
Brazilian Journal of Probability and Statistics (2006), 20, pp. 93–110.

c©Associação Brasileira de Estat́ıstica

An improved estimation procedure for estimating the
proportion of a population possessing sensitive attribute in
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Abstract: This paper considers the problem of estimating πA, the pro-

portion of human population possessing the sensitive attribute A, using the

unrelated question randomized response technique envisaged by Horvitz et.

al. (1967) and Greenberg et. al. (1969). A family of estimators π̂H of pop-

ulation proportion πA is defined. The bias and mean squared error (MSE)

of the proposed estimator π̂H are obtained. “Optimum estimator” in the

family of estimators π̂H is investigated. It has been shown that the “opti-

mum estimator” is always better than usual estimator. Since the optimum

estimator depends on the “optimum value” of the scalar H, which is function

of unknown population parameters, so it has little practical utility. From the

practical point of view, various estimators of πA based on different estimated

optimum values of H have been proposed with their properties. Efficiencies

of the proposed estimators have been worked out numerically.

Key words: Estimation of proportion, mean squared error, simple ran-

dom sampling with replacement, simple random unrelated question random-

ized response technique.

1 Introduction

Warner(1965) introduced an ingenious interviewing technique known as random-
ized response (RR) technique for estimating the proportion πA of a population
possessing sensitive attribute (say) A without requiring the individual respondent
to report his actual classification, where it be A or not-A, to the interviewer. His
design uses two related questions each of which divides the sample/population
into two mutually exclusive and complementary classes. Horvitz et. al. (1967)
felt that the confidence of the respondent provided by RR technique might be
further enhanced if one of the two questions is referred to a non-stigmatized at-
tribute (say) Y which is unrelated to the sensitive attribute. The model developed
by them is known as unrelated question RR model (U-model). The theoretical
framework for this model was given by Greenberg et. al. (1969). If πY , the pop-
ulation proportion with the non-stigmatized attribute Y , is known in advance,
only one sample is required to estimate πA, the population proportion with the
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sensitive attribute. If πY is not known beforehand, then according this model (U-
model), two samples of n1 and n2 respondents are selected using simple random
sampling with replacement (SRSWR) such that n1+n2 = n, which is the required
total sample size. Both the samples are used to gather information on sensitive
attribute A and the non-stigmatized (netural) attribute Y by using different RR
devices with respondents in two samples. Each respondent chooses a statement
randomly from the RR device provided to him and is required to report “yes” if
the selected statement points to his actual status and “no” otherwise. Let the
statements regarding possessing of the sensitive attribute A and the neutral at-
tribute Y be represented with probabilities pi and (1− pi) respectively in the RR
device Si used for the respondents in the i-th sample, i = 1, 2. Assuming that the
respondents report truthfully, the probability of “yes” answer when a respondent
in the i-th sample is confronted with the randomization device Si, is given by

θi = piπA + (1 − pi)πY , (i = 1, 2), (1.1)

where the values of θ1 and θ2 are estimated by the proportion of “yes” responses
recorded in sample 1 and sample 2 respectively.

Suppose we let the observed proportion of “yes” answers reported in the first

and second samples be designated by θ̂1 = n′
1/n1 and θ̂2 = n′

2/n2 respectively,
where n′

1 and n′
2 are the number of “yes” answers in the two corresponding sam-

ples. Then, the sample estimate of πA is given by

π̂As =
(1 − p2)θ̂1 − (1 − p1)θ̂2

(p1 − p2)
, (p1 6= p2), (1.2)

which is due to Greenberg et. al. (1969).
The estimator π̂As is unbiased for πA and has the variance

Var(π̂As) =
1

(p1 − p2)2

[

θ1(1 − θ1)(1 − p2)
2

n1
+

θ2(1 − θ2)(1 − p1)
2

n2

]

. (1.3)

To increase the efficiency of the estimator π̂As, one has to select the design
parameters n1, n2, p1 and p2 optimally. In practice, the size of the sample n =
n1 + n2 will remain fixed if the cost of the survey is fixed and one has to choose
n1 and n2 optimally subject to the constraint

n = n1 + n2. (1.4)

Thus for a given value of n, if n1 and n2 are chosen so as to minimize Var(π̂As)
in (1.3), the minimizing ratio n1/n2 is given by

n1

n2
=

√

θ1(1 − θ1)(1 − p2)2
√

θ2(1 − θ2)(1 − p1)2
.

For this allocation, the minimum variance of π̂As is given by

Vo(π̂As) =
[(1 − p2)

√

θ1(1 − θ1) + (1 − p1)
√

θ2(1 − θ2)]
2

n(p1 − p2)2
. (1.5)
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A rich growth of literature on randomized response technique has been docu-
mented in several research publications, for instance, see Fox and Tracy (1986),
Chaudhuri and Mukerjee (1987,1988), Hedayat and Sinha (1991), Sheers (1992),
Bellhouse (1995) and Tracy and Mangat (1996) . Recent developments on random-
ized response technique are due to Chang and Liang (1996), Singh and Joarder
(1997), Mangat et. al. (1997), Arnab (1998), Chaudhuri et. al. (1998), Lee and
Hong (1998), Van Der Heijden et. al. (1998), Tracy and Mangat (1998, 1999),
Singh et. al. (1998, 2000), Singh and Tracy (1999), Tracy and Oshan (1999),
Bhargwa and Singh (1999), Singh and King (1999), Tracy and Singh (1999), Pad-
mawar and Vijayan (2000),Chang and Huang (2001), Arnab and Singh (2002),
Mangat and Singh (2002), Chaudhuri (2001a,b, 2002), Bhargava et. al. (2002),
Javed et. al. (2002), Gupta et. al. (2002), Singh (2002), Christofides (2003),
Smith and Street (2003) and Singh and Mathur (2002a,b,c,d,e, 2003a,b, 2004).

In this paper, we have proposed a family of estimators of the proportion πA and
its properties are studied. Several estimators of πA based on ‘estimated optimum
values’ have been also suggested with their properties.

2 The suggested family of estimators

Motivated by Goodman (1953), Searls (1964) and Searls and Intarapanich (1990),
we define a family of estimators of the population proportion πA as

π̂H = Hπ̂As, (2.1)

where H is a scalar to be chosen suitably by the investigator.
The bias and mean squared error of π̂H are respectively given by

B(π̂H) = (H − 1)πA (2.2)

and

MSE(π̂H) = H2{π2
A + Var(π̂As)} − 2Hπ2

A + π2
A, (2.3)

where Var(π̂As) is given by (1.3).
From (1.3) and (2.3) we have

MSE(π̂H) < Var(π̂As) if (H2 − 1)Var(π̂As) + (H − 1)2π2
A < 0,

i.e., if

π2
A − Var(π̂As)

π2
A + Var(π̂As)

< H ≤ 1. (2.4)

The range of dominance of H in which proposed estimator π̂H is better than
Greenberg et. al.’s (1969) estimator π̂As has been computed using (2.4) for differ-
ent values of (p1, p2, πA, n1, n2, πY ) and the values have been displayed in Table
1(a).
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Table 1(a) Range of H for different values of (n1, n2), (p1, p2), πY and πA

πA = 0.05 πA = 0.1
(p1, p2) → (0.7, 0.3)
(n1, n2) → (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50)

πY ↓
0.1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1
0.3 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1
0.5 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1
0.9 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1

(0.8, 0.2)
0.1 0∼1 0∼1 0∼1 0∼1 0.06∼1 0∼1 0.086∼1 0.081∼1 0.09∼1 0.049∼1
0.3 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.35∼1
0.5 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.26∼1
0.9 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.15∼1

(0.9, 0.1)
0.1 0∼1 0∼1 0∼1 0∼1 0.30∼1 0∼1 0.34∼1 0.26∼1 0.27∼1 0.62∼1
0.3 0∼1 0∼1 0∼1 0∼1 0.15∼1 0∼1 0.25∼1 0.18∼1 0.19∼1 0.57∼1
0.5 0∼1 0∼1 0∼1 0∼1 0.05∼1 0∼1 0.18∼1 0.12∼1 0.12∼1 0.52∼1
0.9 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.11∼1 0.02∼1 0.03∼1 0.45∼1

Further, the optimum values of n1 and n2 which minimizes the MSE of π̂H are
same as given in (1.4). Using (1.4) and (2.3) we get the minimum MSE of π̂H as

min MSE(π̂H) = π2
A

[

(H − 1)2 + H2 V0(π̂As)

nπ2
A

]

, (2.5)

where V0(π̂As) is given by (1.5).
It is observed from (1.5) and (2.5) that

min MSE(π̂H) < V0(π̂As) if
π2

A − V0(π̂As)

π2
A + V0(π̂As)

< H ≤ 1. (2.6)

We have computed the range of dominance of H by using (2.6) and presented in
Table 1(b).

It is observed from Table 1(a) and 1(b) that the suggested estimator π̂H is
better than Greenberg et. al.’s (1969) estimator π̂As for full range of H (i.e.
0 < H ≤ 1) except in few cases like

(i) (p1, p2) = (0.8, 0.2), (n1, n2) = (50, 50), πA = 0.1, 0.1 ≤ πY ≤ 0.9,

(ii) (p1, p2) = (0.9, 0.1), (n1, n2) = (50, 50), πA = 0.05, 0.1 ≤ πY ≤ 0.9 and

(iii) (p1, p2) = (0.9, 0.1), (n1, n2) = {(25, 5), (20, 20), (50, 50)}, πA = 0.1, 0.1 ≤
πY ≤ 0.9.
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Table 1(b) Range of H for different values of (n1, n2), (p1, p2), πY and πA in
optimum case.

πA = 0.05 πA = 0.1
(p1, p2) → (0.7, 0.3)
(n1, n2) → (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50)

πY ↓
0.1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.28∼1
0.3 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.03∼1
0.5 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1
0.9 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1

(0.8, 0.2)
0.1 0∼1 0∼1 0∼1 0∼1 0.19∼1 0∼1 0.09∼1 0.23∼1 0.33∼1 0.60∼1
0.3 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.03∼1 0.14∼1 0.45∼1
0.5 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.04∼1 0.37∼1
0.9 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0∼1 0.30∼1

(0.9, 0.1)
0.1 0∼1 0∼1 0.07∼1 0.18∼1 0.48∼1 0∼1 0.36∼1 0.47∼1 0.56∼1 0.75∼1
0.3 0∼1 0∼1 0∼1 0.004∼1 0.33∼1 0∼1 0.25∼1 0.38∼1 0.47∼1 0.69∼1
0.5 0∼1 0∼1 0∼1 0∼1 0.23∼1 0∼1 0.18∼1 0.32∼1 0.41∼1 0.65∼1
0.9 0∼1 0∼1 0∼1 0∼1 0.14∼1 0∼1 0.13∼1 0.26∼1 0.36∼1 0.62∼1

Thus we infer that the performance of the suggested estimator π̂H is better
for wider range of H when sample size (n1, n2) are moderately large.

We have also computed the percent relative efficiencies of π̂H with respect to
π̂As with optimum allocation, by using the formula:

PRE(π̂H , π̂As) =
V0(π̂As)

min MSE(π̂H)
×100 =

A2

[n(H − 1)2(p1 − p2)2π2
A + H2A2]

×100

(2.7)
for different values of π1, π2, p1, p2, πA, πH and H , where

A =
[

(1 − p2)
√

θ1(1 − θ1) + (1 − p1)
√

θ2(1 − θ2)
]

.

The values of PRE(π̂H , π̂As) have been displayed in Table 2(a) and 2(b).
The results shown in Tables 2(a) and 2(b) indicate that

(i) when πA = 0.05, the estimator π̂H is more efficient than Greenberg et. al’s
(1969) estimator π̂As with substantial gain except in very few cases, partic-
ularly, when the sample sizes (n1, n2) are large (i.e. (n1, n2) ≥ (50, 50));

(ii) when πA = 0.1, the performance of the suggested estimator π̂H is better
than π̂As except in some cases;

(iii) The PRE(π̂H , π̂As) decreases as πA increases and it is stable when H ap-
proaches unity;
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Table 2(a) Percent Relative Efficiency of π̂H with respect to π̂As.

πA = 0.05
(p1, p2) → (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)
(n1, n2) → (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50)
H ↓ πY ↓

0.1 1684.96 632.73 482.17 389.49 198.61 773.56 271.87 205.30 164.92 83.14 407.05 139.47 104.97 84.15 42.25
0.1 0.3 2820.59 1157.93 894.34 728.50 378.02 1276.45 465.06 352.90 284.32 144.21 576.99 200.02 150.77 120.98 60.86

0.5 3484.21 1512.80 1179.19 966.14 507.59 1623.99 607.05 462.31 373.30 190.20 705.69 246.84 186.28 149.58 75.86
0.9 4011.16 1825.11 1434.27 1181.30 627.73 1949.72 747.00 570.91 462.01 236.47 847.33 299.35 226.21 181.79 91.73
0.1 1033.38 604.92 501.05 427.62 246.79 688.10 321.56 253.93 209.80 112.26 442.16 180.67 139.44 113.53 58.85

0.25 0.3 1247.25 865.59 750.73 662.78 417.95 909.42 488.09 396.29 333.56 186.19 568.47 248.30 193.74 158.84 83.57
0.5 1324.74 985.61 873.77 784.72 519.84 1017.12 588.40 485.98 413.93 237.72 649.51 296.84 233.46 192.38 102.34
0.9 1372.34 1068.32 961.78 874.57 601.74 1096.81 673.31 564.36 485.75 286.34 727.21 347.78 275.82 228.54 123.66
0.1 377.03 338.19 321.62 306.60 248.56 348.66 277.44 251.73 230.38 161.78 309.85 213.58 184.86 162.95 102.31

0.50 0.3 387.81 365.54 355.34 345.69 304.36 368.88 319.20 299.07 281.32 216.95 332.88 249.24 221.42 199.19 132.62
0.5 390.97 374.09 366.18 358.60 324.97 376.05 335.85 318.80 303.40 244.39 344.06 268.85 242.37 220.63 152.32
0.9 392.76 379.04 372.53 366.25 337.74 380.60 346.94 332.25 318.76 264.95 352.93 285.70 260.85 239.98 171.41
0.1 176.58 174.24 173.09 171.96 166.51 174.92 169.46 166.86 164.33 152.78 172.21 164.48 157.42 153.04 134.35

0.75 0.3 177.16 175.93 175.33 174.73 171.78 176.13 172.91 171.35 169.82 162.54 173.88 168.35 163.16 159.87 145.24
0.5 177.32 176.42 175.97 175.53 173.33 176.53 174.08 172.89 171.70 166.03 174.62 170.10 165.80 163.05 150.57
0.9 177.41 176.69 176.33 175.98 174.21 176.78 174.81 173.84 172.88 168.25 175.18 171.43 167.83 165.52 154.84
0.1 123.36 123.23 123.09 122.99 122.54 123.23 122.79 122.57 122.34 121.25 123.01 122.36 121.71 121.28 119.18

0.90 0.3 123.41 123.34 123.27 123.22 122.98 123.33 123.07 122.94 122.82 122.18 123.15 122.69 122.24 121.94 120.46
0.5 123.42 123.37 123.32 123.28 123.11 123.36 123.17 123.07 122.97 122.49 123.21 122.84 122.47 122.23 121.03
0.9 123.43 123.39 123.34 123.32 123.18 123.38 123.22 123.15 123.07 122.68 123.25 122.95 122.65 122.45 121.46
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Table 2(b) Percent Relative Efficiency of π̂H with respect to π̂As.

πA = 0.1
(p1, p2) → (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)
(n1, n2) → (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50) (5,5) (25,5) (20,20) (20,30) (50,50)
H ↓ πY ↓

0.1 649.35 226.24 170.65 136.99 68.97 299.40 101.83 76.57 61.35 30.77 170.65 57.54 43.22 34.60 17.33
0.1 0.3 1025.13 366.78 277.63 223.34 112.93 437.64 150.26 113.12 90.70 45.56 214.83 72.65 54.59 43.72 21.91

0.5 1277.06 465.30 353.08 284.47 144.29 535.19 185.00 139.39 111.83 56.23 246.72 83.62 62.84 50.34 25.23
0.9 1475.93 545.67 414.91 334.71 170.20 618.97 215.20 162.28 130.24 65.55 276.84 94.02 70.68 56.62 28.39
0.1 615.38 275.86 216.22 177.78 94.12 347.83 135.59 103.90 84.21 43.24 216.22 79.21 60.15 48.48 24.62

0.25 0.3 811.05 408.34 327.13 272.86 149.15 466.78 193.16 149.38 121.78 63.30 263.99 98.87 75.32 60.83 31.00
0.5 909.64 488.28 396.45 333.70 186.28 539.63 232.05 180.59 147.81 77.48 296.72 112.86 86.16 69.68 35.62
0.9 974.59 546.98 448.58 380.18 215.72 596.13 264.38 206.83 169.85 89.69 326.37 125.91 96.33 78.00 39.98
0.1 339.62 260.87 233.77 211.76 144.00 285.71 181.82 153.85 133.33 80.00 233.77 127.66 104.05 87.80 49.32

0.50 0.3 360.98 302.06 279.26 259.67 192.23 315.02 221.09 192.40 170.30 108.18 256.03 148.87 123.11 104.94 60.39
0.5 368.89 319.24 299.11 281.37 217.01 328.32 241.69 213.52 191.24 125.65 268.81 162.33 135.49 116.27 68.02
0.9 373.38 329.52 311.23 294.88 233.51 336.95 256.19 228.78 206.66 139.32 279.02 173.85 146.28 126.26 74.96
0.1 174.33 167.83 164.76 161.80 148.45 170.21 156.86 150.94 145.45 123.08 164.76 143.71 135.08 127.43 99.31

0.75 0.3 175.67 171.60 169.63 167.71 158.72 172.60 163.11 158.75 154.61 136.78 167.32 149.72 142.23 135.46 109.42
0.5 176.13 172.92 171.36 169.82 162.55 173.57 165.72 162.05 158.55 143.07 168.63 152.90 146.09 139.86 115.27
0.9 176.38 173.65 172.32 171.00 164.73 174.16 167.34 164.13 161.04 147.18 169.61 155.33 149.05 143.27 119.98
0.1 123.19 122.65 122.38 122.12 120.81 122.85 121.65 121.07 120.48 117.65 122.38 120.29 119.27 118.27 113.49

0.90 0.3 123.29 122.96 122.80 122.64 121.83 123.05 122.24 121.83 121.43 119.48 122.61 120.94 120.12 119.32 115.44
0.5 123.33 123.07 122.94 122.82 122.18 123.12 122.47 122.14 121.82 120.22 122.72 121.26 120.55 119.85 116.44
0.9 123.35 123.13 123.02 122.92 122.38 123.17 122.61 122.33 122.05 120.67 122.80 121.51 120.87 120.24 117.18
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(iv) Larger gain in efficiency is observed when the sample sizes (n1, n2) are mod-
erately large i.e. (n1, n2) < (50, 50).

Thus we conclude from the results of the Tables 1(a), 1(b), 2(a) and 2(b) that
there is enough scope of choosing the value of scalar H in order to increase the
efficiency of the suggested estimator π̂H over Greenberg et. al’s (1969) estimator
π̂As. For larger gain in efficiency, small sample sizes are to be preferred in practice.
Such sample sizes are desirable when the survey procedure like RR technique is
expensive.

3 Optimum estimator in the class π̂H at (2.1)

Differentiating (2.3) with respect to H and equating it to zero, we get the optimum
value of H as

Hopt =
π2

A

π2
A + Var(π̂As)

(3.1)

=
π2

A

π2
A+

1

(p1−p2)2

{

θ1(1 − θ1)(1−p2)
2

n1
+

θ2(1 − θ2)(1−p1)
2

n2

} . (3.2)

Substitution (3.1) in (2.1) yields the ’optimum estimator’ as

π̂Hopt
=

π2
Aπ̂As

{π2
A + Var(π̂As)}

= Hoptπ̂As

=
π2

Aπ̂As

π2
A+

1

(p1−p2)2

{

θ1(1 − θ1)(1−p2)
2

n1
+

θ2(1−θ2)(1−p1)
2

n2

} . (3.3)

Putting (3.1) (or (3.2) in (2.3) we get the MSE of the optimum estimator π̂Hopt

as

MSE(π̂Hopt
) =

π2
AVar(π̂As)

{π2
A + Var(π̂As)}

. (3.4)

Thus the relative efficiency of π̂Hopt
with respect to π̂As is given by

PRE(π̂Hopt
, π̂As) = 1 +

Var(π̂As)

π2
A

= 1 +
1

(p1 − p2)2π2
A

[

θ1(1 − θ1)(1 − p2)
2

n1
+

θ2(1 − θ2)(1 − p1)
2

n2

]

, (3.5)

which clearly indicates that the optimum estimator π̂Hopt
is always more efficient

than Greenberg et. al.’s (1969) estimator π̂As. It is to be noted that the optimum
estimator π̂Hopt

in (3.3) depends on the unknown population parameters θi (i =
1, 2) and πA. So it is not useful in practice. However, due to past experience or
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data or acquaintance with the experimental material one may have the guessed
value of the parameters θi (i = 1, 2) and πA [see Thompson (1968) and Mehta and
Srinivasan (1977)] and hence the guessed value of the optimum value (Hopt) of H

in (3.1). Let H̃opt be the guessed value of Hopt such that H̃opt = αHopt, where
α(> 0) is a departure from true optimum value Hopt of H . Then the estimator of

πA based on guessed value H̃opt is defined by

π̃H̃opt
= H̃optπ̂As = αHoptπ̂As. (3.6)

Such a procedure is discussed by Searls (1967), Hirano (1972) and Singh and
Shukla (2002). The bias and mean squared error (MSE) of π̃H̃opt

are respectively

given by

B(π̃H̃opt
) =

[

α

{1 + (CV (π̂As))2}
− 1

]

πA (3.7)

and

MSE(π̃H̃opt
) =

[

α2

{1 + (CV (π̂As))2}
−

2α

{1 + (CV (π̂As))2}
+ 1

]

π2
A, (3.8)

where CV (π̂As) =
√

Var(π̂As)/πA is the coefficient of variation of the estimator
π̂As and Var(π̂As) is given by (1.3).

It follows from (1.3) and (3.8) that MSE(π̂As) < Var(π̂As) if (α − 1)2 <
{CV (π̂As)}

4 i.e. if

(α − 1)2 <
1

(p1 − p2)4π4
A

[

θ1(1 − θ1)(1 − p2)
2

n1
+

θ2(1 − θ2)(1 − p1)
2

n2

]2

. (3.9)

One can calculate the range of dominance of α in which π̃H̃opt
is better than

Greenberg et. al.’s (1969) estimator π̂As for different values of n1, n2, p1, p2, πY

and πA.

4 Estimators based on estimated optimum values
of H from the sample

If the experimenter is inexperienced and unable to guess the values of unknown
population parameters, in such a situation, it is advisable to replace these popula-
tion parameters by their estimates available from the sample data at hand. Thus

replacing (θi, πA) (i = 1, 2) by their estimates (θ̂i, π̂As) (i = 1, 2) in (3.2) we get
an estimate of Hopt as

Ĥ
(1)
opt =

π̂2
As

π̂2
As +

1

(p1 − p2)2

{

θ̂1(1 − θ̂1)(1 − p2)
2

(n1 − 1)
+

θ̂2(1 − θ̂2)(1 − p1)
2

(n2 − 1)

} . (4.1)



102 Housila P. Singh and Nidhi Mathur

Substitution of (4.1) in (3.3) yields an estimator of πA as

π̂
(1)

Ĥopt

=
π̂3

As

π̂2
As +

1

(p1 − p2)2

{

θ̂1(1 − θ̂1)(1 − p2)
2

n1
+

θ̂2(1 − θ̂2)(1 − p1)
2

n2

} . (4.2)

Replacing πA by π̂As and Var(π̂As) by its unbiased estimator

V̂ar(π̂As) =
1

(p1 − p2)2

[

θ̂1(1 − θ̂1)(1 − p2)
2

(n1 − 1)
+

θ̂2(1 − θ̂2)(1 − p1)
2

(n2 − 1)

]

(4.3)

in (3.1), we find another estimate of Hopt as

Ĥ
(2)
opt =

π̂2
As

π̂2
As +

1

(p1 − p2)2

{

θ̂1(1 − θ̂1)(1 − p2)
2

(n1 − 1)
+

θ̂2(1 − θ̂2)(1 − p1)
2

(n2 − 1)

} . (4.4)

Substitution of (4.4) in (3.3) yields another estimator of πA as

π̂
(2)

Ĥopt

=
π̂3

As

π̂2
As +

1

(p1 − p2)2

{

θ̂1(1 − θ̂1)(1 − p2)
2

(n1 − 1)
+

θ̂2(1 − θ̂2)(1 − p1)
2

(n2 − 1)

} . (4.5)

Following Thompson (1968) and Lemmer (1981) we define a more flexible estima-
tor of πA as

π̂
(h1,h2)

H̃opt

=
π̂3

As

π̂2
As +

1

(p1 − p2)2

{

h1θ̂1(1 − θ̂1)(1 − p2)
2

n1
+

h2θ̂2(1 − θ̂2)(1 − p1)
2

n2

} ,

(4.6)
where (h1, h2) > 0 are constants.

It is to be noted that for h1 = h2 = 1, π̂
(h1,h2)

H̃opt

reduces to the estimator π̂
(1)

H̃opt

while for hi = ni/(ni − 1), i = 1, 2, it boils down to the estimator π̂
(2)

H̃opt

given by

(4.5).

The exact MSE of an estimator G = π̂
(1)

Ĥopt

, π̂
(2)

Ĥopt

, and π̂
(h1,h2)

Ĥopt

is given by

MSE(G) =

n1
∑

n′

1
=0

n2
∑

n′

2
=0

(G − πA)2 n1Cn′

1

n2Cn′

2
θ

n′

1

1 θ
n′

2

2 (1 − θ1)
(n1−n′

1
)(1 − θ2)

(n2−n′

2
),

(4.7)

where niCn′

i
= ni!

n′

i
!(ni−n′

i
)! , i = 1, 2, and ni! stands for factorial ni (i = 1, 2).
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The percent relative efficiency (PRE) of an estimator G with respect to π̂As is
given by

PRE(G, π̂As) = (4.8)
[{

θ1(1 − θ1)(1 − p2)
2/n1

}

+
{

θ2(1 − θ2)(1 − p1)
2/n2

}]

/(p1 − p2)
2

[

n1
∑

n′

1
=0

n2
∑

n′

2
=0

(G−πA)2 n1Cn′

1

n2Cn′

2
θ

n′

1

1 θ
n′

2

2 (1−θ1)(n1−n′

1
)(1−θ2)(n2−n′

2
)

] × 100.

The PRE(G, π̂As) have been computed for different values of (n1, n2, p1, p2, h1,
h2, πA and πY ) and displayed in Tables 3(a) and 3(b) respectively.

It is observed from the results shown in Tables 3(a) and 3(b) that:

(a) when πA = 0.05, the proposed estimator π̂
(1)

Ĥopt

and π̂
(2)

Ĥopt

are better than

Greenberg et. al.’s (1969) estimator π̂As with substantial gain in efficiency.

The estimator π̂
(h1,h2)

Ĥopt

with (h1, h2) = (5, 6), (8, 9) is better than π̂As except

in the case (p1, p2) = (0.9, 0.1), (n1, n2) = (50, 50) and πY = 0.10;

(b) when πA = 0.10, the estimator π̂
(1)

Ĥopt

and π̂
(2)

Ĥopt

are better than π̂As with

considerable gain in efficiency except in the cases:
(i) (p1, p2) = (0.8, 0.2), (n1, n2) = (50, 50), πY = 0.10;
(ii) (p1, p2) = (0.9, 0.1), (n1, n2) = (50, 50), πY = 0.10.

The performance of the estimator π̂
(h1,h2)

Ĥopt

with (h1, h2) = (5, 6), (8, 9) is also

better than π̂As except in few cases:
(i) (p1, p2) = (0.8, 0.2), (n1, n2) = (50, 50), 0.1 ≤ πY ≤ 0.5;
(ii) (p1, p2) = (0.9, 0.1), (n1, n2) = (50, 50), 0.1 ≤ πY ≤ 0.9.

We also note that the performance of the estimator π̂
(h1,h2)

Ĥopt

with (h1, h2) =

(8, 9) is not appreciable in the case (p1, p2) = (0.9, 0.1), (n1, n2) = (25, 5),

(20, 20), (20, 30) and πY = 0.3. It is further observed that π̂
(h1,h2)

Ĥopt

with

(h1, h2) = (5, 6), (8, 9) is more efficient than all the estimators π̂As, π̂
(1)

Ĥopt

and π̂
(2)

Ĥopt

for (p1, p2) = (0.7, 0.3), (0.8, 0.2); (n1, n2) = (5, 5), (25, 5), (20, 20),

(20, 30) and πY ∈ [0.1, 0.9];

(c) The estimator π̂
(2)

Ĥopt

is better than π̂
(1)

Ĥopt

when πA = 0.05. Leaving few cases

it is also true with πA = 0.10;

(d) The PRE decreases as πA increases;

(e) Larger gain in efficiency is seen by using the proposed estimators π̂
(1)

Ĥopt

,

π̂
(2)

Ĥopt

and π̂
(h1,h2)

Ĥopt

over Greenberg et. al’s (1969) estimator π̂As for smaller

sample sizes.
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Table 3(a) Percent Relative Efficiency of π̂
(1)
H , π̂

(2)
H and π̂

(h1,h2)
H .

πA = 0.05
(p1, p2) → (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

πY (n1, n2) → (5,5) (25,5) (20,20)(20,30)(50,50) (5,5) (25,5) (20,20)(20,30)(50,50) (5,5) (25,5) (20,20)(20,30)(50,50)
Estimator ↓

π̂
(1)
H 227.66199.46 180.10 173.10 152.31 226.42169.87 156.00 151.45 122.26 223.16138.67 142.67 141.12 105.56

0.1 π̂
(2)
H 259.97210.90 183.77 176.02 153.10 256.22175.61 158.34 153.40 122.55 250.42140.84 144.14 142.42 105.61

π̂
(h1,h2)=(5,6)
H 777.18530.09 383.77 348.78 221.38 610.81283.64 241.85 229.09 130.19 491.10163.87 174.85 171.46 93.06

π̂
(h1,h2)=(8,9)
H 1073.6650.88 203.58 395.17 225.82 741.87293.17 249.35 236.45 122.97 546.91156.61 169.88 166.84 83.74

π̂
(1)
H 190.91183.53 187.25 183.99 172.80 193.69173.27 164.91 161.63 141.77 205.56145.15 138.39 136.05 115.10

0.3 π̂
(2)
H 212.04192.91 191.22 187.41 174.00 214.44179.87 167.55 163.90 142.37 227.57148.11 139.92 137.41 115.27

π̂
(h1,h2)=(5,6)
H 572.41490.31 452.68 414.85 323.64 512.66354.74 291.78 270.64 185.38 464.99200.79 189.32 181.26 113.32

π̂
(h1,h2)=(8,9)
H 824.86683.19 282.99 512.59 360.80 675.77411.70 324.52 298.20 184.99 551.72202.15 193.84 185.17 105.30

π̂
(1)
H 174.57181.69 190.84 188.97 180.70 171.68175.27 173.26 171.42 152.51 185.72150.46 145.40 143.99 122.84

0.5 π̂
(2)
H 190.53190.94 195.04 192.75 182.08 186.72181.95 176.34 174.26 153.30 202.19153.46 147.03 145.48 123.13

π̂
(h1,h2)=(5,6)
H 443.67462.48 486.91 459.58 378.05 397.58373.67 329.33 311.82 224.50 387.05221.13 201.99 194.15 132.28

π̂
(h1,h2)=(8,9)
H 612.83640.64 334.97 594.32 442.87 517.36450.26 378.37 353.21 232.29 466.06228.83 210.29 200.67 125.65

π̂
(1)
H 165.26185.14 192.89 192.00 186.24 152.61179.24 179.74 179.02 162.91 156.23156.85 158.27 157.96 133.82

0.9 π̂
(2)
H 177.19194.09 197.22 196.07 187.75 161.83185.02 183.23 182.39 163.91 165.67159.30 160.50 160.15 134.28

π̂
(h1,h2)=(5,6)
H 325.84479.10 510.39 496.23 422.42 262.07389.86 375.98 368.70 270.52 251.56240.55 234.26 231.45 162.24

π̂
(h1,h2)=(8,9)
H 405.29662.40 383.20 677.40 519.09 308.19477.51 454.65 443.38 292.67 282.56253.41 245.37 241.29 159.27



A
n

im
p
ro

v
ed

estim
a
tio

n
p
ro

ced
u
re

1
0
5

Table 3(b) Percent Relative Efficiency of π̂
(1)
H , π̂

(2)
H and π̂

(h1,h2)
H .

πA = 0.1
(p1, p2) → (0.7, 0.3) (0.8, 0.2) (0.9, 0.1)

πY (n1, n2) → (5,5) (25,5) (20,20)(20,30)(50,50) (5,5) (25,5) (20,20)(20,30)(50,50) (5,5) (25,5) (20,20)(20,30)(50,50)
Estimator ↓

π̂
(1)
H 195.96163.08 145.21 140.75 112.11 183.98125.67 119.53 117.43 94.67 174.77104.88 108.66 108.74 91.33

0.1 π̂
(2)
H 217.52168.38 146.96 142.17 112.25 200.31126.87 120.21 118.00 94.56 187.54104.97 108.84 108.33 91.10

π̂
(h1,h2)=(5,6)
H 470.05273.36 202.07 189.56 108.64 333.70136.21 126.86 123.48 72.31 263.23 89.49 97.86 97.19 61.09

π̂
(h1,h2)=(8,9)
H 561.56285.51 437.72 190.30 100.59 360.79128.04 119.63 116.44 62.65 269.88 79.67 88.63 88.04 50.27

π̂
(1)
H 175.37164.07 159.82 156.62 128.47 166.85135.84 130.43 128.60 101.01 165.85108.77 109.44 109.76 91.39

0.3 π̂
(2)
H 191.97170.01 162.25 158.72 128.84 180.40137.96 131.49 129.52 101.01 177.24109.06 109.76 108.88 90.87

π̂
(h1,h2)=(5,6)
H 425.87315.23 263.68 247.37 148.88 327.30174.99 155.94 150.24 87.30 264.50101.75 106.43 104.88 64.91

π̂
(h1,h2)=(8,9)
H 547.93370.21 571.25 262.81 144.45 379.20174.98 152.89 146.82 78.63 281.86 93.20 98.92 97.44 54.93

π̂
(1)
H 165.90166.41 166.77 164.24 137.94 154.30141.41 138.33 136.76 111.35 154.76112.36 114.25 115.05 92.63

0.5 π̂
(2)
H 179.49172.98 169.55 166.73 138.47 165.29144.09 139.72 138.04 106.97 164.19112.79 114.66 114.10 91.91

π̂
(h1,h2)=(5,6)
H 369.11327.93 300.77 285.42 176.50 291.80195.44 179.16 173.61 99.86 246.11110.68 115.09 113.51 69.02

π̂
(h1,h2)=(8,9)
H 473.86393.17 641.29 314.62 175.90 344.90200.66 179.78 173.11 91.92 268.55103.05 108.40 106.74 59.50

π̂
(1)
H 161.15170.63 171.65 170.04 145.85 144.79145.84 146.28 145.43 114.42 137.13116.58 121.63 122.82 95.86

0.9 π̂
(2)
H 172.15177.41 174.70 172.87 146.51 152.37148.57 148.03 147.11 114.59 143.51117.11 122.34 122.12 94.88

π̂
(h1,h2)=(5,6)
H 299.68348.87 331.33 320.35 203.17 227.21209.22 207.82 204.55 116.64 194.68120.76 131.62 130.99 76.52

π̂
(h1,h2)=(8,9)
H 361.16418.20 701.69 368.20 207.94 256.89216.92 215.38 211.50 109.95 209.12114.10 125.93 125.20 67.54
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5 Conclusions

Several modified estimators of the population proportion πA have been suggested.
It has been shown that the suggested estimators are better than Greenberg et.
al’s (1969) estimator π̂As under certain conditions. It is observed that the effi-

ciency of the estimator π̂
(h1,h2)

Ĥopt

can be increased considerably for different choices

of (n1, n2, p1, p2, πY ) through suitable selections of h1 and h2. The suggested es-
timators are recommended for their use in practice for moderately large/smaller
sample sizes.
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