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Abstract: In this paper we develop reference priors for the linear

calibration problem in the context of multivariate response data. We proved

that the joint reference posteriors are proper and the marginal posteriors for

the interest parameter have finite moments of order strictly smaller than p,

the dimension of the response vector y. A Gibbs Sampler scheme is presented

for sampling from the reference posterior. We call attention to the fact that

our priors reduce to the priors obtained by Ghosh et al. (1995) in the special

case of p = 1, but they do not agree with Kubokawa and Robert (1994) priors

for a general p.
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1 Introduction

The linear calibration problem, also known as inverse regression problem, is
motivated by the comparison of two or more measurement techniques related
to the same characteristic of interest, where one of them is much more accurate
and expensive than the others. The main objective is to use observations from the
less accurate techniques to make inference about the more accurate and expensive
one. Key references to this problem are Osborne (1991) and Brown (1993). More
specifically, the linear controlled calibration problem can be described as follows:
in a first step a set of values x1, x2, . . . , xn are fixed for the accurate measurement
X and other p related measurements are observed, yi = (yi1, . . . , yip), for each
fixed value xi, i = 1, . . . , n. At a second stage, k replications of the response
variable y0 (associated with an unknown covariate value x0) are observed and
the interest centers in estimating the accurate measurement x0 given (xi,yi),
i = 1, . . . , n and y0j , j = 1, . . . , k. Under an additional linear supposition, the
model is given by

yi = α + βxi + ǫi, ǫi ∼ Np(0 , σ2Ip), i = 1, . . . , n (1.1)

y0j = α + βx0 + ǫ0j , ǫ0j ∼ Np(0 , σ2Ip), j = 1, . . . , k (1.2)
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where (1.1) and (1.2) represent the calibration and prediction experiments,
respectively. The error vectors ǫi and ǫ0j are independent, σ2 is unknown,
α = (α1, . . . , αp)

′, β = (β1, . . . , βp)
′ are the regression parameters and Ip is the

usual identity matrix, p×p. Note that each covariate is associated with p response
variables so that we are working in a multivariate context, although the interest
parameter x0 is a scalar.

Under the Bayesian point of view inference is based on posterior distribution
of the parameters. In order to obtain these posterior distributions it is necessary
to specify the prior distributions for the parameters, but sometimes no prior
information is available and it is necessary to consider non subjective priors (or
non informative). For a good review in that subject see Kass and Wasserman
(1996), where different proposals are presented. We consider here the proposal
given by Bernardo (1979), and developed by Berger and Bernardo (1989) and
Berger and Bernardo (1992b) known as reference priors. Ghosh et al. (1995)
obtained the reference prior for the univariante calibration problem (p = 1).

In this paper we obtain reference priors for the p-dimensional linear calibration
problem, given by (1.1) and (1.2), and discuss the existence of the posterior
distribution and posterior moments. Therefore, we extend Ghosh et al. (1995)
results. Also, we discuss why Kubokawa and Robert (1994) prior is not the
reference prior for this problem.

Reference priors are based on information-theoretical ideas and may be
described as model-based positive functions that produce non subjective posteriors
dominated by the data. Using these priors we try to minimize the prior influence
under the posterior distribution. In Section 2, we develop reference priors
through two different approaches: the first, proposed by Berger and Bernardo
(1989), recommends the separation of the parameter vector in two groups,
one composed by the interest parameter {x0} and the other by the nuisance
parameters {α, β, σ2}. The second approach represents a refinement of the
first one and recommends splitting the parameter vector into more than two
groups ordered according to their inferential importance. A drawback of this
approach is that sometimes it is not easy to decide which ordering to use, specially
in relation to the nuisance parameters. In these cases, Berger and Bernardo
(1992b) recommend to obtain the reference priors associated with all nuisance
parameters orderings and then choose the best prior through a comparative study
of their inferential performances. In relation to the linear calibration problem, we
separated the parameter vector in four groups {x0} {α} {β} {σ2}, and considered
the six possible different orderings of the nuisance parameters: {x0}{α}{β}{σ2},
{x0}{α}{σ2}{β}, {x0}{β}{α}{σ2}, {x0}{β}{σ2}{α} , {x0}{σ2}{α}{β}
and {x0}{σ2}{β}{α}. We show that for these six different orderings the same
reference prior is obtained. Then, the four groups reference priors do not depend
on the ordering. See Berger and Bernardo (1992b) for details on this approach.
We also obtained Jeffreys prior, which can be seen as a reference prior obtained by
grouping all parameters in a single group {x0, α, β, σ2}. Often times the reference
prior algorithm produces an improper prior and it is necessary to verify if the
posterior is a proper density function in order to make Bayesian inference.

In Section 3 we present a discussion of related work in the literature, such
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as Kubokawa and Robert (1994) and Ghosh et al. (1995). In Section 4 a Gibbs
Sampler scheme for sampling from the posterior distribution is presented. In
Section 5 we consider a data set from Johnson and Krishnamoorthy (1996) paper
and implement the Bayesian inference comparing the results using the different
reference priors.

2 Reference priors for the calibration problem

In the next theorems we obtain the reference priors for each case discussed before
and also give conditions for the existence of the posterior distributions and their
moments. On the following we consider the notation: cx =

∑n
i=1(xi − x)2 and

u(x0) = (n + k)cx + nk(x0 − x)2.
First we remark that the Fisher information matrix associated with the model

given by (1.1) and (1.2), considering the ordering (x0, α, β, σ2), is given by

H(θ) =

























k
σ2 β′β k

σ2 β′ k
σ2 x0β

′ 0

k
σ2 β

(n+k)
σ2 Ip

(kx0+
n∑

i=1

xi)

σ2 Ip 0

k
σ2 x0β

(kx0+
n∑

i=1

xi)

σ2 Ip

(kx2
0+

n∑

i=1

x2
i )

σ2 Ip 0

0 0 0
(n+k)p

2σ4

























. (2.1)

Theorem 2.1 Under the model given by (1.1) and (1.2), the Jeffreys prior is
given by

π1(x0, α, β, σ2) ∝ u(x0)
(p−1)/2 (σ2)−(2p+3)/2 (β′β)1/2.

Proof. We calculate the determinant of the Fisher information matrix,
partitioning (2.1) as

H(θ) =







h11 h12

h21 h22







, (2.2)

where h11 = kβ
′
β/σ2, h12 = h′

21 =
(
kβ

′/σ2 , kx0β/σ2 , 0
)

and
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h22 =

















(n + k)/σ2Ip (kx0 +
n∑

i=1

xi)/σ2Ip 0

(kx0 +
n∑

i=1

xi)/σ2Ip (kx2
0 +

n∑

i=1

x2
i )/σ2Ip 0

0 0 (n + k)p/2σ4

















. (2.3)

Then, using matrix proprieties, |H(θ)| = |h22||h11.2|, where |h11.2| = h11.2 =
h11 − h12h

−1
22 h21. Now partitioning h22 as

h22 =







A11 A12

A21 A22







,

and associating each Aij with the partition showed in (2.3), we note that |h22|
can be easily calculated since A22 is a diagonal matrix and |h22| = |A22||A11.2|
where A11.2 = A11 − A12A

−1
22 A21. After simplification we get

|h22| =
u(x0)

p(n + k)p

2(σ2)2p+2
. (2.4)

Note that the matrix h−1
22 can be obtained as

h−1
22 =







B11 B12

B21 B22







, (2.5)

where

B11 = A−1
11.2, B12 = −A−1

11.2A12A
−1
22 ,

B21 = −A−1
22 A21A

−1
11.2, B22 = A−1

22 A21A
−1
11.2A12A

−1
22 + A−1

22 ,

and the matrices A22 and A11.2 are diagonal matrices. Then, after simplifications
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it follows that

h−1
22 =

















σ2

a (kx2
0 +

n∑

i=1

x2
i )Ip −σ2

a (kx0 +
n∑

i=1

xi)Ip 0

−σ2

a (kx0 +
n∑

i=1

xi)Ip
σ2

a (n + k)Ip 0

0 0 2σ4

(n+k)p

















. (2.6)

Then,

h11.2 =
ncxkβ

′
β

u(x0)σ2
. (2.7)

Therefore, the Jeffreys prior is given by

|H(θ)|1/2 ∝ u(x0)
(p−1)/2 (σ2)−(2p+3)/2 (β′β)1/2.

Theorem 2.2 Under the model given by (1.1) and (1.2), considering Λ =
(α, β, σ2) as a nuisance parameter, the two-group reference prior is given by
π2(x0, α, β, σ2) ∝ u(x0)

−1/2 (σ2)−(p+1).

Proof. Partitioning the Fisher information matrix as in (2.2) and following the
notation from the corollary of theorem 5.29 from Bernardo and Smith (1994) we
have that

π(Λ | x0) ∝ |h22|
1
2 = (σ−2)p+1

{
u(x0)

p(n + k)p

2

} 1
2

= g2(α, β, σ2) f2(x0). (2.8)

Now observe that hx0 = h11−h12h
−1
22 h21 = h11.2 was already calculated on (2.7).

In this way

|hx0 |1/2 =

{
ncxkβ′β

σ2

}1/2

u(x0)
−1/2 = f1(x0) g1(α, β, σ2). (2.9)

Choosing an increasing sequence of subsets {Λi} given by Λi = (αi, βi, σ
2
i ) where

αi = [−i, i]p, βi = [−i, i]p and σ2
i = [e−i, ei] that do not depend on x0, we have

that the two-group reference prior is given by

π2(x0, α, β, σ2) ∝ f1(x0) g2(α, β, σ2) = u(x0)
−1/2(σ−2)p+1.

Although the approach of more than two groups might produce different priors
for different orderings of the nuisance parameters, Bernardo (1997) points out that
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most often reference priors are invariant with respect to the nuisance parameters
orderings. The next result shows that this invariance propriety is valid for the
linear calibration model.

Theorem 2.3 Under the model given by (1.1) and (1.2), the four-group reference
prior, associated with the six different orderings of nuisance parameters does not
depend on p. It is given by π4(x0, α, β, σ2) ∝ u(x0)

−1/2 (σ2)−1.

Proof. Here we are following the algorithm proposed by Berger and Bernardo
(1992b). First, we consider the ordering (x0, α, β, σ2) and denote the Fisher
information matrix given in (2.1) by H4(θ). Using Berger and Bernardo (1992b)
notation, we recall that hj(θ) is the right down submatrix of Hj(θ), j = 1, 2, 3, 4.
Then,

|h4(θ)|1/2 = σ−2{(n + k)p/2}1/2 = a4(σ
2)b4(x0, α, β). (2.10)

We need now to calculate S4(θ) = H−1
4 (θ). Remembering that H4(θ) can be

partitioned as in (2.2) we have that

S4(θ) =







C11 C12

C21 C22







, (2.11)

where
C11 = h−1

11.2, C12 = −h−1
11.2h12h

−1
22 ,

C21 = −h−1
22 h21h

−1
11.2, C22 = h−1

22 h21h
−1
11.2h12h

−1
22 + h−1

22 ,

h11.2 = hx0 = h11 − h12h
−1
22 h21.

After some algebra S4(θ) is given by

S4(θ) =


















u(x0)σ
2

ncxk β′β −σ2β
′

b
ncx

β′β −σ2β
′

c
ncx

β′β 0

−σ2β′

b
ncx

β′β f(x0, β, σ2) g(x0, β, σ2) 0

−σ2β′

c
ncx

β′β g(x0, β, σ2) h(x0, β, σ2) 0

0 0 0 2σ4

(n+k)p


















, (2.12)

where

b =

n∑

i=1

x2
i − x0

n∑

i=1

xi, c = nx0 −
n∑

i=1

xi,
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d =

n∑

i=1

x2
i , e =

n∑

i=1

xi,

f(x0, β, σ2) =
σ2kββ′b2

u(x0)ncxβ
′
β

+
σ2(kx2

0 + d)

u(x0)
Ip,

g(x0, β, σ2) =
σ2kββ′bc

u(x0)ncxβ
′
β

− σ2(kx0 + e)

u(x0)
Ip,

h(x0, β, σ2) =
σ2kββ′c2

u(x0)ncxβ′β
+

σ2(n + k)

u(x0)
Ip.

Obtaining H3(θ) = S3(θ)−1 (where S3(θ) is obtained by the elimination of the
last row and column from matrix S4(θ)) we find that

|h3(θ)|1/2 = 1 ×
{{

kx2
0 +

∑n
i=1 x2

i

}p

σ2p

}1/2

= a3(β)b3(x0, α, σ2). (2.13)

Similarly, obtaining H2(θ) = S2(θ)−1 (where S2(θ) is obtained by the elimination
of the last p + 1 rows and columns from matrix S3(θ)) we find that

|h2(θ)|1/2 = 1 × |h2(θ)|1/2 = a2(α)b2(x0, β, σ2). (2.14)

Note that we do not really need to invert S2(θ) and calculate h2(θ) explicitly at
this step because S2(θ) is not a function of α. Finally, since

S1(θ) =
aσ2

ncxkβ′β
,

we get

h1(θ) = H1(θ) = S−1
1 (θ) =

ncxkβ′β

aσ2
. (2.15)

Therefore

|h1(θ)|1/2 = u(x0)
−1/2

{
ncxkβ′β

σ2

}1/2

= a1(x0)b1(α, β, σ2). (2.16)

Choosing an increasing sequence of subsets {Λi} given by Λi = (αi, βi, σ
2
i ) where

αi = [−i, i]p, βi = [−i, i]p e σ2
i = [e−i, ei] that do not depend on x0, we have that

the four-group reference prior is given by

π4(x0, α, β, σ2) ∝ a1(x0) a2(α) a3(β) a4(σ
2) = u(x0)

−1/2σ−2.

Using the same ideas developed above, for the other five orderings of the
parameter vector given in the introduction, we obtained the same expression for
the prior reference. The details are omited here to save space.
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The reference priors given by Theorems 2.1, 2.2 and 2.3 are improper priors, as
it is often the case in reference analysis when the parameter space is unbounded.
However the next result shows that the associated posterior distributions are
proper.

Theorem 2.4 The joint reference posterior distributions associated with
reference priors π1, π2 and π4 are proper posterior densities.

Proof. The proof of this theorem is in Appendix.

Ghosh et al. (1995) have shown that for p = 1 the marginal reference posterior
distribution of x0, although proper, have infinite mean (and hence all higher order
moments). Next result represents a generalization of that result to arbitrary p.

Theorem 2.5 The x0’s marginal reference posterior distributions associated with
reference priors π2 and π4 only have finite moments of order strictly smaller than
p.

Proof. We will first show the result for the marginal posterior distribution
associated with the two-group reference prior.

Observing that

E[xp
0 | y,X] ∝ Ex0

[

xp
0

[
(n + k)cx + nk(x0 − x)2

] (n+k−1)p+3
2

]

, (2.17)

and

xp
0

[
(n + k)cx + nk(x0 − x)2

] (n+k−1)p+3
2 = a0+a1 x0+a2 x2

0+. . .+a(n+k)p+3 x
(n+k)p+3
0

represents a polinomial of order (n + k)p + 3, where

x0 ∼ tv

(

l7 ,
l8

v(nkl6 − l′5l5)

)

, (2.18)

with l5, l6, l7 and l8 defined in the proof of the Theorem 2.4 in Appendix. Where
tv(a, b) denoted a t-Student distribution with location a, scale b and degree of
freedom v. The result (2.18) is showed in the proof of Theorem 2.4. It follows
that E[xp

0 | y,X] can be rewritten as a linear combination of moments of order
less or equal to (n + k)p + 3 from the distribution (2.18). Since x0 has degree of
freedom equal to v = (n + k)p + 3, and from t-Student proprieties the moment
of order (n + k)p + 3 diverges, then E[xp

0 | y,X] = ∞. Recall that, when the
moment of order i does not exists all other moments of order greater than i also
do not exist. Therefore, π2(x0 | y,X) does not have any moment of order greater
or equal to p.

Now, observing that

E[xp−1
0 | y,X] ∝ Ex0

[

xp−1
0

[
(n + k)cx + nk(x0 − x)2

] (n+k−1)p+3
2

]

, (2.19)
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and that

xp−1
0

[
(n + k)cx + nk(x0 − x)2

] (n+k−1)p+3
2 = a0 +a1 x0 + . . .+a(n+k)p+2 x

(n+k)p+2
0 ,

represents a polynomial of order (n + k)p + 2, we have that E[xp−1
0 | y,X] can

be rewritten as a linear combination of moments from a t-Student distribution of
order less or equal to (n+k)p+2. Since v = (n+k)p+3, then E[xp−1

0 | y,X] < ∞.
To show the marginal posterior distribution associated with the four-group

prior π4 is proper, we only have to change n by n−2 in all equations of the above
proof.

The last theorem shows that as we increase p, we automatically increase
the number of finite moments of the reference posteriors, that is, we produce
more informative posterior distributions. This result is expected because when
we increase p, we increase the quantity of information embodied in the model
(remember that p represents the number of less accurate measurement techniques
used to infer the value of x0), as a consequence, we produce a more informative
reference prior.

A question that arises naturally at this point is what prior should be
used. Jeffreys prior may be criticized on the grounds that it does not make
distinction between interest and nuisance parameters. Berger and Bernardo
(1992a) recommend to use the more than two-group approach based on their
empirical experience, especially when that approach is invariant to the nuisance
parameters orderings (producing a unique prior). However, Ghosh et al. (1995)
argues that the two-group approach appears to produce the most intuitively
appealing reference prior, because in the lack of additional information about the
nuisance parameters importance it seems more natural to group them all together.
In Section 4 we compare these priors through an example.

3 Comparison with other reference priors

In the statistical literature (see Yang and Berger, 1997 and Bernardo and Ramón,
1998) the reference prior for the p-dimensional linear calibration problem is
credited to Kubokawa and Robert (1994). In fact, they obtained the reference
prior associated with the related problem of the estimation of the ratio of two
normal means. However, we remark here that it is not the reference prior for
the real multivariate calibration problem. Kubokawa and Robert reduced by
sufficience the original model, given by (1.1) and (1.2), to the following model

y ∼ Np

(

α + βx , σ2

n Ip

)

, y0 ∼ Np

(

α + βx0 , σ2

k Ip

)

, β̂ ∼ Np

(

β , σ2

cx
Ip

)

and s ∼ Gama
(

q
2 , 1

2σ2

)
where β̂, y, y0 and s are mutually independent

and q = (n + k − 3)p, β̂ =
∑n

i=1(xi − x)(yi − y)/cx, x =
∑n

i=1 xi/n,

y =
∑n

i=1 yi/n, y0 =
∑k

j=1 y0j/k, cx =
∑n

i=1(xi − x)2. From this reduced

model, Kubokawa and Robert considered the reparametrization β∗ =
√

cxβ,

x∗
0 = (x0 − x)/

√

cx( 1
n + 1

k ), w =
√

cxβ̂, z = (y0 − y)/
√

1
n + 1

k where
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w, z and s are independent and distributed as w ∼ Np

(
β
∗ , σ2Ip

)
, z ∼

Np

(
x∗

0β
∗ , σ2Ip

)
, s ∼ Gama

(
q
2 , 1

2σ2

)
. From this reduced and reparametrized

model Kubokawa and Robert obtained the Jeffreys prior πk
j (x∗

0, β
∗, σ2) ∝ (1 +

x∗
0
2)(p−1)/2 (σ2)−(p+3)/2 β

∗′
β
∗ and the two-group reference prior πk

2 (x∗
0, β

∗, σ2) ∝
(1 + x∗

0
2)−1/2(σ−2)(p+2)/2. Transforming back to the original parametrization

through the jacobian element
∣
∣∂(x∗

0, β
∗, σ2)/∂(x0, β, σ2)

∣
∣ = |

√

nk/(n + k)|,
Kubokawa and Robert’s priors do not coincide with ours. Table 1 presents a
summary of the reference priors for the calibration problem.

Table 1 Reference priors in the original parametrization (x0, α, β, σ2)

Kubokawa and Robert Chaibub and Branco Ghosh et al.

Jeffreys u(x0)
(p−1)

2 (σ2)−
(p+3)

2 β′β u(x0)
(p−1)

2 (σ2)−
(2p+3)

2 (β′β)1/2 (σ2)−5/2 |β|

Two-group u(x0)
−1/2 (σ2)−

(p+2)
2 u(x0)

−1/2 (σ2)−(p+1) u(x0)
−1/2 (σ2)−2

Four-group - u(x0)
−1/2 (σ2)−1 u(x0)

−1/2 (σ2)−1

Although Kubokawa and Robert worked with a model related to the linear
calibration model, their reference priors do not coincide with ours after the
adequate jacobian transformation is done. This result is expected because,
although reference priors are invariant under sufficient statistics and one-to-one
parameter transformations, they are not invariant under transformations on the
parametric model. In fact, Kubokawa and Robert first reduced the original model

to its sufficient statistics β̂, y, y0 and s, what is fine since reference priors are
invariant under this type of transformation. The problem arose when the authors

changed the model considering the reparametrization z = (y0 − y)/
√

1
n + 1

k . We

can also see that the likelihood function associated with the last model is not
proportional to the original likelihood.

On the other hand, in the particular case p = 1, our reference priors
exactly match with the results obtained by Ghosh et al. (1995) (see Table
1). These authors presented the complete list of reference priors associated
with all possible groupings and ordinations of nuisance parameters for the linear
calibration model when p = 1. In their paper Ghosh et al. considered the
reparametrization (x0, α, β, σ2) → (x0, α0, β, σ2), where α0 = α+βx. Nonetheless,
since α0 is an one-to-one reparametrization of α, Ghosh’s reference prior can be
transformed back to the original parametrization through the jacobian element∣
∣∂(x0, α0, β, σ2)/∂(x0, α, β, σ2)

∣
∣ and, as expected, the transformed reference prior

coincides exactly with our priors.



Reference analysis for the p-dimensional linear calibration problem 131

4 The Gibbs sampler algorithm

Since there is not a closed form for the marginal posterior distributions, to
implement the Bayesian inference under the reference priors we will consider a
Monte Carlo Markov Chain (MCMC) method. The existence of the joint posterior
density, proved in Theorem 4, is a essential condition to use a MCMC method.
Here we will develop a Gibbs Sampler (GS) algortihm with some Metropolis
Hastings steps.

Note that, for all reference priors π1, π2 and π4, the joint posterior distribution
is proportional to

πr × (σ−2)(n+k)p/2 exp

{

−
[

n∑

i=1

(yi − α − βxi)
′(yi − α − βxi)+

+

k∑

j=1

(y0j − α − βx0)
′(y0j − α − βx0)





/

2σ2






, r = 1, 2 or 4 (4.1)

Then, we can easily see that

σ−2 | x0, α, β,y,X ∼ Gamma

(
(n + k)p + 4

2
,

l1
2

)

for r = 4, (4.2)

σ−2 | x0, α, β,y,X ∼ Gamma

(
(n + k + 2)p + 4

2
,

l1
2

)

for r = 2, (4.3)

σ−2 | x0, α, β,y,X ∼ Gamma

(
(n + k + 2)p + 5

2
,

l1
2

)

for r = 1, (4.4)

where l1 =
∑n

i=1(yi−α−βxi)
′(yi−α−βxi)+

∑k
j=1(y0j−α−βx0)

′(y0j−α−βx0).

The conditional distribution of α is proportional to exp
{
− l1

2σ2

}
and after

simplification it follows that

α | x0, β, σ2,y,X ∼ Np

(

l2 ,
σ2

n + k
Ip

)

for r = 1, 2, 4, (4.5)

where l2 = [
∑n

i=1(yi − βxi) +
∑k

j=1(y0j − βx0)]/(n + k).

The conditional distribution of β is also proportional to exp
{
− l1

2σ2

}
for r = 2, 4

and after simplification it follows that

β | x0, α, σ2,y,X ∼ Np

(

l3 ,
σ2

kx2
0 +

∑n
i=1 x2

i

Ip

)

for r = 2 and 4, (4.6)

where l3 = [
∑n

i=1 xi(yi −α) + x0

∑k
j=1(y0j −α)]/(kx2

0 +
∑n

i=1 x2
i ). When r = 1

the conditional distribution of β is not a known and is proportional to

(β′
β)1/2 × exp

{

− (β − l3)
′(β − l3)

2σ2/(kx2
0 +

∑n
i=1 x2

i )

}

.
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However we can easily generate from this conditional using a Metropolis-Hastings
step inside the GS algorithm.

When r = 2, 4 the conditional distribution of x0 is proportional to

u(x0)
−1/2 × exp

{

− (x0 − l4)
2

2σ2/kβ′β

}

, (4.7)

where l4 = β′∑k
j=1(y0j −α)/(kβ′β). Note that (4.7) is not a known distribution

of probability. Following Kubokawa and Robert (1994) we introduce a latent
variable t as follows

u(x0)
−1/2 ∝ Γ(1/2)u(x0)

−1/2 =

∫ ∞

0

t
1
2−1 exp {−u(x0) t} dt. (4.8)

We now can rewrite (4.7) as

p(x0 | α, β, σ2,y,X) =

∫ ∞

0

p(x0, t | β, σ2,y,X) dt, (4.9)

where

p(x0, t | α, β, σ2,y,X) ∝ t
1
2−1 exp {−u(x0) t} exp

{

− (x0 − l4)
2

2σ2/kβ′β

}

. (4.10)

From (4.10) we have that

t | x0, α, β, σ2,y,X ∼ Gamma

(
1

2
, u(x0)

)

, (4.11)

and

p(x0 | t, α, β, σ2,y,X) ∝ exp {−u(x0) t} exp

{

− (x0 − l4)
2

2σ2/kβ
′
β

}

. (4.12)

Therefore,

x0 | t, α, β, σ2,y,X ∼ N

(
2σ2ntx + l4β

′β

2σ2nt + β
′
β

,
σ2

2σ2nkt + kβ
′
β

)

. (4.13)

When r = 1 it is not possible to consider the latent variable t. However again we
can use a Metropolis-Hastings step inside the GS algorithm to generate from the

conditional distribution u(x0)
(p−1)/2 × exp

{

− (x0−l4)
2

2σ2/kβ′β

}

.

5 Application

We consider here a data set given by Johnson and Krishnamoorthy (1996) where a
controlled experiment was conducted at National Biological Service, Louisiana, to
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predict the amount of sodium chloride solution in dionized water based on electric
conductivity. Two machines were used to measure the electric conductivity: the
Conductivity Controller(CC) and the Fisher Conductivity Meter(FCM). The data
are presented in Table 2, where x is the amount of sodium chloride solution (in
ml), y1 is the CC measure and y2 is the FCM measure, the last two given in
micromoles/cm3.

Table 2 R0.95 posterior credibility intervals for x0

x0 y1 y2 Four-group Two-group Jeffreys

0.0 1.6 1.5 (−1.45, 0.11) (−1.41, 0.09) (−1.39, 0.07)
0.5 1.8 1.9 (−0.76, 0.77) (−0.75, 0.74) (−0.73, 0.75)
1.0 2.0 2.2 (−0.24, 1.30) (−0.19, 1.28) (−0.21, 1.28)
1.5 2.2 2.6 (0.44, 1.99) (0.46, 1.94) (0.47, 1.93)
2.0 2.4 2.9 (0.97, 2.49) (1.01, 2.46) (1.01, 2.46)
2.5 2.6 3.2 (1.50, 3.00) (1.52, 3.00) (1.54, 3.02)
3.0 2.8 3.6 (2.17, 3.70) (2.18, 3.67) (2.18, 3.66)
3.5 3.0 3.9 (2.67, 4.20) (2.71, 4.17) (2.70, 4.18)
4.0 3.2 4.2 (3.21, 4.73) (3.24, 4.69) (3.24, 4.70)
4.5 3.4 4.5 (3.73, 5.24) (3.76, 5.24) (3.77, 5.23)
5.0 3.6 4.8 (4.26, 5.78) (4.26, 5.75) (4.31, 5.72)
5.5 3.8 5.2 (4.91, 6.42) (4.94, 6.40) (4.96, 6.38)
6.0 3.9 5.5 (5.39, 6.88) (5.41, 6.86) (5.40, 6.85)
6.5 4.1 5.8 (5.91, 7.40) (5.92, 7.39) (5.94, 7.38)
7.0 4.3 6.1 (6.42, 7.92) (6.45, 7.91) (6.45, 7.90)
7.5 4.5 6.4 (6.96, 8.44) (6.97, 8.42) (6.99, 8.43)
8.0 4.6 6.7 (7.40, 8.91) (7.44, 8.88) (7.42, 8.87)
8.5 4.8 7.0 (7.92, 9.41) (7.96, 9.40) (7.97, 9.41)
9.0 5.0 7.3 (8.45, 9.95) (8.47, 9.94) (8.49, 9.91)
9.5 5.1 7.6 (8.91, 10.41) (8.91, 10.37) (8.93, 10.37)
10.0 5.3 7.9 (9.44, 10.93) (9.43, 10.89) (9.44, 10.90)
11.0 5.6 8.5 (10.41, 11.90) (10.41, 11.88) (10.43, 11.87)
12.0 6.0 9.1 (11.45, 12.94) (11.47, 12.94) (11.49, 12.92)
13.0 6.3 9.7 (12.42, 13.93) (12.44, 13.90) (12.44, 13.91)
14.0 6.6 11.0 (14.39, 15.82) (14.42, 15.81) (14.44, 15.79)
15.0 6.9 11.4 (15.07, 16.55) (15.11, 16.52) (15.10, 16.52)
16.0 7.2 11.6 (15.47, 17.00) (15.50, 16.99) (15.53, 16.99)
17.0 7.5 12.0 (16.17, 17.71) (16.17, 17.71) (16.18, 17.67)
18.0 7.7 13.0 (17.62, 19.21) (17.67, 19.18) (17.67, 19.15)
20.0 8.2 14.0 (19.19, 20.80) (19.22, 20.75) (19.22, 20.75)
24.0 9.1 15.0 (20.90, 21.76) (20.92, 21.73) (20.92, 21.74)

A cross-validation tecnique was considered to compare the different priors.
Each time a value of x from Table 2 was considered unkown and it was estimated
using the posterior distribution. For all the priors considered the posterior means
(and also medians) were very close to each other. On Table 2 columns 4, 5 and
6 present the equal-tail credibility interval with probability 0.95 for the four-
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group, two-group and Jeffreys priors, respectively. As we can see that the four-
group posterior analysis gave intervals slighty wider than the others two, although
smaller than the classical intervals given by Johnson and Krishnamoorthy (1996).
This indicate that the four-group prior is the least informative prior, in the sense
to be closer of the likelihood inference methods. These results agree with Ghosh
et al. (1995), for the case p = 1.

6 Final comments

Although the reference priors developed by Kubokawa and Robert (1994) are
known in the literature as the reference priors for the linear calibration problem
(see Yang and Berger, 1997), we discuss in this paper that in reality they are
reference priors associated with the related problem of the estimation of the ratio of
two normal means. These two problems are not equivalent because the likelihood
functions are not proportional. Also, we extend the results given by Ghosh et al.
(1995) proving that the reference posteriors are proper but the existence of the
posterior moments depends on the response vector dimension. In our example,
the four-group reference prior is less informative than the two-group and Jeffreys
prior. It is in accordance with Ghosh et al. results for p = 1.

Appendix

In this Appendix we present with details the proof of the Theorem 2.4. First we
prove the result for the posterior distribution associated with π2. Note that, the
posterior distribution π2(x0, α, β, σ2 | y,X) is proportional to

u(x0)
−1/2(σ−2)

(n+k+2)p+2
2 exp

{

−
[

n∑

i=1

(yi − α − βxi)
′(yi − α − βxi) +

+

k∑

j=1

(y0j − α − βx0)
′(y0j − α − βx0)





/

2σ2






. (A.1)

Integrating the above expression in relation to σ−2 and using integration results
associated with the Gamma family we have that

π2(x0, α, β | y,X) ∝ u(x0)
−1/2

{
n∑

i=1

(yi − α − βxi)
′(yi − α − βxi) +

+
k∑

j=1

(y0j − α − βx0)
′(y0j − α − βx0)







−
(n+k+2)p+4

2

. (A.2)
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After some algebra and using integration results associated with the multivariate
t-Student family of distributions to integrate in α we have that π2(x0, β | y,X)
is proportional to

u(x0)
−1/2

{

(n + k)

[
n∑

i=1

(yi − βxi)
′(yi − βxi) +

k∑

j=1

(y0j − βx0)
′(y0j − βx0)

]

−

(
n∑

i=1

(yi − βxi) +

k∑

j=1

(y0j − βx0)

)′( n∑

i=1

(yi − βxi) +

k∑

j=1

(y0j − βx0)

)






−
(n+k+1)p+4

2

.

(A.3)
Finally, after some algebra and using integration results associated with the multivariate
t-Student family of distributions to integrate in β we have that

π2(x0 | y,X) ∝ u(x0)
(n+k−1)p+3

2

(

1 +
1

v

(x0 − l7)
2

l8/(nkl6 − l′5l5)v

)−
v+1
2

, (A.4)

where
v = (n + k)p + 3,

l4 = (n + k)
n∑

i=1

yixi −
n∑

i=1

xi

(
n∑

i=1

yi +
k∑

j=1

y0j

)

.

l5 = n

k∑

j=1

y0j − k

n∑

i=1

yi,

l6 = (n + k)(

n∑

i=1

y
′

iyi +

k∑

j=1

y
′

0jy0j) −

(
n∑

i=1

yi +

k∑

j=1

y0j

)′ ( n∑

i=1

yi +

k∑

j=1

y0j

)

,

l7 =
nkl6x + l′4l5

nkl6 − l′5l5
,

l8 = nkx2l6 + (n + k)cxl6 − l
′

4l4 − (nkl6 − l
′

5l5)l
2
7.

Note that (A.4) is proportional to a function of x0 multiplied by the kernel of t-
Student distribution. Therefore,

∫ +∞

−∞

π2(x0 | y,X) dx0 ∝ Ex0

[

u(x0)
(n+k−1)p+3

2

]

, (A.5)

where

x0 ∼ tv

(

l7 ,
l8

(nkl6 − l′5l5)v

)

. (A.6)

Now, using the fact that a t-Student distribution only have moments of order strictly
lower than its degrees of freedom (Johnson, Kotz and Balakrishnan, 1995) we can show
that (A.5) is finite, observing that

[
(n + k)cx + nk(x0 − x)2

] (n+k−1)p+3
2 = a0+a1 x0+a2 x2

0+. . .+a(n+k−1)p+3 x
(n+k−1)p+3
0 ,
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can be rewritten as a polynomial of degree (n + k − 1)p + 3, and v = (n + k)p + 3.
Therefore,

∫ +∞

−∞

π2(x0 | y,X) dx0 ∝

(n+k−1)p+3
∑

i=0

aiE
[

xi
0

]

< ∞.

To show that the posterior distribution associated with the four-group prior π4

is proper, we just have to change n by n − 2 in all equations from the above
proof.

Now we are going to show that the posterior distribution associated with the Jeffreys
prior π1 is proper.

The posterior distribution π1(x0, α, β, σ2 | y,X) is proportional to

(β′

β)1/2u(x0)
p−1
2 (σ−2)

(n+k+2)p+3
2 exp

{

−

[
n∑

i=1

(yi − α − βxi)
′(yi − α − βxi)+

+

k∑

j=1

(y0j − α − βx0)
′(y0j − α − βx0)

]/

2σ2

}

. (A.7)

Using integration results associated with the family of gamma distributions we have
that

π1(x0, α, β | y,X) ∝ (β′

β)1/2u(x0)
p−1
2

{
n∑

i=1

(yi − α − βxi)
′(yi − α − βxi)+

+

k∑

j=1

(y0j − α − βx0)
′(y0j − α − βx0)

}−
(n+k+2)p+5

2

. (A.8)

Using integration results associated with the family of multivariate t-Student
distributions we have that

π1(x0, β | y,X) ∝ (β′

β)1/2u(x0)
p−1
2

{

(n + k)

[
n∑

i=1

(yi − βxi)
′(yi − βxi)+

+

k∑

j=1

(y0j − βx0)
′(y0j − βx0)

]

−

(
n∑

i=1

(yi − βxi) +

k∑

j=1

(y0j − βx0)

)′

×

(
n∑

i=1

(yi − βxi) +
k∑

j=1

(y0j − βx0)

)}−
(n+k+1)p+5

2

. (A.9)

Using again integration results associated with the family of multivariate t-Student
distributions we have that

π1(x0 | y,X) ∝ E
[

(β′

β)1/2
]

u(x0)
(n+k)p+4

2

(

1 +
1

v1

(x0 − l7)
2

l8/(nkl6 − l′5l5)v1

)−
v1+1

2

,

(A.10)
where v1 = (n + k)p + 4 and
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E
[

(β′

β)1/2
]

=

∫

β
c′ (β′

β)1/2

(

1 +
1

v2

(β − m)′(β −m)

s/v2

)
−

v2+p

2

dβ, (A.11)

c′ =
Γ( v2+p

2
)

Γ( v2
2

) v
p/2
2 πp/2 |sIp|1/2

m =
l4 + l5x0

a
,

s =
a l6 − (l4 + l5x0)

′(l4 + l5x0)

a2v2
, v2 = (n + k)p + 5.

Observe that (A.11) is a function of x0 and that

∫ +∞

−∞

π1(x0 | y,X) dx0 ∝ Ex0

[

E
[

(β′

β)1/2
]

u(x0)
(n+k)p+4

2

]

, (A.12)

where

x0 ∼ tv1

(

l7 ,
l8

v1(nkl6 − l′5l5)

)

. (A.13)

Since the square root is a concave function, it follows from Jensen inequality that

E
[

(β′

β)1/2
]

≤ E
[
(β′

β)
]1/2

. (A.14)

Using the result (Fang and Zhang, 1990, pg 42)

E
[
x
′

Ax
]

= tr(AΣ) + µ
′

Aµ, (A.15)

where the distribution of vector x has a vector of means µ and covariance matrix Σ, we

have for A = Ip that

E
[
β

′

β
]

= tr(sIp) + m
′

m =

=
{(n + k)cx + nk(x0 − x)2}l6 − m3(x0 + m1)

2 − m2

{(n + k)cx + nk(x0 − x)2}2v
p+

+
m3(x0 + m1)

2 + m2

{(n + k)cx + nk(x0 − x)2}2
(A.16)

where

m1 =
l′4l5

l′5l5
, m2 = l

′

4l4 −
(l′4l5)

2

l′5l5
, m3 = l

′

5l5,

are not functions of x0. In this way, we have that E [β′β] corresponds to a polinomial
of degree -2, when it is seen as a function of x0. Then, we have that

E
[

(β′
β)1/2

]

≤ E
[
β

′
β
]1/2

︸ ︷︷ ︸

polinomial of degree -1

.
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Therefore,

E
[

(β′

β)
1
2

] [
(n + k)cx + nk(x0 − x)2

] (n+k)p+4
2

≤ E
[
(β′

β)
] 1

2
[
(n + k)cx + nk(x0 − x)2

] (n+k)p+4
2

︸ ︷︷ ︸

polinomial of degree (n + k)p + 3

.

Recalling that the t-Student distribution have finite moments of order strictly lower
than its degrees of freedom, we have that

Ex0

[

E
[
(β′

β)
]1/2 [

(n + k)cx + nk(x0 − x)2
] (n+k)p+4

2

]

< ∞

since the above equation can be rewritten as a linear combination of moments of order
lower or equal to (n+k)p+3 from a t-Student distribution with v1 = (n+k)p+4 degrees
of freedom. As a consequence from the Jensen inequality

∫ +∞

−∞

π1(x0 | y,X) dx0 < ∞.
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