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Summary

We provide a general framework to review the well-known concept of identifia-
bility and give a formal proof that this is implied by the existence of a consistent
estimator. We apply these ideas to the predictive recursion algorithm for finite
mixtures to conclude that identifiability is actually equivalent to consistency.
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1 Introduction

The concept of identification is closely related to that of model specifi-
cation. Following Koopmans and Reiersøl (1950) we can distinguish two
components of any statistical model: (i) a structural model that formalizes
what the contextual theory implies on the process generating the observed
and latent variables and (ii) a measurement model that connects these
variables. This view creates a new problem which logically precedes all in-
ference questions: is the distribution of observables generated by only one
structure contained in the set of structures that constitute a model? This is
the so-called identification problem which becomes a necessary part of the
specification problem (Koopmans and Reiersøl, 1950). Note that identifia-
bility is related to knowledge of the probability distribution of observables
rather than to a finite sample of observations. See additional discussion in
Aldrich (1999), Hurwicz (1950), and Qin (1993). Bayesian approaches to
this problem can be found in Kadane (1974), Dawid (1979), and Florens
et al. (1990).

In the econometric tradition the link between identifiability and statis-
tical inference is given by the relationship between identifiability and the
existence of a consistent estimator. Gabrielsen (1978) suggested a proof
of such a relationship, but this proof seems inadequate with respect to
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Koopmans and Reiersøl (1950) identification concept. This note proposes
an alternative simple proof to Gabrielsen’s (1978) claim. The relevance
of this proof consists in showing that identifiability is a necessary condi-
tion for the convergence in law. The relationship between identifiability
and the existence of an asymptotically unbiased estimate is also explored.
We apply the results to the predictive recursion algorithm for finite mix-
tures discussed in Newton (2000) to conclude that identifiability is actually
equivalent to consistency of the method.

2 Definitions and fundamental concepts

A statistical model is defined as a family of sampling probability distribu-
tions indexed by a parameter, that is

E = {(X,X ), P θ : θ ∈ Θ}, (2.1)

where (X,X ) is the sample space, P θ is a sampling probability on (X,X )
indexed by a parameter θ, and Θ is the parameter space; see, e.g., Cox and
Hinkley (1974), Raoult (1975), and Barra (1981).

Considering structure (2.1), the identification of any statistical model
deals with the identification of a parametrization. A parametrization θ is
said to be identified if the mapping θ 7−→ P θ is injective (Koopmans and
Reiersøl, 1950), and in this case all injective reparametrizations h(θ) of θ
are also identified. When a parametrization θ is unidentified, an identified
model can be obtained through reparametrizations (Shao, 1999). As a
trivial example, consider the sampling probabilities N (µ1 + µ2, σ

2); if we
take θ = (µ1, µ2, σ

2) 7−→ P θ ≡ N (µ1 + µ2, σ
2), the parametrization θ

is unidentified. Nevertheless, the mapping λ = (µ1 + µ2, σ
2) 7−→ P λ ≡

N (µ1 +µ2, σ
2) is injective (hence, the parametrization λ is identified), but

the function θ 7−→ λ is non injective.

The consistency criterion for estimation problems is heuristically stated
as follows: the statistic applied to the whole population should be equal to
the parameter (Fisher, 1922). Formally, this criterion is defined by using
convergence in probability; in practice, it is important to make explicit
with respect to which probability measure such convergence is taken. In
the context of (2.1), a real-valued parameter b is a real function of θ. Thus,
a sequence of random variables {sn : n ∈ IN} is called strongly (resp.
weakly) consistent for the real-valued parameter b if sn −→ b(θ) almost
surely (resp. in probability) with respect to P θ, for all θ ∈ Θ.
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3 Interface between identifiability and statistical

inference

We establish now links between identifiability, asymptotic unbiasedness and
consistency, when the parameter space Θ is a subset of a finite dimensional
space.

Paulino and Pereira (1994) establish that identifiability is a necessary
condition for the existence of an unbiased estimator. We extend this result
to asymptotically unbiased estimators:

Proposition 1 The identifiability of the parameter θ is a necessary con-
dition for the existence of an asymptotically unbiased estimate.

Proof: Let {sn : n ∈ IN} be an asymptotically unbiased estimate of θ,
that is, lim

n→∞
IEθ sn = θ for all θ ∈ Θ, where IEθ(·) denotes the sampling ex-

pectation with respect to P θ. Let θ1, θ2 ∈ Θ such that P θ1 = P θ2. Because
θ1 = lim

n→∞
IEθ1 sn = lim

n→∞
IEθ2 sn = θ2, it follows that the parametrization

θ is identified.

A similar argument establishes that the existence of an unbiased esti-
mator of g(θ) implies the identifiability of θ provided that g is an injective
function. We note that Proposition 1 is valid regardless of the dimension
of Θ.

The result stating that identifiability is a necessary condition for the
consistency belongs to the econometrics “oral tradition”:

Proposition 2 The identifiability of the parameter θ is a necessary con-
dition for the existence of a consistent estimate.

Gabrielsen (1978) gives a proof, which runs as follows:

Assume θ is not identifiable. In this case we can find at least two
different values θ1 and θ2 yielding exactly the same distribution
of the observations. Let sn be an estimator. If sn is consistent,
it should in principle converge to these two values. As the
convergence to two values is contradictory to the definition of
convergence in probability and thus consistency, it follows that
there cannot exist consistent estimators for parameters that are
not identified.

A similar argument can be found in Rao (1992), page 134. Gabrielsen’s
(1978) proof is essentially based on the unicity of the limit. However, this
almost sure unicity is with respect to the probability used for establishing
the convergence in probability. In the context of (2.1), the only involved
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probability is P θ, a probability measure defined on the sampling space,
not on the parameter space. Gabrielsen’s statement implicitly considers
an expression of the form P θ(|θ1 − θ2| > ǫ), where P θ1 = P θ2 ≡ P θ, and
the event {|θ1−θ2| > ǫ} does not belong to the domain of these probability
measures (i.e., the sampling space). In the sequel, we give an alternative
proof, which only makes use of the unicity of limits in a non-stochastic
setting.

Proof of Proposition 2: Let sn be a sequence of random variables,
assumed weakly consistent for θ. Let θ1, θ2 ∈ Θ such that P θ1 = P θ2 ≡ P θ.
It follows that sn −→ θi in probability with respect to P θi for i = 1, 2. This
implies that (sn−θi) −→ δ0 in law, where δ0 is a pointmass at 0. Therefore,
every accumulation point of a sequence of medians of sn − θi is a median
of δ0 (see Theorem 2.2.3 in Lukacs, 1968). But δ0 has a unique median,
namely 0 and it follows that any sequence of medians of sn converge to
both θ1 and θ2. By the unicity of the limits (in the real line), we conclude
that θ1 = θ2.

Proposition 2 and its proof deserve the following comments. Firstly,
the argument given is valid for Θ ⊂ IR. The result applies to Θ ⊂ IRm by
repeating the proof in each coordinate. Secondly, if there exists a consistent
estimate of g(θ), then the parameter θ is identified provided that g is an
injective function. And thirdly, Proposition 2 holds no matter how the
consistent estimates are derived.

4 Consistency of the predictive recursion algo-

rithm for finite mixtures

We explore now the link between identifiability and consistency in a finite
mixture model. We do this by showing that a nonparametric estimator
of the mixing probabilities (π1, . . . , πn) –the so-called predictive recursion
algorithm– is consistent provided that the parametrization (π1, . . . , πn) is
identifiable.

Consider a sample x1, . . . , xn from the following finite mixture of Bino-
mial distributions:

g(x) = π1pT (x|θ1) + · · · + πmpT (x|θm), (4.1)

where pT (x|θ) =
(

T
x

)

θx(1 − θ)T−x, π = {πi : 1 ≤ i ≤ m} is a probability
distribution and θ1, . . . , θm are m distinct and known elements of (0, 1).
Letting f⋆(θi) = πi for i = 1, . . . ,m, and Θ = {θ1, . . . , θm}, (4.1) becomes

gf∗(x) =
m
∑

i=1
pT (x|θi)f

⋆(θi) and the statistical experiment is given by

E = {({1, . . . , T}, 2{1,...,T}), gf∗(·) : f⋆ ∈ P(Θ, 2Θ)}, (4.2)
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where 2A denotes the power set of A and P(Θ, 2Θ) is the set of probability
distributions on Θ. Condition m ≤ T + 1 ensures identifiability of the
mixing distribution f⋆ (Lindsay, 1995).

The predictive recursion algorithm (Newton and Zhang, 1999, New-
ton et al., 1998) applied to this case provides a sequence of probability
distributions on Θ adopting the form

fn(θi) = (1 − wn)fn−1(θi) + wn ×
pT (xn|θi)fn−1(θi)

c(xn, fn−1)
, (4.3)

where c(x, f) =
m
∑

j=1
pT (x|θj)f(θj). Here, the user defines a decreasing

sequence of weights {wn} (a default choice is wn = (1 + n)−1) and an
initial density f0(·) on P(Θ, 2Θ). Note that gf∗(x) = c(x, f⋆). Under

the assumption that
∞
∑

n=1
wn diverges, Newton (2000) shows that fn(θi)

converges surely to f∞(θi) for all i = 1, . . . , n, where f∞ is a probability
distribution on Θ. Under some extra technical conditions on the sequence
of weights it follows that

f∞(θi) =

T
∑

x=0

pT (x|θi)f∞(θi)

c(x, f∞)
c(x, f⋆) (4.4)

i.e., fn converges to a solution of a self consistency equation. It is imme-
diately seen that f∞ = f⋆ solves this equation. But identifiability implies
that the mapping f 7−→ c(·, f) is injective, so that (4.4) has f∞ = f⋆ as
its only solution. In other words, under the technical conditions discussed
above, identifiability implies consistency of {fn}. By Proposition 2, we
conclude that for the binomial mixture with m ≤ T + 1, identifiability is
actually a necessary and sufficient condition for the consistency of {fn}.

As a simple illustration, Figure 1 depicts the pointwise convergence
of {fn} when the mixing distribution is f⋆ = (2/5, 1/5, 2/5) on Θ =
(1/4, 1/2, 3/4), under two circumstances. In both cases we chose f0 to
be uniform over Θ. The left column of plots is obtained using T = 5, and
horizontal lines represent the values of f∗(θi), which agree with the limits
of {fn(θi)}. Note how this situation changes in the right column, where we
chose T = 1. The sequences are still convergent, but their limits disagree
with those obtained from f⋆. Of course, the reason for that behavior in
the latter is the unidentifiability that comes from the fact that m > T + 1.

5 Concluding remarks

The relationship between identifiability and existence of a consistent esti-
mate can already be found in Reiersøl (1950). It seems that Gabrielsen
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Figure 1 Convergence of predictive recursion. Figures to the left
represent the sequence fn(θi) versus n for i = 1, 2, 3
when T = 5, m = 3 and Θ = {1/4, 1/2, 3/4}. The
right column displays fn(θi) versus n for i = 1, 2, 3
when T = 1, m = 3 and Θ = {1/4, 1/2, 3/4}.
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(1978) contains a first attempt to prove it. This paper shows that his ap-
proach is inadequate with respect to the identification concept introduced
by Koopmans and Reiersøl (1950), suggesting a formal proof. The link
identifiability-consistency is relevant in the following terms: if a parametri-
zation θ is unidentified, there does not exist a statistical procedure capable
of providing us with a consistent estimate of θ.

The second main result of this paper consists of showing the equiv-
alence between identifiability and consistency in the predictive recursion
algorithm for the case of finite mixture of Binomials. The relevant point
here is to show that a statistical procedure (as the predictive recursion
algorithm) can be interpreted with respect to a statistical experiment only
if this experiment is identified. Consequently, if a given model is general-
ized through a more complex (structural) parametrization, such extension
makes statistical sense only if the model is identified.
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