaw and Johnson (1982) also studied the nonparametric esti-
mation of S1 = 1− F1 and S2 = 1− F2, but their work is restricted to the
case where R(t) = S1(t)/S2(t) is non-increasing, an assumption that may
not be reasonable, for example, for progressive diseases whose incidence is
concentrated in the early or middle part of the life span.

Turnbull and Mitchell (1984) proposed an EM algorithm for the joint
estimation of F1 and F2 which converges very slowly to the nonparametric
maximum likelihood estimator (NPMLE) of (F1, F2) (provided the support
of the initial estimator contains the support of the NPMLE). It should be
noticed that the two-dimensional nature of their method enables us to avoid
the use of Lagrange multipliers.

Gomes, Groeneboom and Wellner (2001) used the Primal-Dual Interior
Point algorithm to calculate the joint NPMLE of F1 and F2.

Van der Laan, Jewell, and Peterson (1997) proposed a weighted least

squares estimator of F1 making F2 = F̂2,KM (its Kaplan-Meier estimate).
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Another possible way of estimating F1 is by plugging in the Kaplan-
Meier estimator F̂2,KM (or another consistent estimator) of F2 and calculat-
ing the nonparametric maximum pseudo likelihood estimator (NPMPLE)
of F1. The part of the loglikelihood involving F1 is

n
∑

i=1

(1 − ∆2,i)
[

∆1,i log(xi − F̂2,KM(Yi)) + (1 − ∆1,i) log (1 − xi)
]

(1.1)

where xi = F1(Yi). Notice that (1.1) can be written as

n
∑

i=1

{Φ(f(Yi)) + [g(Yi) − f(Yi)]φ(f(Yi))}w(Yi)

with f = F1, φ = dΦ/df , g = 1− (1− F̂2,KM )(1−∆1), w = (1−∆2)/(1−

F̂2,KM ) and Φ(y) = (y− F̂2,KM) log(y− F̂2,KM)+(1−y) log(1−y), 0 <
y < 1. Using this representation, Dinse and Lagakos (1982) concluded that
the values of F1(Yi), i = 1, . . . , n, maximizing the pseudo loglikelihood (1.1)
could be obtained by applying Theorem 1.10 in Barlow et al. (1972), i.e.,
the NPMPLE of F1 would be given by the isotonic regression g∗ of g(Yi)
with weights w(Yi), i = 1, . . . , n. However, that Theorem is applicable to
a real convex function Φ defined on IR while the function Φ defined above
is, in fact, defined on IR2 since the value of F̂2,KM is not supposed to be
constant.

It should be mentioned here that, although the Kaplan-Meier estima-
tor F̂2 is uniquely defined, except possibly at times exceeding the largest
observation, the NPMPLE F̂1 is uniquely defined only over certain data-
determined intervals. Specifically, F̂1 is always uniquely defined at the
observed Ci’s, i.e., the observations for which ∆2,i = 0.

In Section 2, we review the characterization of the NPMLE of the dis-
tribution function of the time of disease onset for the case 1 of interval
censoring model (current status data) and present the characterization of
the NPMPLE of F1 for the survival-sacrifice model under study. In Section
3, we introduce an Iterative Convex Minorant algorithm based on the char-
acterization of the NPMPLE of F1. In Section 4, we present an example
of a data set with the structure studied here and calculate the NPMPLE
F̂1 and F̂2,KM .

2 Characterization of the NPMPLE of F1

First we restate a characterization theorem for the NPMLE of the distri-
bution function of the time of disease onset for current status data (see
Groeneboom and Wellner (1992)). Defining independent positive variables
X and T , we observe (T, δ) where δ = 1{X≤T}. Here X is the (completely
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censored) time of disease onset and T is the time of occurance of an ex-
amination (possibly an autopsy). The loglikelihood for F (the d.f. of X)
is

L(F ) =
n
∑

i=1

{δi log(F (Ti)) + (1 − δi) log(1 − F (Ti))} . (2.2)

We will assume, without loss of generality, that δ1 = 1 and δn = 0 since
we could maximize (2.2) for the first observations with δi = 0 by making
F (Ti) = 0 at those points. Similarly, we could maximize (2.2) for the last
observations with δi = 1 by making F (Ti) = 1 at those points.

Theorem 2.1 characterizes the NPMLE of F in terms of the Fenchel
conditions (2.3) and (2.4).

Theorem 2.1 Let δ1 = 1 and δn = 0, and xi = F (Ti), i = 1, . . . , n. A
vector x∗ = (x∗1, . . . , x

∗
n) maximizes (2.2) if and only if

n
∑

j=i

{

δj
x∗j

−
1 − δj
1 − x∗j

}

≤ 0, i = 1, . . . , n, (2.3)

and
n
∑

i=1

{

δi
x∗i

−
1 − δi
1 − x∗i

}

x∗i = 0. (2.4)

Moreover, x∗ is uniquely determined by (2.3) and (2.4).

We will now present and demonstrate an equivalent result for the survival-
sacrifice model under study. Consider the problem of minimizing

φ(x)=−
n
∑

i=1

(

1 − ∆2(i)

){

∆1(i) log(xi − ki)+
(

1 − ∆1(i)

)

log(1 − xi)
}

(2.5)

over K where

K = {x ∈ IRn : 0 ≤ x1 ≤ . . . ≤ xn ≤ 1}

subject to xi ≥ ki, i = 1, . . . , n, where xi = F1(Yi), ki = F̂2,KM (Yi) and the
vector k = (k1, . . . , kn) ∈ K.

In other words we want to minimize φ(x) over K ∩ L where

L = {x ∈ IRn : xi ≥ ki, i = 1, . . . , n} .

Since φ is a convex function on K (a convex set of a linear vector space)
and G(x) = −(x − k) is a convex mapping from K into a normed space,
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by Theorem 1, page 217 in Luenberger (1969) (restated in the Appendix)

there exists a vector λ̂ = (λ̂1, . . . , λ̂n) with λ̂i ≥ 0, i = 1, . . . , n, such that

inf
x∈K

{

φ(x) −
n
∑

i=1

λ̂i(xi − ki)

}

= inf
x∈K∩L

φ(x).

So, in order to characterize the solution of the minimization problem
above we introduce a vector of Lagrange multipliers λ̂ ∈ IRn

+ and define

ψ(x, λ̂) ≡ φ(x) −
n
∑

i=1

λ̂i (xi − ki) .

Notice that we can take λ̂i = 0 if ∆1(i) = 1 since then the log (xi − ki)
term in φ forces xi > ki. We may also reduce the problem to involving just
those xi’s with ∆2,i = 0, since those with ∆2,i = 1 do not contribute to the

function φ. Thus, we may take the λ̂i’s to be

λ̂i = (1 − ∆2,i)(1 − ∆1,i)γi

where we want γi > 0 in the cases when ∆1,i = ∆2,i = 0 and the solution
x has xi = ki.

The vector of gradients of ψ with respect to x is given by

(∇xψ)i = − (1 − ∆2,i)

(

∆1,i

xi − ki
−

1 − ∆1,i

1 − xi

)

− (1 − ∆2,i) (1 − ∆1,i) γi

= (1 − ∆2,i)

{

(1 − ∆1,i)

(

1

1 − xi
− γi

)

−
∆1,i

xi − ki

}

, i=1, . . . , n,

and the vector of second partial derivatives of ψ has ith coordinate

∂2

∂x2
i

ψ = (1 − ∆2,i)

{

∆1,i

(xi − ki)
2 +

1 − ∆1,i

(1 − xi)
2

}

, i = 1, . . . , n.

Thus the Fenchel conditions for minimizing ψ over K are given by

0 = 〈x̂,∇xψ(x̂, λ̂)〉

= −
n
∑

i=1

(1 − ∆2,i) x̂i

{

∆1,i

x̂i − ki
−

1 − ∆1,i

1 − x̂i

}

−
n
∑

i=1

x̂iλ̂i

=
n
∑

i=1

(1 − ∆2,i) x̂i

{

1 − ∆1,i

1 − x̂i
−

∆1,i

x̂i − ki

}

−
n
∑

i=1

x̂iλ̂i (2.6)
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and, with 1i defined to be the vector with 0 in the first i − 1 coordinates
and 1 in the coordinates i through n,

0 ≤ 〈1i,∇xψ(x̂, λ̂)〉

=
n
∑

j=i

(1 − ∆2,j)

{

(

1 − ∆1(j)

)

(

1

1 − x̂j
− γj

)

−
∆1(j)

(x̂j − kj)

}

, (2.7)

i = 1, . . . , n.

We take the Lagrange multipliers to be of the form

λ̂i = (1 − ∆2,i)(1 − ∆1,i)γi1{x̂i=ki} (2.8)

for some γi > 0. Then we have

x̂i = ki, if λ̂i > 0 and ∆1,i = 0, i = 1, . . . , n; (2.9)

and
λ̂i = 0, otherwise. (2.10)

The Fenchel conditions characterize the arg min of a convex function on
a convex cone (see Lemma 2.1, page 8 in Jongbloed (1995), for example,
restated in the Appendix). In our case, condition (2.7) is equivalent to
condition (ii) in the Lemma since the vectors (1, . . . , 1), (0, 1, . . . , 1), . . .,
(0, . . . , 0, 1) generate cone K.

Theorem 2.2 Suppose that (2.6) to (2.10) hold. Then x̂ minimizes φ over
K ∩ L.

Proof: Since the function φ is continuous and K ∩ L is a compact subset
of a normed linear space, there exists x̂ minimizing φ(x) over K∩L. Since
K is a convex subset of IRn, and G(x) = −(x − k) is a convex mapping
from K into IRn, we have, by Theorem 1, page 217 in Luenberger (1969),

that there exists a vector λ̂ = (λ̂1, . . . , λ̂n) with λ̂i ≥ 0 such that

inf
x∈K

{

φ(x) −
n
∑

i=1

λ̂i(xi − ki)

}

= inf
x∈K

φ(x)

subject to xi ≥ ki, i = 1, . . . , n.
Moreover, from Luenberger (1969), x̂ minimizes ψ(x, λ̂) on K ∩ L and

∑n
i=1 λ̂i(x̂i − ki) = 0. Since λ̂i > 0 if and only if x̂i = ki, we have

φ(x̂) = ψ(x̂, λ̂) ≤ ψ(x, λ̂) ≤ φ(x).

But (2.6) and (2.7) are the Fenchel conditions to minimize ψ over K. So,

x̂ obtained from those conditions will minimize ψ(x, λ̂) over K, and hence
minimize φ over K ∩ L.



Gomes: Characterization of the NPMPLE of the disease 141

3 The iterative convex minorant algorithm

An algorithm can be developed based on Theorem 2.2. The iterative convex
minorant algorithm is an adaptation of the ICM algorithm for the calcula-
tion of the NPMLE of the distribution function of the time of disease onset
for the case 2 of interval censoring (see Groeneboom and Wellner (1992)).

(0) Take x
(0)
i = (ki + 1)/2, λi = 0, i = 1, . . . , n. Set k = 0.

(i) Form

V
(k)
i =

i
∑

j=1

x
(k)
j

∂2

∂x2
j

ψ
(

x(k)
)

−
i
∑

j=1

(∇xψ)j

(

x(k)
)

, i = 1, . . . , n

G
(k)
i =

i
∑

j=1

∂2

∂x2
j

ψ
(

x(k)
)

, i = 1, . . . , n

(ii) Form the cumulative sum diagram
{(

G
(k)
i , V

(k)
i

)

, i = 1, . . . , n
}

, com-

pute its greatest convex minorant GCM (k) and x
(k+1)
i = left-deriva-

tive of GCM (k) at G
(k)
i .

(iii) If x
(k+1)
i ≤ ki, set x

(k+1)
i = ki; set λ

(k+1)
i = 0 if x

(k+1)
i > ki.

(iv) Verify whether the Fenchel conditions (2.6) and (2.7) are satisfied

using the current values x̂(k), λ(k). If the conditions are satisfied,
stop; otherwise replace x̂(k) by x̂(k+1), and continue.

(v) Find the remaining λ
(k+1)
i ’s from points {im} where equality between

GCM (k) and the cusum diagram holds, i.e., points where

0=
im
∑

j=1

(1 − ∆2,j)







(1 − ∆1,j)





1

1 − x̂
(k+1)
j

− γ
(k+1)
j



−
∆1,j

(

x̂
(k+1)
j −kj

)







.

Go to (i).

In step (iv) above, we say that the Fenchel condition (2.6) is satisfied
if the absolute value of the expression on the right-hand side of (2.6) is
negligible. The Fenchel condition (2.7) is said to be satisfied if the value of
the expression on the right-hand side of (2.7) is greater than a negligible

negative value for i = 1, . . . , n. This algorithm was used to calculate F̂1 for
the example in the next section.
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4 Example

Table 1
Ages at death (in days) in unexposed female RFM mice Ages at death
(in days) in unexposed female RFM mice.

∆1 = 1,∆2 = 1 406,461,482,508,553,555,562,564,570,574,585,588,593,624,626,
629,647,658,666,675,679,688,690,691,692,698,699,701,702,703,
707,717,724,736,748,754,759,770,772,776,776,785,793,800,809,
811,823,829,849,853,866,883,884,888,889

∆1 = 1,∆2 = 0 356,381,545,615,708,750,789,838,841,875
∆1 = 0,∆2 = 0 192,234,243,300,303,330,339,345,351,361,368,419,430,430,464,

488,494,496,517,552,554,555,563,583,629,638,642,656,668,669,
671,694,714,730,731,732,756,756,782,793,805,821,828,853

Time (in days)

Dis
t. F

unc
tion

s

0 200 400 600 800

0.0
0.2

0.4
0.6

0.8
1.0

NPMPLE of F1
Kaplan-Meier Estim. of F2

Figure 1
NPMPLE of F1 and Kaplan-Meier estimator of F2.

The data in Table 1 were studied by Dinse and Lagakos (1982) and
Turnbull and Mitchell (1984) and represent the ages at death (in days) of
109 female RFM mice. The disease of interest is reticulum cell sarcoma
(RCS). These mice formed the control group in a survival experiment to
study the effects of prepubertal ovariectomy in mice given 300 R of X-rays.
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Figure 1 shows the Kaplan-Meier estimate of F2 and the NPMPLE of
F1. As mentioned in Section 2, we should have λi > 0 for those observations
with F̂1(Yi) = F̂2(Yi) and with ∆1,i = 0. In our example, two observations
(the ones with Y equal to 694 and 828) are in that situation. For those
observations, we have λ equal to 1.455938 and 3.276873, respectively (λ is
equal to zero for all the other observations). The value of the expression
on the right-hand side of (2.6) is 4.774 × 10−6. The minimum value of
the expression on the right-hand side of (2.7) is −1.973153 × 10−6. These
values are negligible, showing that both Fenchel conditions (2.6) and (2.7)
are satisfied.

We can notice that the estimate of F2 has more discontinuity points
than that of F1. Also, the magnitudes of the variations of F̂2 at its dis-
continuity points are smaller than those of F̂1. These facts are related to
the different convergence rates of the estimators of F1 and F2 (n−1/3 and

n−1/2, respectively).

5 Discussion

The importance of the characterization Theorem 2.2 is that it allows check-
ing whether an estimate of F1 is in fact the nonparametric maximum pseudo
likelihood estimator (NPMPLE) F̂1, as seen for the example in Section 4.
The characterization result,then, allows checking whether any algorithm
proposed to calculate F̂1 actually converges to F̂1. That is the case of the
Iterative Convex Minorant algorithm proposed in Section 3. The example
in Section 4 illustrates that situation since both Fenchel conditions (2.6)
and (2.7) are satisfied for the data in Table 1. The version of the ICM
algorithm proposed here is an adaptation of the ICM algorithm used to es-
timate the nonparametric maximum likelihood estimator for the case 2 of
interval censoring (see Groeneboom and Wellner (1992)). Jongbloed (1995)
presents a general version of the algorithm. Another algorithm that may
be used to calculate F̂1 is the Primal-Dual Interior Point algorithm (see
Wright (1997) or Groeneboom (1998)). However, no performance compar-
ison study has been carried out so far for those algorithms.

Appendix

(Lemma 2.1, page 8, Jongbloed (1995)) Let φ : IRn → (−∞,∞] be
a continuous convex function such that φ is continuously differentiable on
the set {x ∈ IRn : φ(x) <∞}. Let K ⊂ IRn be a convex cone. Then

x̂ = arg min
x∈K

φ(x)
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if and only if x̂ ∈ K satisfying (the Fenchel conditions)

(i) 〈x̂,∇φ(x̂)〉 = 0.

(ii) 〈x,∇φ(x̂)〉 ≥ 0, ∀ x ∈ K

(Theorem 1, page 217, Luenberger (1969)) Let X be a linear vector
space, Λ a normed space, K a convex subset of X , and C the positive cone
in Λ. Assume that C contains an interior point. Let φ be a real-valued
convex functional on K and G a convex mapping from K into Λ. Assume
the existence of a point x1 ∈ K for which G(x1) ≤ 0 (i.e., G(x1) is an
interior point of N = −C). Let

µ0 = inf f(x) (A.1)

subject to x ∈ K, and G(x) ≤ 0, and assume µ0 is finite. Then there is
an element λ∗0 ≥ 0 in Λ∗ (the ”normal dual” of Λ, i.e., the space of all the
bounded linear functionals on Λ) such that

µ0 = inf
x∈K

{φ(x) + 〈G(x), λ∗0〉} . (A.2)

Furthermore, if the infimum is achieved in (A.1) by an x0 ∈ K, with
G(x0) ≤ 0, it is achieved by x0 in (A.2) and 〈G(x0), λ

∗
0〉 = 0.
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