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Abstract: This paper suggests a class of shrinkage estimators for scale

parameter σ2 in complete samples from normal population N(µ, σ2) when

some apriori or guessed value σ2

0
(say) of σ2 is available and analyses their

properties. Some estimators are generated from the proposed class and com-

pared with the usual unbiased estimator, MMSE estimator, MLE and Singh

and Singh (1997) estimators. Numerical computations have been given to

judge the merits of the suggested class of shrinkage estimators over the MMSE

estimator, the MLE and Singh and Singh (1997) estimators.
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1 Introduction

The normal distribution plays a very important role in statistical theory and
methods. The problem of estimating variance plays a significant role in solving
the allocation problem in stratified random sampling, particularly in Neyman
allocation, giving a quite good fit for the failure time data in life testing and
reliability problems and many more.

Let x1, x2, . . . , xn be a random sample of size n from a normal population
N(µ, σ2), probability density function (p. d. f.) of which is given by:

f(x; µ, σ) =
1

σ
√

2π
exp

{

−1

2

(

x − µ

σ

)2
}

, −∞ < x < ∞, −∞ < µ < ∞, σ > 0,

(1.1)
where µ being the population mean acts as a location parameter and σ2 being the
population variance acts as a scale parameter.

For a complete sample, i.e., for an uncensored data set,

s2 =
1

n − 1

n
∑

i=1

(xi − x)2 (1.2)

is the minimum variance unbiased estimator (MVUE) of σ2, with variance

Var (s2) =
2σ4

n − 1
, (1.3)
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where x = (1/n)
∑n

i=1 xi is the sample mean.
The maximum likelihood estimator (MLE) of σ2 is given by

σ̂2
ml =

1

n

n
∑

i=1

(xi − x)2 (1.4)

with

Bias(σ̂2
ml) = −σ2

n
(1.5)

and

MSE(σ̂2
ml) =

(

2n− 1

n2

)

σ4 . (1.6)

Further, from a result of Goodman (1953), Singh, Pandey and Hirano (1973)
and Searls and Intarapanich (1990), it follows that the minimum mean squared
error (MMSE) estimator, among the class of estimators of the form gs2, g being
a constant for which the mean squared error (MSE) of gs2 is least, is

σ̂2
m =

(

n − 1

n + 1

)

s2 , (1.7)

with

Bias(σ̂2
m) =

−2σ2

(n + 1)
(1.8)

and

MSE(σ̂2
m) =

2σ4

(n + 1)
. (1.9)

Thompson (1968) considered the problem of shrinking an unbiased estimator

θ̂ of the parameter θ towards a natural origin θ0 and suggested a shrinkage type

estimator Kθ̂ + (1 − K)θ0, where K is a constant. The beauty of such type of
shrinkage estimators lies in the fact that, though perhaps they are biased, has

smaller MSE than θ̂ for θ in some interval around θ0 (the so called effective
interval). A large number of estimators for estimating the population variance of
normal distribution have been proposed with their properties by various authors
including Pandey and Singh (1977), Pandey (1979), Singh and Singh (1997) etc.,
when guessed value σ2

0 of the population variance σ2 is available.
Singh and Singh (1997) considered a class of estimators for population variance

σ2 as

σ̃2
(p) = σ2

0

[

1 + w

(

s2

σ2
0

)p]

, (1.10)

where p is a non-zero real number and w is a constant such that the MSE of σ̃2
(p)

is at a minimum value. The idea behind this estimator was that w improves the
MVUE estimator σ2. This yields a class of shrinkage estimators, viz.

σ̂2
(p) = σ2

0 + w(p)(s
2 − σ2

0), (1.11)
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with
Bias(σ̂2

(p)) = σ2(λ − 1)(1 − w(p)) (1.12)

and

MSE(σ̂2
(p)) = σ4

[

(λ − 1)2(1 − w(p))
2 +

2w2
(p)

n − 1

]

, (1.13)

where λ = σ2
0/σ2 and w(p) = K1(p)/K2(p), defined by (2.2).

In this paper, an effort has been made to propose a modified class of shrinkage
estimators for scale parameter σ2 by considering the reciprocal of s2 in addition
to s2 and introducing another constant to its exponent such that this constant
improves the reciprocal. The properties of suggested class of estimators are further
studied theoretically and empirically.

2 Suggested class of shrinkage estimators

We consider a class of estimators σ̃2
(p,q) for σ2 in model (1.1), which is defined as:

σ̃2
(p,q) = σ2

0

[

1 + w1

(

s2

σ2
0

)p

+ w2

(

σ2
0

s2

)q]

, (2.1)

where p and q are non-zero real numbers such that p + q 6= 0, w1 and w2 are
constants to be chosen such that MSE(σ̃2

(p,q)) is minimum and σ2
0 is a prior point

estimate or guessed value of σ2. This value σ2
0 may be obtained either from similar

studies in the past or through a guess of the experimenter.
Using the result that E{(s2)jk} = Kj(k)(σ

2)jk, j = 1, 2, k = p, q or any
function of p and/or q, where

Kj(k) =

(

2

n − 1

)jk Γ
(

n+2jk−1
2

)

Γ
(

n−1
2

) (2.2)

the MSE of σ̃2
(p,q) is given by

MSE{σ̃2
(p,q)} = σ4[r2 + w2

1(r + 1)2(1−p)K2(p) + w2
2(r + 1)2(1+q)K2(−q)

+2rw1(r + 1)(1−p)K1(p) + 2w1w2(r + 1)2−p+qK1(p−q)

+2rw2(r + 1)(1+q)K1(−q)], (2.3)

where
r = λ − 1 . (2.4)

Minimizing (2.3) with respect to w1 and w2, we get

w1 = −r(r + 1)(p−1) K1(p)K2(−q) − K1(−q)K1(p−q)

K2(p)K2(−q) − K2
1(p−q)

(2.5)
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and

w2 = −r(r + 1)(−q−1) K2(p)K1(−q) − K1(p)K1(p−q)

K2(p)K2(−q) − K2
1(p−q)

. (2.6)

Since σ2 is unknown therefore replacing σ2 by its MVUE s2 in (2.5) and (2.6),
we get

ŵ1 = −
(

σ2
0

s2
− 1

)(

σ2
0

s2

)(p−1)

C1(p, q), (2.7)

where

C1(p, q) =
K1(p)K2(−q) − K1(−q)K1(p−q)

K2(p)K2(−q) − K2
1(p−q)

(2.8)

and

ŵ2 = −
(

σ2
0

s2
− 1

)(

σ2
0

s2

)(−q−1)

C2(p, q), (2.9)

with

C2(p, q) =
K2(p)K1(−q) − K1(p)K1(p−q)

K2(p)K2(−q) − K2
1(p−q)

. (2.10)

Substituting (2.7) and (2.9) in (2.1) yields a class of shrinkage estimators for
σ2 in more feasible forms as

σ̂2
(p,q) = σ2

0 + C(p, q)(s2 − σ2
0) = C(p, q)s2 + {1 − C(p, q)}σ2

0 , (2.11)

where

C(p, q) = C1(p, q) + C2(p, q)

=
K1(p)[K2(−q) − K1(p−q)] − K1(−q)[K1(p−q) − K2(p)]

K2(p)K2(−q) − K2
1(p−q)

. (2.12)

It is apparent that (2.11) becomes the convex combination of s2 and σ2
0 if C(p, q) >

0 and 1 − C(p, q) > 0.
Since we are dealing with the problem of estimating variance which cannot be

negative, obviously it is necessary that σ̂2
(p,q) > 0. Thus, irrespective of the values

of s2 and σ2
0 this immediately leads to impose the constraint

0 < C(p, q) < 1 . (2.13)

Therefore, acceptable range of values of (p, q) for all n is given by

{(p, q) | 0 < C(p, q) < 1} . (2.14)

If C(p, q) = 1, the proposed class of shrinkage estimators turns into the MVUE,
otherwise it is biased with

Bias{σ̂2
(p,q)} = σ2(λ − 1){1 − C(p, q)} . (2.15)
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The mean squared error of σ̂2
(p,q) is given by

MSE{σ̂2
(p,q)} = σ4

[

(λ − 1)2{1 − C(p, q)}2 +
2{C(p, q)}2

n − 1

]

. (2.16)

It is quite evident in expressions (2.15) and (2.16) that if λ = 1, i.e., if the
guessed value σ2

0 coincides exactly with the true value σ2, the proposed class of
shrinkage estimators σ̂2

(p,q) becomes unbiased and possesses minimum MSE, which

is given by

min MSE{σ̂2
(p,q)} = σ4

[

2{C(p, q)}2

(n − 1)

]

. (2.17)

The quantity λ = (σ2
0/σ2) represents the departure of natural origin σ2

0 from
the true value σ2. But in practical situations it is hardly possible to get an idea
about λ. Consequently, an unbiased estimator of λ is proposed as a guideline to
know in practice whether λ is within its acceptable range of dominance or not.
Using application of the result of Mishra (1985), an unbiased estimator of λ is
given by

λ̂ =

(

n − 3

n − 1

)

σ2
0

s2
, n > 3, (2.18)

with variance

Var (λ̂) =
2σ4

0

σ4(n − 5)
. (2.19)

In inequalities (3.1), (3.4), (3.7) and (3.10) the upper and lower bounds of λ
are functions of known quantities n, p and q, hence can be easily determined.
Once this range is made known one can judge whether the estimated value of λ,

i.e., λ̂, lies in the calculated range of dominance or not. Such ranges are reckoned
in Tables 1 to 5. While observing these tables it is quite evident that the ranges

of dominance of λ are wide enough depicting that even if λ̂ departs much from λ
there is enough possibility of lying λ in its range of dominance.

3 Comparison of estimators

It is generally accepted that minimum MSE is a highly desirable property, and it
is therefore used as a criterion to compare different estimators with each other, for
instance see James and Stein (1961). The conditions under which the proposed
class of estimators is better than the conventional estimators and Singh and Singh
(1997) class of estimators are given below:

(i) The σ̂2
(p,q) has smaller MSE than s2 if

1 −
√

T ≤ λ ≤ 1 +
√

T (3.1)

or equivalently,

σ2
0(1 +

√
T )−1 ≤ σ2 ≤ σ2

0(1 −
√

T )−1, (3.2)
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where

T =
2

n − 1

[

1 + C(p, q)

1 − C(p, q)

]

. (3.3)

(ii) MSE(σ̂2
(p,q)) does not exceed MSE(σ̂2

m) if

1 −
√

G ≤ λ ≤ 1 +
√

G (3.4)

or, an equivalent condition for the true value of the population variance is

σ2
0(1 +

√
G)−1 ≤ σ2 ≤ σ2

0(1 −
√

G)−1, (3.5)

where

G =
2

{1 − C(p, q)}2

[

1

n + 1
− {C(p, q)}2

n − 1

]

. (3.6)

(iii) MSE(σ̂2
(p,q)) does not overstep MSE(σ̂2

ml) if

1 −
√

R ≤ λ ≤ 1 +
√

R (3.7)

or equivalently,

σ2
0(1 +

√
R)−1 ≤ σ2 ≤ σ2

0(1 −
√

R)−1 , (3.8)

where

R =
1

{1 − C(p, q)}2

[

2n − 1

n2
− 2{C(p, q)}2

n − 1

]

. (3.9)

(iv) MSE(σ̂2
(p,q)) ≤ MSE(σ̂2

(p)) if

λ 6∈ (1 −
√

M, 1 +
√

M), (3.10)

where

M =
2

n − 1

[

C(p, q) + w(p)

2 − C(p, q) − w(p)

]

. (3.11)

Besides minimum MSE criterion, minimum bias is also important and therefore
should be considered under study. The conditions under which the proposed class
of estimators has smaller absolute relative bias (ARB) than the other competitive
estimators are given below:

(i) ARB(σ̂2
(p,q)) does not exceed ARB(σ̂2

m), if

[

1 − 2

(n + 1){1 − C(p, q)}

]

< λ <

[

1 +
2

(n + 1){1 − C(p, q)}

]

. (3.12)
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(ii) ARB(σ̂2
(p,q)) does not overstep ARB(σ̂2

ml) if

[

1 − 1

n{1 − C(p, q)}

]

< λ <

[

1 +
1

n{1 − C(p, q)}

]

. (3.13)

(iii) The σ̂2
(p,q) has smaller ARB than σ̂2

(p) if

{1 − C(p, q)}2 < {1 − w(p)}2 . (3.14)

4 Numerical illustrations

An exact analytical study about the performance of the proposed class of estima-
tors is not possible because the expressions for the proposed class of estimators
appear to be too complicated to obtain in nice compact forms. A similar remark
applies to the expressions for ARBs and MSEs of the proposed class of estimators
in order to obtain the corresponding relative efficiencies and bias performance.
Therefore, we are left with no other better choice than empirical study.

To illustrate the efficiency performance of the proposed class of estimators
σ̂2

(p,q) with the MMSE estimator σ̂2
m (which is theoretically better than the MVU

estimator s2), the MLE and Singh and Singh (1997) class of estimators, we have
computed the Percent Relative Efficiencies (PREs) of σ̂2

(p,q) with respect to σ̂2
m,

σ̂2
ml and σ̂2

(p) by the formulae:

PRE{σ̂2
(p,q), σ̂

2
m} =

2(n − 1)

(n+1)[(n−1)(λ−1)2{1−C(p, q)}2+2{C(p, q)}2]
×100,(4.1)

PRE{σ̂2
(p,q), σ̂

2
ml} =

2n2 − 3n + 1

n2[(n − 1)(λ − 1)2{1 − C(p, q)}2 + 2{C(p, q)}2]
× 100, (4.2)

PRE{σ̂2
(p,q), σ̂

2
(p)} =

(n − 1)(λ − 1)2{1 − w(p)}2 + 2w2
(p)

(n − 1)(λ − 1)2{1 − C(p, q)}2 + 2{C(p, q)}2
× 100. (4.3)

The range of dominance of λ in which the proposed estimator σ̂2
(p,q) is better than

the MMSE estimator, the MLE and Singh and Singh (1997) class of estimators
can be reckoned with the help of (3.4), (3.7) and (3.10) respectively.

To elucidate the bias performance of the envisaged class of estimators σ̂2
(p,q)

with the MMSE estimator σ̂2
m, the MLE σ̂2

ml and Singh and Singh (1997) class
of estimators σ̂2

(p), the Percent Absolute Relative Bias (PARBs) are computed by

the formulae:

PARB{σ̂2
(p,q), σ̂

2
m} =

∣

∣

∣

∣

2

(n + 1)(λ − 1){1 − C(p, q)}

∣

∣

∣

∣

× 100, (4.4)

PARB{σ̂2
(p,q), σ̂

2
ml} =

∣

∣

∣

∣

1

n(λ − 1){1 − C(p, q)}

∣

∣

∣

∣

× 100, (4.5)

PARB{σ2
(p,q), σ̂

2
(p)} =

{1 − w(p)}2

{1 − C(p, q)}2
× 100. (4.6)
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The findings of PREs are set down in Tables 1, 3, 5 and that of PARBs in
Tables 2, 4, 6 for n = 5(5)20, p = ±2, q = 1.00, 1.25, 1.75 and different values of
λ.

Table 1 PREs of proposed estimator σ̂2
(p,q) with respect to MMSE

estimator σ̂2
m

p → -2 2
q ↓

λ↓ n→ 5 10 15 20 5 10 15 20

0.05 98.65 91.29 100.33 95.05 76.92 96.39 100.17 100.69
0.25 105.22 112.72 103.27 95.19 113.11 114.08 109.17 103.80
0.50 112.09 143.74 106.12 95.53 199.29 137.23 119.00 112.24
0.75 116.65 172.18 107.91 95.67 367.16 156.26 125.79 116.06
1.00 118.26 184.33 108.52 95.71 510.48 163.82 128.23 117.39

1.00 1.25 116.65 172.18 107.91 95.67 367.16 156.26 125.79 116.06
1.50 112.09 143.74 106.12 95.53 199.29 137.23 119.00 112.24
1.75 105.22 112.72 103.27 95.30 113.11 114.08 109.17 106.40
2.00 96.91 86.57 99.52 94.98 70.45 92.29 97.86 99.17

Range (0.09, (0.14, (0.03, – (0.19, (0.09, (0.05, (0.03,
of λ 1.91) 1.86) 1.97) 1.81) 1.91) 1.95) 1.97)

C(p.q) 0.7508 0.6662 0.8980 0.9722 0.3614 0.7067 0.8261 0.8779

0.05 103.07 71.91 100.82 98.50 66.34 84.17 95.03 98.11
0.25 115.69 99.65 108.59 99.10 101.50 109.04 109.37 103.10
0.50 130.37 154.39 116.87 100.59 197.88 149.68 126.99 117.66
0.75 141.11 230.31 122.47 101.21 459.91 192.80 140.58 124.81
1.00 145.10 275.46 124.45 101.42 823.32 213.28 145.78 127.39

1.25 1.25 141.11 230.31 122.47 101.21 459.91 192.80 140.58 124.81
1.50 130.37 154.39 116.87 100.59 197.88 149.68 126.99 117.66
1.75 115.69 99.65 108.59 99.58 101.50 109.04 109.37 107.41
2.00 99.94 66.59 98.80 98.20 60.35 79.01 91.58 95.73

Range (0.00, (0.25, (0.03, (0.34, (0.24, (0.18, (0.12, (0.09,
of λ 2.00) 1.75) 1.97) 1.66) 1.76) 1.82) 1.88) 1.91)

C(p.q) 0.6778 0.5450 0.8385 0.9445 0.2846 0.6194 0.7747 0.8428

0.05 100.71 44.52 81.85 100.27 58.54 61.20 78.42 87.23
0.25 125.38 68.66 103.11 103.84 91.50 89.01 100.76 95.74
0.50 161.82 136.89 135.44 113.69 189.66 152.89 136.50 125.60
0.75 196.00 338.97 166.84 118.23 532.24 268.48 173.39 143.79
1.00 210.84 667.36 180.81 119.83 1337.63 358.94 190.56 151.07

1.75 1.25 196.00 338.97 166.84 118.23 532.24 268.48 173.39 143.79
1.50 161.82 136.89 135.44 113.69 189.66 152.89 136.50 125.60
1.75 125.38 68.66 103.11 106.84 91.50 89.01 100.76 103.74
2.00 95.33 40.44 77.28 98.53 53.06 56.16 73.74 83.42

Range (0.04, (0.40, (0.22, (0.04, (0.29, (0.31, (0.24, (0.21,
of λ 1.96) 1.60) 1.78) 1.96) 1.71) 1.69) 1.76) 1.79)

C(p.q) 0.5623 0.3501 0.6957 0.8689 0.2232 0.4774 0.6776 0.7739



A class of shrinkage estimators for variance of a normal population 49

Table 2 PARBs of proposed estimator σ̂2
(p,q) with respect to MMSE

estimator σ̂2
m

p → -2 2
q ↓

λ↓ n→ 5 10 15 20 5 10 15 20

0.05 140.81 57.34 128.95 361.25 54.94 65.25 75.64 82.11
0.25 178.36 72.63 163.33 457.58 69.59 82.65 95.81 104.00
0.50 267.55 108.95 245.00 686.37 104.39 123.98 143.72 156.01
0.75 535.09 217.90 490.00 1372.73 208.78 247.96 287.44 312.01
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.00 1.25 535.09 217.90 490.00 1372.73 208.78 247.96 287.44 312.01
1.50 267.55 108.95 245.00 686.37 104.39 123.98 143.72 156.01
1.75 178.36 72.63 163.33 457.58 69.59 82.65 95.81 104.00
2.00 133.77 54.47 122.50 343.18 52.20 61.99 71.86 78.00

Range (0.00, (0.46, (0.00, (0.00, (0.48, (0.38, (0.28, (0.22,
of λ 2.34) 1.54) 2.22) 4.43) 1.52) 1.62) 1.72) 1.78)

C(p.q) 0.7508 0.6662 0.8980 0.9722 0.3614 0.7067 0.8261 0.8779

0.05 108.91 42.06 81.47 180.71 49.04 50.28 58.41 63.76
0.25 137.96 53.28 103.19 228.90 62.12 63.69 73.99 80.76
0.50 206.94 79.92 154.79 343.35 93.18 95.54 110.98 121.14
0.75 413.87 159.84 309.58 686.70 186.36 191.07 221.97 242.27
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.25 1.25 413.87 159.84 309.58 686.70 186.36 191.07 221.97 242.27
1.50 206.94 79.92 154.79 343.35 93.18 95.54 110.98 121.14
1.75 137.96 53.28 103.19 228.90 62.12 63.69 73.99 80.76
2.00 103.47 39.96 77.40 171.67 46.59 47.77 55.49 60.57

Range (0.00, (0.60, (0.23, (0.00, (0.53, (0.52, (0.45, (0.39,
of λ 2.03) 1.40) 1.77) 2.72) 1.47) 1.48) 1.55) 1.61)

C(p.q) 0.6778 0.5450 0.8385 0.9445 0.2846 0.6194 0.7747 0.8428

0.05 80.17 29.45 43.23 76.49 45.17 36.62 40.82 44.33
0.25 101.54 37.30 54.76 96.88 57.22 46.39 51.70 56.16
0.50 152.31 55.96 82.15 145.32 85.83 69.59 77.55 84.24
0.75 304.63 111.91 164.29 290.65 171.65 139.17 155.10 168.47
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.75 1.25 304.63 111.91 164.29 290.65 171.65 139.17 155.10 168.47
1.50 152.31 55.96 82.15 145.32 85.83 69.59 77.55 84.24
1.75 101.54 37.30 54.76 96.88 57.22 46.39 51.70 56.16
2.00 76.16 27.98 41.07 72.66 42.91 34.79 38.77 42.12

Range (0.24, (0.72, (0.59, (0.27, (0.57, (0.65, (0.61, (0.58,
of λ 1.76) 1.28) 1.41) 1.73) 1.43) 1.35) 1.39) 1.42)

C(p.q) 0.5623 0.3501 0.6957 0.8689 0.2232 0.4774 0.6776 0.7739

** u.b. stands for unbiased
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Table 3 PREs of proposed estimator σ̂2
(p,q) with respect to MLE σ̂2

ml

p → -2 2
q ↓

λ↓ n→ 5 10 15 20 5 10 15 20

0.05 106.54 95.39 103.45 97.31 83.07 100.73 103.29 103.09
0.25 113.64 117.79 106.48 97.56 122.16 119.22 112.57 108.92
0.50 121.05 150.21 109.42 97.80 215.24 143.41 122.70 114.90
0.75 125.99 179.92 111.26 97.94 396.53 163.29 129.70 118.82
1.00 127.72 192.62 111.89 97.99 551.32 171.20 132.22 120.18

1.00 1.25 125.99 179.92 111.26 97.94 396.53 163.29 129.70 118.82
1.50 121.05 150.21 109.42 97.80 215.24 143.41 122.70 114.90
1.75 113.64 117.79 106.48 97.56 122.16 119.22 112.57 108.92
2.00 104.66 90.46 102.62 97.24 76.09 96.44 100.90 101.53

Range (0.00, (0.09, (0.00, — (0.15, (0.04, (0.00, (0.00,
of λ 2.12) 1.91) 2.15) 1.85) 1.96) 2.02) 2.05)

C(p.q) 0.7508 0.6662 0.8980 0.9722 0.3614 0.7067 0.8261 0.8779

0.05 111.32 75.14 103.96 100.84 71.65 87.96 97.98 100.44
0.25 124.95 104.13 111.97 101.95 109.62 113.95 112.78 109.96
0.50 140.80 161.34 120.50 102.98 213.71 156.42 130.94 120.45
0.75 152.40 240.67 126.28 103.61 496.70 201.48 144.95 127.77
1.00 156.70 287.85 128.33 103.83 889.18 222.88 150.31 130.41

1.25 1.25 152.40 240.67 126.28 103.61 496.70 201.48 144.95 127.77
1.50 140.80 161.34 120.50 102.98 213.71 156.42 130.94 120.45
1.75 124.95 104.13 111.97 101.95 109.62 113.95 112.78 109.96
2.00 107.94 69.59 101.87 100.53 65.18 82.56 94.43 98.00

Range (0.00, (0.23, (0.00, (0.00, (0.21, (0.15, (0.08, (0.04,
of λ 2.12) 1.77) 2.04) 2.08) 1.79) 1.85) 1.92) 1.96)

C(p.q) 0.6778 0.5450 0.8385 0.9445 0.2846 0.6194 0.7747 0.8428

0.05 108.76 46.52 84.39 102.65 63.22 63.95 80.86 89.30
0.25 135.41 71.75 106.31 109.38 98.82 93.02 103.90 106.21
0.50 174.77 143.05 139.66 116.39 204.83 159.77 140.74 128.59
0.75 211.68 354.22 172.03 121.04 574.82 280.56 178.78 147.20
1.00 227.71 697.40 186.43 122.68 1444.64 375.09 196.49 154.66

1.75 1.25 211.68 354.22 172.03 121.04 574.82 280.56 178.78 147.20
1.50 174.77 143.05 139.66 116.39 204.83 159.77 140.74 128.59
1.75 135.41 71.75 106.31 109.38 98.82 93.02 103.90 106.21
2.00 102.95 42.26 79.68 100.87 57.30 58.69 76.03 85.40

Range (0.00, (0.38, (0.20, (0.00, (0.25, (0.29, (0.22, (0.18,
of λ 2.03) 1.62) 1.80) 2.02) 1.75) 1.71) 1.78) 1.82)

C(p.q) 0.5623 0.3501 0.6957 0.8689 0.2232 0.4774 0.6776 0.7739
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Table 4 PARBs of proposed estimator σ̂2
(p,q) with respect to MLE

σ̂2
ml

p → -2 2
q ↓

λ↓ n→ 5 10 15 20 5 10 15 20

0.05 84.49 31.54 68.77 189.65 32.97 35.89 40.34 43.11
0.25 107.02 39.95 87.11 240.23 41.76 45.46 51.10 54.60
0.50 160.53 59.92 130.67 360.34 62.63 68.19 76.65 81.90
0.75 321.06 119.84 261.33 720.68 125.27 136.38 153.30 163.81
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.00 1.25 321.06 119.84 261.33 720.68 125.27 136.38 153.30 163.81
1.50 160.53 59.92 130.67 360.34 62.63 68.19 76.65 81.90
1.75 107.02 39.95 87.11 240.23 41.76 45.46 51.10 54.60
2.00 80.26 29.96 65.33 180.17 31.32 34.09 38.33 40.95

Range (0.20, (0.70, (0.35, (0.00, (0.69, (0.66, (0.62, (0.59,
of λ 1.80) 1.30) 1.61) 2.80) 1.31) 1.34) 1.38) 1.41)

C(p.q) 0.7508 0.6662 0.8980 0.9722 0.3614 0.7067 0.8261 0.8779

0.05 65.35 23.13 43.45 94.87 29.43 27.65 31.15 33.47
0.25 82.77 29.30 55.04 120.17 37.27 35.03 39.46 42.40
0.50 124.16 43.96 82.56 180.26 55.91 52.54 59.19 63.60
0.75 248.32 87.91 165.11 360.52 111.82 105.09 118.38 127.19
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.25 1.25 248.32 87.91 165.11 360.52 111.82 105.09 118.38 127.19
1.50 124.16 43.96 82.56 180.26 55.91 52.54 59.19 63.60
1.75 82.77 29.30 55.04 120.17 37.27 35.03 39.46 42.40
2.00 62.08 21.98 41.28 90.13 27.95 26.27 29.60 31.80

Range (0.38, (0.78, (0.59, (0.10, (0.72, (0.74, (0.70, (0.68,
of λ 1.62) 1.22) 1.41) 1.90) 1.28) 1.26) 1.30) 1.32)

C(p.q) 0.6778 0.5450 0.8385 0.9445 0.2846 0.6194 0.7747 0.8428

0.05 48.10 16.20 23.06 40.16 27.10 20.14 21.77 23.28
0.25 60.93 20.52 29.21 50.86 34.33 25.52 27.57 29.48
0.50 91.39 30.78 43.81 76.29 51.50 38.27 41.36 44.22
0.75 182.78 61.55 87.62 152.59 102.99 76.55 82.72 88.45
1.00 u.b. u.b. u.b. u.b. u.b. u.b. u.b. u.b.

1.75 1.25 182.78 61.55 87.62 152.59 102.99 76.55 82.72 88.45
1.50 91.39 30.78 43.81 76.29 51.50 38.27 41.36 44.22
1.75 60.93 20.52 29.21 50.86 34.33 25.52 27.57 29.48
2.00 45.69 15.39 21.91 38.15 25.75 19.14 20.68 22.11

Range (0.54, (0.85, (0.78, (0.62, (0.74, (0.81, (0.79, (0.78,
of λ 1.46) 1.15) 1.22) 1.38) 1.26) 1.19) 1.21) 1.22)

C(p.q) 0.5623 0.3501 0.6957 0.8689 0.2232 0.4774 0.6776 0.7739



52 Housila P. Singh and Sharad Saxena

Table 5 PREs of proposed estimator σ̂2
(p,q) with respect to Singh and

Singh (1997) estimator σ̂2
(p)

p → -2 2
q ↓

λ↓ n→ 5 10 15 20 5 10 15 20

0.05 259.34 412.59 419.91 344.95 137.90 183.86 184.02 174.92
0.50 81.65 180.24 128.29 108.02 107.62 93.43 89.70 89.58
1.00 0.04 0.48 7.44 16.60 30.63 34.55 43.44 51.46
1.50 81.65 180.24 128.29 108.02 107.62 93.43 89.70 89.58
2.00 282.29 433.50 460.78 380.16 139.50 192.95 195.61 186.18

1.00 2.50 518.19 586.35 931.68 826.82 148.54 265.10 307.61 305.33
3.00 732.43 668.94 1459.63 1438.07 152.06 308.83 399.27 419.13
3.50 905.76 715.60 1981.60 2200.76 153.77 335.23 467.35 515.39
4.00 1039.38 743.79 2460.58 3099.20 154.72 351.82 516.51 592.31

Ineffective (0.44, (0.65, (0.56, (0.52, (0.56, (0.47, (0.44, (0.43,
range of λ 1.56) 1.35) 1.44) 1.48) 1.44) 1.53) 1.56) 1.57)
C(p.q) 0.7508 0.6662 0.8980 0.9722 0.3614 0.7067 0.8261 0.8779

0.05 270.97 325.01 421.97 357.48 118.94 160.55 174.58 170.42
0.50 94.97 193.59 141.28 113.74 106.86 101.91 95.73 93.91
1.00 0.05 0.71 8.53 17.59 49.40 44.98 49.39 55.85
1.50 94.97 193.59 141.28 113.74 106.86 101.91 95.73 93.91
2.00 291.13 333.48 457.42 393.04 119.49 165.18 183.07 179.72

1.25 2.50 471.56 385.11 811.59 830.12 122.47 196.32 254.75 268.51
3.00 602.21 407.18 1117.94 1388.85 123.57 211.42 302.19 339.72
3.50 690.80 418.28 1355.84 2029.05 124.09 219.47 332.46 391.78
4.00 750.79 424.56 1533.47 2712.50 124.38 224.19 352.15 428.96

Ineffective (0.49, (0.69, (0.59, (0.54, (0.60, (0.51, (0.47, (0.46,
range of λ 1.51) 1.31) 1.41) 1.46) 1.40) 1.49) 1.53) 1.54)
C(p.q) 0.6778 0.5450 0.8385 0.9445 0.2846 0.6194 0.7747 0.8428

0.05 264.75 201.23 342.54 363.89 104.95 116.73 144.07 151.52
0.50 117.88 171.64 163.74 128.54 102.41 104.09 102.89 100.25
1.00 0.07 1.73 12.39 20.78 80.26 75.70 64.56 66.23
1.50 117.88 171.64 163.74 128.54 102.41 104.09 102.89 100.25
2.00 277.68 202.53 357.79 394.37 105.05 117.42 147.40 156.61

1.75 2.50 370.80 209.53 465.34 708.56 105.61 121.39 170.08 196.60
3.00 420.12 212.09 520.74 995.45 105.81 122.97 181.27 220.49
3.50 447.68 213.30 551.24 1228.65 105.91 123.73 187.29 234.79
4.00 464.22 213.96 569.40 1409.09 105.96 124.16 190.83 243.72

Ineffective (0.55, (0.77, (0.64, (0.57, (0.63, (0.58, (0.53, (0.50,
range of λ 1.45) 1.23) 1.36) 1.43) 1.37) 1.42) 1.47) 1.50)
C(p.q) 0.5623 0.3501 0.6957 0.8689 0.2232 0.4774 0.6776 0.7739
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Table 6 PARBs of proposed estimator σ̂2
(p,q) with respect to Singh

and Singh (1997) estimator σ̂2
(p)

p → -2 2
q ↓ n→ 5 10 15 20 5 10 15 20

1.00 1563.64 816.91 5475.97 47351.42 156.93 397.30 685.86 919.35
1.25 935.43 439.58 2185.89 11849.31 125.03 235.90 409.00 554.31
1.75 506.78 215.49 615.60 2122.72 106.08 125.16 199.69 268.04

It has been observed from Tables 1 to 4 that if n, p, q are fixed, the PREs
as well as PARBs of proposed class of shrinkage estimators with respect to the
MMSE estimator and the MLE increases up to λ = 1 (i.e. when the guessed value
exactly coincide with the true value), procures its maximum at this point and then
decreases symmetrically in magnitude, as λ increases in its range of dominance
for all n, p and q. This at once leads to conclude that the range of dominance of
λ cannot exceed 0 < λ < 2. In other words, even if the guessed value σ2

0 under
estimates or over estimates almost two times or less (but not exactly two times)
the true value σ2, the proposed class of estimators yields better estimators than
the MMSE estimator and the MLE in the effective interval of λ. It is interesting
to note that at λ = 1, the proposed class of estimators is unbiased with largest
efficiency and hence in the vicinity of λ = 1 also, the proposed class of estimators
not only renders massive gain in efficiency but it is less biased in comparison of
MMSE estimator and MLE. Moreover, it is observed that to get better estimators
in the class, the value of C(p, q) should be as small as possible in the interval of
(0,1).

If the proposed class of estimators is compared in terms of efficiency with
Singh and Singh (1997) class of estimators, Table 5 depicts that for fixed n, p,
q the PREs decreases up to λ = 1, attains its minimum at this point and then
increases as λ increases. This implies that the suggested class of estimators is
more efficient than Singh and Singh (1997) class of estimators in the region lies
either sides of the closed proximity of λ = 1. Thus if the experimenter has less
confidence in the guessed value, the suggested class of estimators performs better
than Singh and Singh (1997) class of estimators. The PARBs on the other hand
are independent of λ and Table 6 shows results in support of the proposed class
of estimators. It is worth mentioning that if w(p) < C(p, q), the suggested class of
estimators is always less biased than Singh and Singh (1997) class of estimators,
no matter what is the value of λ.

Figures 1 and 2 clearly show the above discussion. Figure 1 represents the
efficiency performance and Figure 2 represents the bias performance.
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5 Conclusion

A modification in the class of estimators reported by Singh and Singh (1997) has
been suggested. The class of estimators thus obtained seems to be an improved
version of Singh and Singh (1997) class of estimators subject to certain conditions.
The proposed class leads to formulate many interesting estimators of shrinkage
type. It is identified that when the guessed value σ2

0 coincides exactly with the
true value σ2 and also when σ2

0 is moderately far away from σ2, we get larger gain
in efficiency over the MMSE estimator and the MLE in the effective interval of λ.
The suggested class of shrinkage estimators has substantial gain in efficiency for a
number of choices of p and q, when the sample size is small. Even for large sample
sizes, so far as the proper selection of scalars is concerned, some of the estimators
from the suggested class are found more efficient than the MMSE estimator and
the MLE. Thus, even if the experimenter has less confidence in the guessed value,
the efficiency of the proposed class can be increased considerably by suitably
choosing the scalars p and q. The superiority of the suggested class of estimators
over Singh and Singh (1997) class of estimators has also been recognized. The
suggested class of shrinkage estimators are therefore recommended for its use in
practice.
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