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Abstract: We propose a class of regression models where the response

is beta distributed and the two parameters that index the beta distribution

are related to covariates and regression parameters. The proposed class of

models is useful for modeling data that are restricted to the (0, 1) interval.

We discuss maximum likelihood estimation of the parameters that define the

regression structure of the model, and derive closed-form expressions for the

second order biases of these estimators. The derived expressions are then used

to define bias-corrected maximum likelihood estimators. Simulation results

show that the bias correction scheme yields nearly unbiased estimators.

Key words: Beta distribution, bias correction, maximum likelihood es-

timation, regression.

1 Introduction

An important area of research in statistics is the study of the finite-sample be-
havior of maximum likelihood estimators (MLEs). We know that MLEs are of-
tentimes biased, thus displaying systematic error. This is not a serious problem
for relatively large sample sizes, since bias is typically of order O(n−1), while
the asymptotic standard errors are of order O(n−1/2). However, for small or
even moderate values of the sample size n, bias can constitute a problem. Thus,
availability of formulae for its approximate computation is important for good es-
timation performance of many models that are used in a number of applications.
Bias correction of MLEs is particularly important when the sample size, or the
total information, is small.

Bias adjustment has been extensively studied in the statistical literature. Box
(1971) gives a general expression for the n−1 bias in multivariate nonlinear mod-
els where covariance matrices are known. Pike, Hill and Smith (1980) investigate
estimation bias in logistic linear models. For nonlinear regression models, Cook,
Tsai and Wei (1986) relate bias to the position of the explanatory variables in
the sample space. Young and Bakir (1987) show that bias correction can improve
estimation in generalized log-gamma regression models. Cordeiro and McCul-
lagh (1991) give general matrix formulae for bias correction in generalized linear
models. More recently, Cordeiro and Vasconcellos (1997) obtained general ma-
trix formulae for bias correction in multivariate nonlinear regression models with
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normal errors, while Vasconcellos and Cordeiro (2000) obtained bias correction
for multivariate nonlinear Student t regression models. Also, Cordeiro and Vas-
concellos (1999) obtain second order biases of the maximum likelihood estimators
in von Mises regression models, while Vasconcellos, Cordeiro and Barroso (2000)
derive bias corrected estimators for heteroskedastic univariate regression models
with Student t error.

Practitioners oftentimes need to model data that are restricted to the (0, 1)
interval, such as, e.g., the unemployment rate and income concentration mea-
sures, among others. The beta distribution is very flexible for modeling such data
since its density can display quite different shapes depending on the parameter
values, the uniform distribution being one of the many special cases. Bury (1999)
lists applications of the beta distribution in engineering. Johnson, Kotz and Bal-
akrishnan (1995) also present and discuss a number of applications of the beta
distribution. According to them (p. 235), “[t]he beta distributions are among the
most frequently employed to model theoretical distributions.” Krysicki (1999)
presents some new properties of the beta distribution.

In this paper we define a class of models based on the beta distribution where
the two parameters (p and q) that index the distribution have regression structures
defined by sets of explanatory variables. The proposed model therefore allows one
to study the relationship between the variable of interest and other variables that
affect its behavior, and can be used whenever the response is measured as a rate or
as a proportion. The proposed model is quite general. A special case of particular
interest is when q is regressor-free and the link function for p is exponential, in
which case the regression parameters can be interpreted in terms of mean response
effects.

We discuss maximum likelihood estimation of the regression parameters, ob-
taining the log-likelihood function, the score function and Fisher’s information
matrix. As is well known, however, maximum likelihood estimators, although
consistent, are typically biased in finite samples. In order to overcome this short-
coming, we derive a closed-form expression for the bias of the maximum likelihood
estimator, and use it to define a bias-adjusted maximum likelihood estimator.
Bias corrections for maximum likelihood estimators of the parameters that index
the beta distribution were obtained and studied by Cordeiro, Rocha, Rocha &
Cribari–Neto (1997) and Cribari–Neto & Vasconcellos (2002). However, their re-
sults do not apply to models with regression structures, as the one proposed in
this paper. Our focus is on situations where the variable of interest is related to
other variables, and such dependence is exploited when modeling the response.

The plan of the paper is as follows. Section 2 introduces the class of beta regres-
sion and discusses the estimation of the model parameters by maximum likelihood.
Section 3 derives the second order biases of the maximum likelihood estimators of
the beta regression parameters. The result is used to define bias-adjusted max-
imum likelihood estimators. Monte Carlo simulation results are presented and
discussed in Section 4. The numerical results show that the bias correction we
derive is effective in small samples; it delivers estimators that are nearly unbi-
ased and display superior finite-sample behavior. Finally, Section 5 concludes the
paper.
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2 The model and maximum likelihood estimation

Let Y have a beta distribution with parameters p and q, i.e., Y ∼ B(p, q). Then,
its density function is

f(y; p, q) =
Γ(p+ q)

Γ(p)Γ(q)
yp−1 (1 − y)

q−1

and the log-density is

log f(y; p, q) = log Γ(p+ q)− log Γ(p)− log Γ(q) + (p− 1) log y+ (q− 1) log(1− y).

The rth moment of Y about the origin is given by

µ′
r(Y ) =

Γ(p+ q)Γ(p+ r)

Γ(p)Γ(p+ q + r)
.

Therefore, the mean of Y is given by p/(p + q) and its variance by pq/{(p +
q)2(p + q + 1)}. The mode exists if p > 1 and q > 1, in which case it equals
(p− 1)/(p+ q − 2).

The first order derivatives of the log-density are

∂ log f(y; p, q)

∂p
= ψ(p+ q) − ψ(p) + log y,

∂ log f(y; p, q)

∂q
= ψ(p+ q) − ψ(q) + log(1 − y),

where ψ is the digamma function. Since the expected score equals zero, it follows
that

E[logY ] = ψ(p) − ψ(p+ q),

E[log(1 − Y )] = ψ(q) − ψ(p+ q).

In what follows we propose a regression structure that allows the modeling
of relationships between random variables that follow a beta distribution and
a set of explanatory variables. The proposed model is defined by establishing
relationships between the parameters that index the beta distribution, p and q,
and linear predictors on independent variables.

We consider the model where the observations Y1, . . . , Yn are beta distributed
and independent. The distribution of Yi is B(pi, qi), where pi and qi are, for each
i, described by sets of explanatory variables {x1, . . . , xm} and {v1, . . . , vM} as

pi = g(β1x1i + · · · + βmxmi),

qi = h(γ1v1i + · · · + γMvMi).

Here, g and h are link functions and assumed real, strictly positively valued
and continuously differentiable up to the third order. The regression parameters
β1, . . . , βm and γ1, . . . , γM are unknown.
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Let θ = (βT , γT )T be the joint parameter vector. The log-likelihood function
is given, apart from unimportant constants, by

ℓ(θ) =

n∑

i=1

log Γ(pi + qi) −

n∑

i=1

log Γ(pi) −

n∑

i=1

log Γ(qi)

+

n∑

i=1

pi log yi +

n∑

i=1

qi log(1 − yi).

The first order derivatives with respect to the regression parameters are

∂ℓ

∂βr
=

n∑

i=1

g′ixri[ψ(pi + qi) − ψ(pi) + log yi],

∂ℓ

∂γR
=

n∑

i=1

h′ivRi[ψ(pi + qi) − ψ(qi) + log(1 − yi)],

where βr and γR denote the rth and Rth elements of the m dimensional β and and
M dimensional γ vectors, respectively. Also, g′i is the first derivative of gi with
respect to its argument, this derivative being evaluated at ηi = β1x1i+· · ·+βmxmi.
Also, h′i represents the first derivative of hi with respect to its argument, the
derivative being evaluated at τi = γ1v1i + · · · + γMvMi.

Maximum likelihood estimators of the β and γ vectors can be obtained by
equating the above derivatives to zero and solving the resulting system. There
are no closed form expressions for these estimators, and their computation has
to be performed numerically using a nonlinear optimization algorithm. We shall
assume that the usual regularity conditions for maximum likelihood estimation
hold (Cox and Hinkley, 1974, Chapter 9).

It is oftentimes desirable for the regression parameters to be interpretable in
terms of the mean response. The parameters in the proposed model have such
interpretation, especially when there is a regression structure for p and not for q,
and the link function is exponential. That is, suppose we have

pi = exp{β1x1i + · · · + βmxmi}.

It is easy to show that the derivative of µ with respect to xj , j = 1, . . . ,m, is,
then, given by

∂µ

∂xj
= βjµ(1 − µ). (2.1)

This function is plotted in Figure 1 for three values of βj , namely 0.8, 1.0 and
1.2. We note that: (i) The impact on µ of a change in one of the independent
variables is greatest when µ = 0.5 and smallest when µ is close to 0 or 1. (ii) The
sign effect is given by the sign of βj . This is similar to what occurs in logit and
probit regression models for binary responses. (iii) The relative effect,

∂µ/∂xj

∂µ/∂xk
=
βj

βk
, j 6= k = 1, . . . ,m,
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does not depend on the covariates; that is, the ratio of partial effects is constant
and given by the ratio of the corresponding regression coefficients. These three
features are also present in logit and probit regression models for binary responses.
For a general link function, it follows that

∂µ

∂xj
= λ′βjµ(1 − µ), (2.2)

where λ = log(g) and, consequently, λ′ = g′/g, where primes here denote deriva-
tives with respect to xj . When the link function is exponential, λ becomes the
identity function, λ′ = 1, and thus (2.2) reduces to (2.1).
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Figure 1 Derivative of µ with respect to xj, j = 1, . . . ,m.

It is also desirable to report a measure of the global goodness of fit when
estimating regression models. A measure that can be used for the proposed model
is the pseudo R2 defined as

R2
p = 1 −

ℓR
ℓU
,

where ℓU is the unrestricted (all covariates) maximized log-likelihood and ℓR is the
restricted (no covariates) maximized log-likelihood. It is clear that R2

p lies between
0 and 1, and thus it is a plausible measure of goodness of fit. A similar global
measure of fit for binary regression models was proposed by McFadden (1974).
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It is well known that maximum likelihood estimators are consistent, asymp-
totically efficient, and asymptotically normal. However, they can be substantially
biased when the sample size is small. Bias is a systematic error in the estima-
tion process, and it is thus undesirable. The next section develops finite-sample
adjustments that can be applied to the maximum likelihood estimators of β and
γ to greatly reduce small sample bias of these estimators. The main idea is to

obtain closed-form expressions for the second order biases of β̂ and γ̂ and to use
these expressions to bias-correct the maximum likelihood estimators.

3 Improved estimation in small samples

At the outset, we shall introduce some notation. The total log-likelihood deriva-
tives with respect to the unknown parameters are indicated by indices, where lower
case letters r, s, t, . . . correspond to derivatives with respect to the β parameters,
while upper case letters R,S, T, . . . correspond to derivatives with respect to the
γ parameters. Thus, Ur = ∂ℓ/∂βr, UR = ∂ℓ/∂γR, URs = ∂2ℓ/∂γR∂βs, UrsT =
∂3ℓ/∂βr∂βs∂γT and so on. The standard notation for the moments of these
derivatives is used here (Lawley, 1956): κrs = E(Urs), κR,S = E(URUS), κrs,T =
E(UrsUT ), κrst = E(Urst), etc., where all κ’s refer to a total over the sam-
ple, and are, in general, of order n. Also, their derivatives are denoted by

κ
(t)
rs = ∂κrs/∂βt, κ

(T )
rS = ∂κrS/∂γT , etc. Finally, κrs denotes the (r, s) element

of the inverse of Fisher’s information matrix.

For simplicity, we shall start with the case where the same explanatory vari-
ables are used in the regression structures of p and q. We shall show afterwards
that the results obtained can be easily generalized to the more general setting.

The second derivatives of the log-likelihood function are

Urt =

n∑

i=1

g
′′

i xrixti[ψ(pi + qi) − ψ(pi) + log yi]

+
n∑

i=1

g′2i xrixti[ψ
′(pi + qi) − ψ′(pi)],

UrT =

n∑

i=1

g′ih
′
ixrixTiψ

′(pi + qi),

URT =

n∑

i=1

h
′′

i xRixTi[ψ(pi + qi) − ψ(qi) + log(1 − yi)]

+
n∑

i=1

h′2i xRixTi[ψ
′(pi + qi) − ψ′(qi)].
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Therefore, their second-order moments can be written as

κrt =
n∑

i=1

g′2i xrixti[ψ
′(pi + qi) − ψ′(pi)],

κrT =

n∑

i=1

g′ih
′
ixrixTiψ

′(pi + qi),

κRT =
n∑

i=1

h′2i xRixTi[ψ
′(pi + qi) − ψ′(qi)].

Let Wββ ,Wβγ and Wγγ be n× n diagonal matrices defined as

Wββ = diag{g′2i [ψ′(pi) − ψ′(pi + qi)]},

Wβγ = diag{−g′ih
′
iψ

′(pi + qi)},

Wγγ = diag{h′2i [ψ′(qi) − ψ′(pi + qi)]},

and consider the (2n) × (2n) matrix W̃ given by

W̃ =

(
Wββ Wβγ

Wβγ Wγγ

)
.

Also let X be the n ×m matrix with the values of the explanatory variables for

each observation and define X̃ = I2 ⊗ X, where I2 denotes the 2 × 2 identity
matrix and ⊗ stands for the Kronecker product. Then, we can readily see that

the information matrix for θ is Kθ = X̃T W̃ X̃.
Our goal is to obtain a closed-form expression for the bias of the maximum

likelihood estimator of θ. This expression will then be used to define a modified
maximum likelihood estimator that, unlike the original estimator, is nearly unbi-
ased in small samples. To that end, we shall use Cox and Snell’s (1968) general
formula, namely:

B(β̂s) =
∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
+

∑

R,t,u

κsRκtu

{
κ

(u)
Rt −

1

2
κRtu

}

+
∑

r,T,u

κsrκTu

{
κ

(u)
rT −

1

2
κrTu

}
+

∑

r,t,U

κsrκtU

{
κ

(U)
rt −

1

2
κrtU

}

+
∑

R,T,u

κsRκTu

{
κ

(u)
RT −

1

2
κRTu

}
+

∑

R,t,U

κsRκtU

{
κ

(U)
Rt −

1

2
κRtU

}

+
∑

r,T,U

κsrκTU

{
κ

(U)
rT −

1

2
κrTU

}
+

∑

R,T,U

κsRκTU

{
κ

(U)
RT −

1

2
κRTU

}
,
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where B(β̂s) denotes the second order bias of the maximum likelihood estimator
of βs. We need to calculate the necessary cumulants so that the second order
bias, following Cox and Snell, can be obtained. It is important to observe that the
entries of the matrix Wβγ defined before will, in general, not be zero, which means
that the β and γ vectors will not be orthogonal. This introduces a complication,
since none of the eight terms in the above expansion will vanish and all of them
have to be obtained.

It can be shown (see the Appendix) that the second order bias for the maximum
likelihood estimator of β is given by

B(β̂) =
1

2
KββXT (W1δββ +W2δβγ +W3δβγ +W5δγγ)

+
1

2
KβγXT (W2δββ +W4δβγ +W5δβγ +W6δγγ).

(The matrices W1, . . . ,W6 and the vectors δββ , δβγ and δγγ are defined in the

Appendix.) The matrices Kββ and Kβγ are the corresponding blocks of K−1
θ .

Now, define
Kβ∗ =

(
Kββ Kβγ

)
,

the upper m× 2m block of the matrix K−1
θ . We can thus write

B(β̂) =
1

2
Kβ∗X̃T δ̃,

where δ̃ is the 2n× 1 vector
(
W1δββ +W2δβγ +W3δβγ +W5δγγ

W2δββ +W4δβγ +W5δβγ +W6δγγ

)
.

Note that the matrix X̃K−1
θ X̃T is given by

(
XKββXT XKβγXT

XKγβXT XKγγXT

)
.

Now define the 2n× 2n matrices Z1 and Z2, respectively, as

Z1 =

(
W1 W2

W3 W5

)
⊙

(
XKββXT XKβγXT

XKγβXT XKγγXT

)

and

Z2 =

(
W2 W4

W5 W6

)
⊙

(
XKββXT XKβγXT

XKγβXT XKγγXT

)
,

where A⊙B represents the Hadamard product, defined by (A⊙B)ij = (A)ij(B)ij ,

if A and B are two matrices of the same dimension. Now let Z̃ be the 4n × 4n
matrix

Z̃ =

(
Z1 0
0 Z2

)
,
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where the 0’s represent 2n × 2n matrices of zeros. Also, let J̃ be the 4n × 2n
matrix given by

J̃ =




In 0
In 0
0 In
0 In


 = I2 ⊗

(
1
1

)
⊗ In,

the 0’s representing n× n matrices of zeros. We note that δ̃ is the 2n× 1 vector

containing the diagonal elements of J̃T Z̃J̃ .
We now move to the second order bias of the maximum likelihood estimator

of γ. It is not difficult to conclude that the second order bias of γ̂ is given by

B(γ̂) =
1

2
Kγ∗X̃T δ̃,

where
Kγ∗ =

(
Kγβ Kγγ

)

is the lower m× 2m block of the matrix K−1
θ .

Therefore, if we consider the joint parameter vector θ = (βT , γT )T , we can
write the expression for the second order bias of the maximum likelihood estimator
of θ as

B(θ̂) =
1

2
K−1

θ X̃T δ̃,

or, alternatively, as

B(θ̂) =
1

2

(
X̃T W̃ X̃

)−1

X̃T δ̃.

Also, if we define the vector ϕ̃ = 1
2W̃

−1δ̃, it is possible to write

B(θ̂) =
(
X̃T W̃ X̃

)−1

X̃T W̃ ϕ̃,

which means that the bias vector can be given by the estimated coefficients of a
generalized least squares regression.

The above result can be used to define a bias-adjusted maximum likelihood

estimator. The improved estimator θ̃ is defined as

θ̃ = θ̂ − B̂(θ̂),

where B̂(θ̂) denotes the maximum likelihood estimator of B(θ̂), that is, the un-

known parameters in B(θ̂) are replaced by their maximum likelihood estimates.
The corrected estimator is expected to have better finite-sample behavior than the

original maximum likelihood estimator since E(θ̃ − θ) = O(n−2). It is, nonethe-
less, important to note that the bias of the maximum likelihood estimator and,
hence, its bias correction are not invariant with respect to reparameterizations of
the model.
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The results presented here, as pointed out earlier, can be easily extended to a
more general model where pi and qi are described by different sets of explanatory
variables. That is, suppose pi and qi are, for each i, modeled as

pi = g(β1x1i + · · · + βmxmi),

qi = h(γ1v1i + · · · + γMvMi),

where {x1, . . . , xm} and {v1, . . . , vM} are the sets of explanatory variables for the
p and q parameters, respectively, of the beta distribution. Consider the n × m
matrix X with the values of x1, . . . , xm and the n×M matrix V with the values
of v1, . . . , vM . It is not difficult to see that our previous expression for the second

order bias is still valid provided that the matrix X̃ is redefined as the following
2n× (m+M) block-diagonal matrix:

(
X 0
0 V

)
.

In short, the extension of the proposed model to handle different sets of covariates
in the two regression structures is straightforward.

Finally, it is also of importance to obtain the second order bias of the maximum
likelihood estimator of µi, i = 1, . . . , n. It can be shown that

(pi + qi)
2B(µ̂i) = qig

′
ix

′
iB(β̂) − pih

′
iv

′
iB(γ̂) +

{
(1 − µi)g

′2
i −

qi
2
g′′i

}
x′

iK
ββxi

+ (qi − pi)g
′
ih

′
ix

′
iK

βγvi +
{pi

2
h′′i − µih

′2
i

}
v′

iK
γγvi,

where vi is the ith row of matrix V .

4 Numerical results

This section presents Monte Carlo simulation results for the model where the
response follows a B(pi, qi) distribution, with

pi = exp(β1 + β2xi),

qi = exp(γ1 + γ2xi).

Hence, m = 4, i.e., the model is defined by four regression parameters. The
sample sizes used in the experiment were n = 20, 40, 60, and the values of x were
selected as random draws of a standard normal distribution; these values were kept
constant throughout the experiment. The true values of the four regression pa-
rameters were set equal to one, and the results were obtained using 100,000 Monte
Carlo replications. The pseudo-random number generator employed was George
Marsaglia’s multiply-with-carry random number generator (Marsaglia, 1997); it
has period approximately equal to 260 and passes stringent randomness tests. Log-
likelihood maximizations were carried out using the quasi-Newton method known
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as BFGS, due to Broyden, Fletcher, Goldfarb and Shanno; see Press et al. (1992,
§10.7) for details. See also Mittelhammer, Judge and Miller (2000, §8.13); accord-
ing to them, “[t]he BFGS algorithm is generally regarded as the best performing
method” (p. 199). All simulations were performed using the matrix programming
language Ox (Cribari–Neto and Zarkos, 2003; Doornik, 2001).

Table 1 reports the estimated relative biases of the maximum likelihood (‘MLE’)
and bias-corrected maximum likelihood (‘BC’) estimators of the regression param-
eters β1, β2, γ1, γ2. The relative bias of an estimator α̂ of a scalar parameter α
is defined as {E(α̂) − α}/α. The estimated relative bias is obtained by replacing
E(α̂) by a Monte Carlo estimate. The root mean squared errors for the un-
modified and corrected estimators are also presented. (Hats denote unmodified
estimators and tildes denote corrected estimators.) The figures in Table 1 reveal
that the maximum likelihood estimators of the beta regression parameters can be
substantially biased when the sample size is small, and that the bias correction
we derived in the previous section is very effective. For instance, when n = 20 the
biases of β1, β2, γ1, γ2 average 0.1825 whereas the biases of the four corresponding
bias-adjusted estimators average 0.0390; that is, the average bias of the MLEs is
almost five times greater than that of the corrected estimators. It is also notewor-
thy that the root mean squared errors of the corrected estimators are also smaller
than the corresponding root mean squared errors of the MLEs.

Table 2 displays simulation results for the situation where the parameter values
are set at β1 = β2 = 0.75 and γ1 = γ2 = −0.50. We note that the bias-adjusted
estimator again displays smaller bias than the standard maximum likelihood es-
timator. In particular, the maximum likelihood estimators of β1 and γ1 display
substantial bias, and the bias correction proves to be quite effective when applied

to these estimators. For instance, when n = 20, the estimated relative bias of β̂1

equals 32% whereas the corresponding measure for the adjusted estimator of β1

equals 3.64%; that is, the estimated relative bias for the corrected estimator is
nearly 9 times smaller than that of the maximum likelihood estimator. The root
mean squared errors of the bias-corrected estimators are also smaller than those
of the unmodified maximum likelihood estimators.

Next, we compute an aggregate bias measure for each estimator and each
sample size. To that end, we report the square root of the squared estimated
relative bias for the eight estimates considered (four for each simulation design).
The aggregate bias of each estimator is presented in Table 3 for n = 20, 40, 60. We
see from the figures in Table 3 that the bias-corrected estimator displays aggregate
biases for the three sample sizes that are quite small. Indeed, for samples of 40
and 60 observations the aggregate biases of the adjusted estimator are negligible.
The maximum likelihood estimator, on the other hand, displays large aggregate
biases. For instance, for n = 40 the aggregate bias for the maximum likelihood
estimator is almost 15 times larger than that of the improved estimator derived
in the previous section.
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Table 1 Simulation results, β1 = β2 = γ1 = γ2 = 1.

n estimator rel. bias RMSE

20 β̂1 0.2067 0.4016

β̂2 0.1582 0.5143
γ̂1 0.2065 0.4021
γ̂2 0.1585 0.5141

β̃1 0.0293 0.3428

β̃2 0.0485 0.4694
γ̃1 0.0292 0.3435
γ̃2 0.0489 0.4691

40 β̂1 0.1077 0.2652

β̂2 0.0338 0.2384
γ̂1 0.1075 0.2653
γ̂2 0.0343 0.2383

β̃1 0.0070 0.2401

β̃2 0.0053 0.2311
γ̃1 0.0068 0.2402
γ̃2 0.0058 0.2309

60 β̂1 0.0677 0.1951

β̂2 0.0275 0.1885
γ̂1 0.0677 0.1948
γ̂2 0.0274 0.1884

β̃1 0.0034 0.1822

β̃2 0.0041 0.1841
γ̃1 0.0034 0.1818
γ̃2 0.0040 0.1840
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Table 2 Simulation results, β1 = β2 = 0.75, γ1 = γ2 = −0.5.

n estimator rel. bias RMSE

20 β̂1 0.3200 0.5074

β̂2 0.0643 0.3730
γ̂1 −0.3678 0.3753
γ̂2 −0.0040 0.3001

β̃1 0.0364 0.4464

β̃2 0.0084 0.3602
γ̃1 −0.0388 0.3176
γ̃2 0.0008 0.2855

40 β̂1 0.1434 0.2999

β̂2 0.0132 0.2183
γ̂1 −0.1655 0.2237
γ̂2 0.0211 0.1832

β̃1 0.0097 0.2794

β̃2 0.0019 0.2147
γ̃1 −0.0093 0.2050
γ̃2 0.0009 0.1789

60 β̂1 0.0935 0.2372

β̂2 0.0101 0.1930
γ̂1 −0.1085 0.1767
γ̂2 0.0086 0.1592

β̃1 0.0040 0.2262

β̃2 0.0004 0.1908
γ̃1 −0.0049 0.1665
γ̃2 −0.0008 0.1566

Table 3 Aggregate biases.

n MLE BC

20 0.6143 0.0967
40 0.2721 0.0185
60 0.1771 0.0098
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5 Concluding remarks

The purpose of the present paper was twofold. First, we proposed a regression
structure for modeling random variables that are restricted to the (0, 1) interval.
To that end, the response was assumed to follow a beta distribution where the two
parameters that index such distribution (p and q) are linked to regression equations
involving covariates and regression parameters. We have shown that when q is
regressor-free and the link function for p is exponential, the regression parameters
can be interpreted in terms of mean response effects. The analysis, however,
is developed under a more general setting. Maximum likelihood estimation of
the unknown parameters was discussed. The estimators do not have closed-form
expressions but can be computed by numerically maximizing the log-likelihood
function. Second, we derived a bias-adjustment scheme that nearly eliminates
the bias of the maximum likelihood estimator in small samples. The simulation
results presented showed that the bias correction we derived is very effective,
even when the sample size is not large. Indeed, the bias correction mechanism
proposed in this paper yields modified maximum likelihood estimators that are
nearly unbiased.

Appendix

After some algebra, we obtain the following cumulants for the proposed class of
beta regression models:

κrtu = 3
n∑

i=1

g′ig
′′
i xrixtixui[ψ

′(pi + qi) − ψ′(pi)]

+

n∑

i=1

g′3i xrixtixui[ψ
′′

(pi + qi) − ψ
′′

(pi)],

κrtU =

n∑

i=1

h′ixrixtixUi[g
′′
i ψ

′(pi + qi) + g′2i ψ
′′(pi + qi)],

κrTU =

n∑

i=1

g′ixrixTixUi[h
′′
i ψ

′(pi + qi) + h′2i ψ
′′(pi + qi)],

κRTU = 3

n∑

i=1

h′ih
′′
i xRixTixUi[ψ

′(pi + qi) − ψ′(qi)]

+
n∑

i=1

h′3i xRixTixUi[ψ
′′

(pi + qi) − ψ
′′

(qi)].
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Using the results above we then obtain the following:

κ
(u)
rt −

1

2
κrtu =

1

2

n∑

i=1

g′ig
′′
i xrixtixui[ψ

′(pi + qi) − ψ′(pi)]

+
1

2

n∑

i=1

g′3i xrixtixui[ψ
′′

(pi + qi) − ψ
′′

(pi)],

κ
(u)
Rt −

1

2
κRtu =

1

2

n∑

i=1

h′ixRixtixui[g
′′
i ψ

′(pi + qi) + g′2i ψ
′′(pi + qi)],

κ
(u)
rT −

1

2
κrTu =

1

2

n∑

i=1

h′ixrixTixui[g
′′
i ψ

′(pi + qi) + g′2i ψ
′′(pi + qi)],

κ
(U)
rt −

1

2
κrtU =

1

2

n∑

i=1

h′ixrixtixUi[g
′2
i ψ

′′(pi + qi) − g′′i ψ
′(pi + qi)],

κ
(u)
RT −

1

2
κRTu =

1

2

n∑

i=1

g′ixRixTixui[h
′2
i ψ

′′(pi + qi) − h′′i ψ
′(pi + qi)],

κ
(U)
Rt −

1

2
κRtU =

1

2

n∑

i=1

g′ixRixtixUi[h
′2
i ψ

′′(pi + qi) + h′′i ψ
′(pi + qi)],

κ
(U)
rT −

1

2
κrTU =

1

2

n∑

i=1

g′ixrixTixUi[h
′2
i ψ

′′(pi + qi) + h′′i ψ
′(pi + qi)],

κ
(U)
RT −

1

2
κRTU =

1

2

n∑

i=1

h′ih
′′
i xRixTixUi[ψ

′(pi + qi) − ψ′(qi)]

+
1

2

n∑

i=1

h′3i xRixTixUi[ψ
′′

(pi + qi) − ψ
′′

(qi)].

Next, we define the following matrices:

W1 = diag{g′ig
′′
i [ψ′(pi + qi) − ψ′(pi)] + g′3i [ψ

′′

(pi + qi) − ψ
′′

(pi)]},

W2 = diag{h′i[g
′′
i ψ

′(pi + qi) + g′2i ψ
′′(pi + qi)]},

W3 = diag{h′i[g
′2
i ψ

′′(pi + qi) − g′′i ψ
′(pi + qi)]},

W4 = diag{g′i[h
′2
i ψ

′′(pi + qi) − h′′i ψ
′(pi + qi)]},

W5 = diag{g′i[h
′2
i ψ

′′(pi + qi) + h′′i ψ
′(pi + qi)]},

W6 = diag{h′ih
′′
i [ψ′(pi + qi) − ψ′(qi)] + h′3i [ψ

′′

(pi + qi) − ψ
′′

(qi)]}.
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We can now obtain a closed-form expression for the second order bias. For
instance, the first term in Cox and Snell expansion is

∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
=

1

2

∑

r,t,u

κsrκtu
n∑

i=1

w1ixrixtixui,

where w1i denotes the ith diagonal element of W1. Hence,

∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
=

1

2

n∑

i=1

w1i

∑

r

κsrxri

∑

t,u

xtiκ
tuxui

= −
1

2

n∑

i=1

w1i

∑

r

κsrxrixiK
ββxT

i ,

where xi is the row vector defining the ith row of X and Kββ is the upper left
m×m block of K−1

θ . We have

∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
= −

1

2

n∑

i=1

w1i(xiK
ββxT

i )
∑

r

κsrxri

=
1

2

n∑

i=1

w1i(xiK
ββxT

i )ρT
s K

ββxT
i ,

where ρs stands for the sth column of the m×m identity matrix. Therefore,

∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
=

1

2
ρT

s K
ββ

n∑

i=1

w1i(xiK
ββxT

i )xT
i .

Let δββ be the n×1 vector consisting of the diagonal elements of XKββXT . Then,
it can be easily seen that the previous expression can be written as

∑

r,t,u

κsrκtu

{
κ

(u)
rt −

1

2
κrtu

}
=

1

2
ρT

s K
ββXTW1δββ.

Similarly, we can define the n×1 vectors δβγ and δγγ using the blocks Kβγ and
Kγγ, respectively, of K−1. We obtain, for the remaining terms in the expansion
that ∑

R,t,u

κsRκtu

{
κ

(u)
Rt −

1

2
κRtu

}
=

1

2
ρT

s K
βγXTW2δββ,

∑

r,T,u

κsrκTu

{
κ

(u)
rT −

1

2
κrTu

}
=

1

2
ρT

s K
ββXTW2δβγ ,

∑

r,t,U

κsrκtU

{
κ

(U)
rt −

1

2
κrtU

}
=

1

2
ρT

s K
ββXTW3δβγ ,
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∑

R,T,u

κsRκTu

{
κ

(u)
RT −

1

2
κRTu

}
=

1

2
ρT

s K
βγXTW4δβγ ,

∑

R,t,U

κsRκtU

{
κ

(U)
Rt −

1

2
κRtU

}
=

1

2
ρT

s K
βγXTW5δβγ ,

∑

r,T,U

κsrκTU

{
κ

(U)
rT −

1

2
κrTU

}
=

1

2
ρT

s K
ββXTW5δγγ ,

∑

R,T,U

κsRκTU

{
κ

(U)
RT −

1

2
κRTU

}
=

1

2
ρT

s K
βγXTW6δγγ .

Therefore, the second order bias for the maximum likelihood estimator of β is
as given in Section 3.
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