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Abstract: In this paper we provide a method for constructing multi-

variate distributions with given bivariate margins and dependence structure.

We also measure the dependence of any distribution constructed with this

method and illustrate our results with examples.

Key words: Copulas, multivariate marginals, ordering, Spearman’s rho.

1 Introduction

The construction of multivariate distributions with given margins has been a prob-
lem of interest to statisticians for many years: Nelsen (1999) summarizes different
methods of constructing copulas (distributions with uniform univariate margins).
A difficult problem related to the theory of multivariate distributions is to con-
struct a multivariate distribution with prescribed multivariate margins. Some
aspects of this problem including existence of such distributions, compatibility
and methods of constructing are discussed, for instance, by Dall’Aglio (1972), Co-
hen (1984), Rüschendorf (1985), Cuadras (1992), Marco and Ruiz-Rivas (1992),
Li et al. (1996,1999) and Joe (1997). Our approach presented in Section 2 is—in
some sense—different from the above ones. We provide a method for constructing
multivariate distributions with given bivariate margins and dependence structure.
Problems of this kind arise if one needs to build a model in a situation where the
information about the type of dependence structure of bivariate margins of a ran-
dom vector is available and the basic interest is to search a dependence structure
among all the components of that vector.

We now review the concept of a copula (for a complete study, see Nelsen,
1999). Let n be a natural number such that n ≥ 2. An n-dimensional copula
(briefly n-copula) is a function C : [0, 1]n −→ [0, 1] which satisfies:

(C1) For every u = (u1, u2, . . . , un) in [0, 1]n, C(u) = 0 if at least one coor-
dinate of u is 0, and C(u) = uk whenever all coordinates of u are 1 except uk;
and

(C2) for every a = (a1, a2, . . . , an) and b = (b1, b2, . . . , bn) in [0, 1]n such that
ak ≤ bk for all k = 1, 2, . . . , n, VC([a,b]) =

∑

sgn(c)C(c) ≥ 0 where [a,b] denotes
the n-box [a1, b1] × [a2, b2] × · · · × [an, bn], the sum is taken over all the vertices
c = (c1, c2, . . . , cn) of [a,b] such that each ck is equal to either ak or bk, and sgn(c)
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is 1 if ck = ak for an even number of k′s, and −1 if ck = ak for an odd number of
k′s.

The importance of copulas as a tool for statistical analysis and modelling
stems largely from the observation that the joint distribution H of a set of
n ≥ 2 random variables Xi with marginals Fi can be expressed by H(x) =
C(F1(x1), F2(x2), . . . , Fn(xn)), x = (x1, x2, . . . , xn) ∈ [−∞,∞]n, in terms of a
copula C that is uniquely determined on RanF1×RanF2 × · · ·×RanFn. Let Πn

denote the copula of independent random variables, i.e., Πn(u) =
n
∏

i=1

ui; and let

U > u denote the point-wise inequality (U1 > u1, U2 > u2, . . . , Un > un), where
U is a random vector with n-copula C. The survival function associated to C is
defined by C(u) = P [U > u], i.e.,

C(u) = 1 +
n

∑

k=1

(−1)k
∑

1≤i1<i2<···<ik≤n

Ci1i2···ik
(ui1 , ui2 , . . . , uik

), (1.1)

where the copulas on the right-hand side are appropriate lower dimensional mar-
gins. Finally, if C1 and C2 are two n-copulas, C1 ≤ C2 denotes the inequality
C1(u) ≤ C2(u) for all u in [0, 1]n.

2 Construction

In this section, we study a new function in order to provide a procedure for
constructing families of n-copulas with given bivariate margins and dependence
structure. We will also measure the dependence among n random variables whose
associated n-copula is given by this construction in terms of the measures asso-
ciated to its bivariate margins. The following theorem shows the main result of
this paper.

Theorem 2.1 Let {Cij : 1 ≤ i < j ≤ n} be a set of
(

n

2

)

2-copulas, and let
C : [0, 1]n −→ [0, 1] be the function defined by

C(u) =
∑

1≤i<j≤n

Cij(ui, uj)

n
∏

k=1
k 6=i,j

uk −
(n − 2)(n + 1)

2

n
∏

i=1

ui. (2.1)

Then C is an n-copula whose bivariate margins are Cij if and only if

∑

1≤i<j≤n

VCij
([ui, vi] × [uj , vj ])

(vj − uj)(vi − ui)
≥

(n − 2)(n + 1)

2
(2.2)

for every uk, vk in [0, 1], k = 1, 2, . . . , n, such that uk < vk.

Proof. Let C be the function given by (2.1). For every u in [0, 1]n, it is immediate
that C(u1, . . . , ui−1, 0, ui+1, . . . , un) = 0 and C(1, . . . , 1, ui, 1, . . . , 1) = ui for all
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i = 1, 2, . . . , n, whence condition (C1) is satisfied. To verify condition (C2), let
u and v be two points in [0, 1]n such that uk ≤ vk for all k = 1, 2, . . . , n. Then,
after some elementary algebra, we have that

VC([u1, v1] × [u2, v2] × · · · × [un, vn]) =
∑

1≤i<j≤n

VCij
([ui, vi] × [uj , vj ])

n
∏

k=1
k 6=i,j

(vk − uk)

−
(n − 2)(n + 1)

2

n
∏

k=1

(vk − uk) ≥ 0.

If there exists i ∈ {1, 2, . . . , n} such that ui = vi, then the result is trivial; other-
wise, the inequality (2.2) holds. Conversely, we only need to follow the same steps
backwards. Finally, we have C(1, . . . , 1, ui, 1, . . . , 1, uj, 1, . . . , 1) = Cij(ui, uj),
1 ≤ i < j ≤ n, which completes the proof.

Remark 2.1 It is easy to check that each l−margin, 3 ≤ l < n, of C has also
the form given by (2.1) for appropriate dimension l. Note also that if all the
bivariate margins in Theorem 2.1 are absolutely continuous then the inequality
(2.2) is equivalent to

∑

1≤i<j≤n

cij(ui, uj) ≥
(n − 2)(n + 1)

2
, (2.3)

where cij denotes the density function of each margin Cij .
We now investigate a partial ordering and a positive dependence property on

the n-copulas defined by (2.1). Given two n-copulas C1 and C2, C1 is said more
concordant than C2 if C1(u) ≥ C2(u) and C1(u) ≥ C2(u) for all u in [0, 1]n. In
the bivariate case, the two above inequalities are equivalent. When C2 = Πn, C1

is said positively orthant dependent (POD); and, in the bivariate case, C1 is said
positively quadrant dependent (PQD). For more details, see Nelsen (1999). Before
giving the result, we need a preliminary lemma whose proof is straightforward
using (1.1).

Lemma 2.2 Let C be an n-copula given by (2.1) via Theorem 2.1. Then

C(u) =
n

∏

i=1

(1 − ui) +
∑

1≤i<j≤n

(Cij(ui, uj) − uiuj)
n

∏

k=1
k 6=i,j

(1 − uk).

Theorem 2.3 Let {Cij : 1 ≤ i < j ≤ n} and {C′
ij : 1 ≤ i < j ≤ n} be two

sets of
(

n
2

)

margins 2-copulas of two n-copulas C and C′, respectively, defined by
(2.1) via Theorem 2.1, and such that Cij ≥ C′

ij , 1 ≤ i < j ≤ n. Then C is more

concordant than C′.
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Proof. Let C and C′ be two n-copulas as in the hypothesis. Then, for every u

in [0, 1]n, we have that C(u) ≥ C′(u) if and only if

∑

1≤i<j≤n

[Cij(ui, uj) − C′
ij(ui, uj)]

n
∏

k=1
k 6=i,j

uk ≥ 0.

On the other hand, when n ≥ 3—recall that if n = 2 we do not need to study this
part—, using Lemma 2.2, we have that C(u) ≥ C′(u) is equivalent to

∑

1≤i<j≤n

[Cij(ui, uj) − C′
ij(ui, uj)]

n
∏

k=1
k 6=i,j

(1 − uk) ≥ 0;

whence the result follows.

Corollary 2.4 Let {Cij : 1 ≤ i < j ≤ n} be a set of
(

n
2

)

2-copulas such that are
PQD. Then the n-copula defined by (2.1) via Theorem 2.1 is POD.

We now measure the dependence of any distribution constructed via Theorem
2.1. For that, we use a multivariate version of the well-known Spearman’s rho
coefficient which, for any n-copula C, is given by

ρn(C) =
n + 1

2n − (n + 1)

[

2n−1

(
∫

[0,1]n
C(u)dΠn(u) +

∫

[0,1]n
Πn(u)dC(u)

)

− 1

]

(2.4)
(Nelsen, 2002).

Theorem 2.5 Let C be an n-copula given by (2.1) via Theorem 2.1. Then

ρn(C) =
n + 1

3[2n − (n + 1)]
·

∑

1≤i<j≤n

ρ(Cij),

where ρ(Cij) denotes the Spearman’s rho coefficient associated with Cij .

Proof. It is easy to check that for any n-copula D we have that

∫

[0,1]n
Πn(u)dD(u) =

∫

[0,1]n
D(u)dΠn(u).

Using Lemma 2.2, the expression (2.4), and some elementary algebra, we obtain
the result.
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3 Examples

Observe that if, at least,
(

n

2

)

− 1 bivariate margins in Theorem 2.1 are Π2, then

C is always an n-copula; and if all the bivariate margins are Π2, then C = Πn. In
the following we provide examples using our method.

Example 3.1. Let C12, C13 and C23 be the 2-copulas given by C12(u1, u2) =
u1u2, C13(u1, u3) = αu1u3 + (1 − α)M(u1, u3) and C23(u2, u3) = βu2u3 + (1 −
β)W (u2, u3), (u1, u2, u3) in [0, 1]3, where α and β are in [0, 1], and M and W
denote the respective 2-copulas given by M(u1, u3) = min(u1, u3) and W (u2, u3) =
max(u2 + u3 − 1, 0). Then the function C defined by C(u1, u2, u3) = (α + β −
1)u1u2u3 +(1−α)u2M(u1, u3)+(1−β)u1W (u2, u3) via Theorem 2.1 is a 3-copula
if and only if

(α + β − 1) +
(1 − α)VM ([u1, v1] × [u3, v3])

(v3 − u3)(v1 − u1)
+

(1 − β)VW ([u2, v2] × [u3, v3])

(v3 − u3)(v2 − u2)
≥ 0.

Thus a sufficient condition for C to be a 3-copula is that α + β ≥ 1. Moreover,
since C13 is PQD for all α ∈ [0, 1] and C23 is PQD if and only if β = 1, we conclude
that C is POD when β = 1. Finally, it is easy to check that ρ3(C) = (β − α)/3.

Example 3.2. Consider the well-known Farlie-Gumbel-Morgenstern (FGM) fam-
ily of 2-copulas given by Cλ(u, v) = uv[1 + λ(1 − u)(1 − v)], (u, v) ∈ [0, 1]2, with
λ ∈ [−1, 1]. Let {Cλij

: 1 ≤ i < j ≤ n} be a set of
(

n
2

)

FGM 2-copulas such that
λij is in [−1, 1]. From (2.3), it is easy to check that the function C defined by (2.1)
is an n-copula if and only if

∑

1≤i<j≤n

λij(1−2ui)(1−2uj) ≥ −1. Thus, a sufficient

condition is that |
∑

1≤i<j≤n

λij | ≤ 1. Furthermore, if λij ≥ 0 for all (i, j), then

Cij is PQD and, as a consequence of Corollary 2.4, C is POD if
∑

1≤i<j≤n

λij ≤ 1.

Finally, since ρ(Cij) = λij/3, then, from Theorem 2.5, we obtain that

ρn(C) =
n + 1

9[2n − (n + 1)]
·

∑

1≤i<j≤n

λij .

As a particular case, if all the bivariate margins are Cij(u, v) = uv[1 + λ(1 −
u)(1 − v)] for all (i, j), then the function C defined by (2.1) is an n-copula if and
only if

−
2

n(n − 1)
≤ λ ≤

1

⌊n
2 ⌋

(3.1)

(see the technical lemma in Appendix), where ⌊x⌋ denotes the integer part of the
real number x; and, in such a case,

ρn(C) =
n(n − 1)(n + 1)λ

18[2n − (n + 1)]
.



90 Ali Dolati and Manuel Úbeda-Flores

We now compare these results with another known construction: An extension
to a (2n − n− 1)-parameter FGM family of n-copulas. This extension is given by

E(u) =

n
∏

i=1

ui

[

1 +

n
∑

k=2

∑

1≤j1<···<jk≤n

θj1j2···jk

jk
∏

l=j1

(1 − ul)

]

(see Nelsen (1999) for details and references). After some calculus, we obtain that

ρn(E) =
n + 1

2(2n − n − 1)
·

n
∑

k=2

∑

1≤j1<···<jk≤n

1 + (−1)k

3k
θj1j2···jk

.

If, like our last case, all the bivariate margins—which belong to the FGM
family of 2-copulas—are equal, i.e., they have the same parameter (θ), then

ρn(E) =
(n + 1)θ

2(2n − n − 1)
·

n
∑

k=2

(

n

k

)

1 + (−1)k

3k
=

(n + 1)θ

2(2n − n − 1)

(

4n + 2n

3n
− 2

)

.

In the following, we show that the range of the Spearman’s rho coefficient
for the family of n-copulas of our example with a common parameter (λ) can be
larger than the n-copulas given in the last paragraph. The minimum value for λ
is −2/[n(n− 1)], while that the minimum value for θ is −1/(2n − n− 1); whence

ρn(C) ≥ −
n + 1

9(2n − n − 1)
and ρn(E) ≥ −

(n + 1)

2(2n − n − 1)2

(

4n + 2n

3n
− 2

)

for all n ≥ 2. If n = 2, the bounds coincide, and, by induction, it is easy to check
that

−
n + 1

9(2n − n − 1)
< −

(n + 1)

2(2n − n − 1)2

(

4n + 2n

3n
− 2

)

for all n ≥ 3.

Appendix

Technical lemma. Let a = (a1, a2, . . . , an) be a point in IRn such that ai ∈
{−1, +1} for all i = 1, 2, . . . , n. Then

−

⌊

n

2

⌋

≤
∑

1≤i<j≤n

aiaj ≤
n(n − 1)

2
.

Proof. It is clear that max
∑

1≤i<j≤n

aiaj in the set {a ∈ IRn :
∑

1≤i<j≤n

aiaj ≥ 0} is

obtained when ai = 1 for all i = 1, 2, . . . , n, or ai = −1 for all i = 1, 2, . . . , n, and



A method for constructing multivariate distributions with given bivariate margins 91

is equal to n(n − 1)/2. For the lower bound, we must find the minimum value of
∑

1≤i<j≤n

aiaj in the set {a ∈ IRn :
∑

1≤i<j≤n

aiaj ≤ 0}. First, note that

∑

1≤i<j≤n

aiaj =
1

2

n
∑

i=1

ai

n
∑

j=1
j 6=i

aj.

Now, let k be the number of a′
is such that are equal to 1, and let n − k be the

number of a′
is such that are equal to −1 . Then, we have that

n
∑

i=1

ai = 2k − n.

Thus,
∑

1≤i<j≤n

aiaj =
1

2

[

(2k − n)
n

∑

i=1

ai −
n

∑

i=1

a2
i

]

=
(2k − n)2 − n

2
,

and hence

min
∑

1≤i<j≤n

aiaj =











−
n

2
, if n is even

−
n + 1

2
, if n is odd

= −

⌊

n

2

⌋

,

which completes the proof.
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