沉积工艺和离子后处理对 HfO₂ 薄膜 残余应力的影响

肖祁陵^{1,2}, 王聪娟^{1,2}, 邵淑英¹, 邵建达¹, 范正修¹

(1中国科学院上海光学精密机械研究所,上海 201800)(2中国科学院研究生院,北京 100049)

摘 要:采用电子束直接蒸发氧化铪和反应蒸发金属铪两种沉积工艺制备了单层 HfO₂薄膜,并用氧 等离子体对薄膜进行了离子后处理.利用 ZYGO Mark III-GPI 数字波面干涉仪对 HfO₂薄膜的残余应 力进行了研究,讨论了不同沉积工艺和离子后处理对残余应力的影响.实验结果表明:两种沉积工 艺下沉积的薄膜皆为张应力,反应蒸发金属铪制备的薄膜应力较小;经过离子后处理,直接蒸发薄 膜的应力明显减小,而反应蒸发薄膜的应力稍微增大.同时利用 X 射线衍射仪表征了不同 HfO₂薄 膜的微观结构,探讨了薄膜微观结构与其应力的对应关系,并研究了样品的光学性能.

关键词:残余应力;HfO₂薄膜;电子束蒸发;离子后处理 中图分类号 O484.4 **文**献标

0 引言

HfO₂薄膜具有较高的硬度,较好的机械稳定性 与热稳定性,优良的介电性能和高的激光损伤阈值而 被广泛地应用于微电子薄膜、光学薄膜等领域[1-3]. 但几乎所有薄膜的内部都存在着内应力,这种内应力 的存在会导致薄膜的破裂、脱落或者使基底发生形 变,直接影响薄膜元器件的光学、电学、磁学、机械、 使用寿命等性能^[3-5].因此,了解和控制薄膜的应力 影响就变得极其重要. 关于HfO2 薄膜的制备方法, 已报道^[6-8]的有电子束蒸发,磁控溅射,化学气相沉 积,离子束辅助沉积等工艺. 电子束蒸发是一种简便 易行的制备方法^[9-10],但由于低的沉积原子动能而使 薄膜存在疏散的堆积结构、高的薄膜内应力及容易产 生节瘤缺陷,低的激光损伤阈值等问题.离子束辅助 沉积则不仅会改善这种状况,而且还使薄膜性能的可 控性增强. Roland^[11]等在研究深紫外薄膜的机械性能 时比较了电子束蒸发、离子束溅射、等离子辅助沉 积制备的HfO2 薄膜在镀膜后的温度变化对薄膜应力 的影响,但对工艺因素与HfO2薄膜残余应力的关系 没有进一步研究. 王聪娟等[12-13]研究了电子束蒸发、 无辅助电子束反应蒸发和离子束辅助沉积的HfO2薄 膜的光学性能、结构特性以及激光损伤特性. 结果表 明,反应沉积制备的薄膜具有好的膜厚均匀性,低的 吸收和较高的激光损伤阈值. 本文在其研究的现有

文献标识码: A

基础上,对比分析了电子束直接蒸发(EBE)和反应 蒸发(RE)工艺制备的单层HfO₂薄膜应力的变化,研 究了离子束后处理对这两种工艺制备的薄膜应力的 影响.同时用X射线衍射仪表征了不同HfO₂薄膜的 微观结构,探讨了薄膜微观结构与其应力的对应关 系,并表征了样品的光学性能.

1 实验方法

1.1 样品制备

在 BK7 玻璃基底上(ϕ 30 mm×3 mm)用电子束 直接蒸发氧化铪和反应金属铪工艺沉积了 HfO₂薄膜. 烘烤温度为 300 °C,烘烤时间为 2 h. 本底真空为 3.0×10⁻³ Pa,蒸发真空 2.5×10⁻² Pa,充入高纯氧气作 工作气体.采用光电极值法对薄膜厚度进行监控,控 制波长为 550 nm,膜厚在 500~530 nm 范围内;两 种工艺的沉积速率分别为 0.5 nm/s,0.1 nm/s. 将两种 工艺制备的样品分成 AB(电子束直接蒸发氧化铪制 备)和 CD(反应金属铪制备)四组,其中 A、C 组 样品不进行后处理,B、D 组样品施加氧等离子体后 处理.所用离子源为 End – Hall 型,阳极电压为 120 V,阳极电流为 3 A,工作气体采用纯度为 99.99%的 氧气. 流量为 1.34×10⁻⁴ L/s.离子后处理中真空度为 4.3×10⁻³ Pa,处理时间为 15 min.

1.2 样品测试

当薄膜沉积在基片上时,由于应力的作用基片 将发生弯曲,利用 ZYGO MarkⅢ-GPI 数字波面干涉 仪可以测量出基片镀膜前后的曲率半径,通过镀膜前

^{*}国家自然科学基金(10704078)资助 Tel: 021-69918492 Email: xql324@126.com 收稿日期: 2008-11-18

后基片曲率半径的变化, 残余应力可由 Stoney^[14] 公 式给出

$$\sigma = E_s t_s^2 / [6(1 - \gamma_s)t_f](1/R_2 - 1/R_1)$$
(1)

式中 t_s和 t_f分别为基底和薄膜厚度, E_s(81GPa) 和 y_s(0.208)分别基底的弹性模量和泊松比, R₁、R₂ 分别镀膜前后基片的曲率半径. 当应力值为负时,薄 膜受到压应力; 应力值为正时,薄膜受到张应力.

采用 Dmax-2500 型 X 射线衍射仪(XRD),在 Cu Kα 辐射条件下,测量分析了不同工艺下制备的 HfO₂ 薄膜的微结构.

利用 Perkin Elmer 公司生产的 Lambda 900 分光 光度计(仪器透射率测量精度±0.08%)测量样品的 透射光谱,波长分辨率为 1 nm,测量范围为 300~ 1200 nm. 薄膜厚度和折射率是用包络法^[15]拟合透 射光谱得到.

2 实验结果与分析

一般来说,固态薄膜都处于某种应力状态中,薄 膜内应力包括热应力(σ_{th})和本征应力(σ_{in})两部分 ^[16]. 薄膜的热应力来源于薄膜和基片热膨胀系数的 不同以及淀积温度与测量温度的不同;而薄膜的本 征应力是在薄膜生长过程中所产生的,它由薄膜的微 观结构和缺陷等因素所决定,其数值随缺陷密度的提 高而增大. 故有

$$\sigma = \sigma_{in} + \sigma_{ih} \tag{2}$$

热应力可由以下公式计算出

$$\sigma_{\rm th} = (E_f / (1 - v_f))(\alpha_f - \alpha_{\rm s})(T_1 - T_0)$$
(3)

)

式中 $E_f / (1-v_f)$ (260GPa)为薄膜的双轴模量^[17], a_s 、 a_f 分别为基底和薄膜的热膨胀系数. T_1 、 T_0 分别 为沉积时的温度和测量时的环境温度.

Fig.1 Residual stress of the HfO₂ thin films

图 1 为两种不同沉积方式下样品经离子束后处 理前后应力的变化曲线,可看出,两种沉积工艺下制 备的 HfO₂薄膜样品均呈现张应力,反应蒸发金属铪 工艺制备的薄膜应力较小;经离子束后处理,样品 的最终残余应力仍为张应力,且直接蒸发的薄膜其 应力明显减小,而反应蒸发的薄膜应力稍增大.

样品残余应力测量是在室温下进行(20°C),由 于 HfO₂薄膜的热膨胀系数 α_f (3.6×10⁻⁶/K)比 BK7 基底的热膨胀系数 α_s (7.1×10⁻⁶/K)小,测量温度 (T_0)比沉积温度(T_1)低,所以 HfO₂薄膜热应力 为压应力;而且所有样品都在相同温度下沉积,故 薄膜的热应力相同,由式(3)可计算出 HfO₂薄膜 热应力为-255 MPa. 对比样品总的残余应力,发现热 应力对薄膜残余应力的影响未占主导地位,决定残 余应力的是其它应力过程,包括由薄膜本身结构决 定的本征应力和薄膜沉积后的老化及吸附等因素引 起的附加应力,并且总体表现为张应力.本征应力与 样品的结构密切相关,为了更深入地研究,用 X 射 线衍射仪表征了 HfO₂薄膜的微结构变化.

图 2 为四组 HfO₂薄膜的 X 射线衍射谱. 由图 2 可以看出电子束直接蒸发氧化铪制备的 HfO₂薄膜及 经离子束后处理后,仅出现非晶玻包,为非晶态结构.反应蒸发金属铪制备的 HfO₂薄膜为明显的结晶,在 34.84°, 38.85°和 56.6°出现的较强衍射峰分别对 应单斜结构 (020),(021)和(130)衍射晶面;经离子束 后处理后,样品 D 的结晶性能无明显变化.

应地减小. XRD 测量的为平行于膜面方向晶面的晶面间距,晶面间距的减小反映了薄膜中存在的残余应力为张应力,且经离子后处理后,张应力增大.

结合图 1 可知电子束蒸发氧化铪制备的薄膜为 非晶状态,内应力较大,而反应蒸发金属铪制备的 薄膜,结晶后内应力变小.这说明直接蒸发沉积的条 件下沉积原子动能较低,无法获得较高的表面迁移 率,在其平均停留时间内无法充分横向扩散便以非 晶的形式随机黏附基底,并且较高的沉积速率导致 薄膜缺陷增多而使内应力增大.但对反应蒸发,选取 的沉积速率较低,一方面使氧原子和铪原子的充分 反应,另一方面使吸附原子在其平均停留时间内能 充分进行表面迁移,按照其固有结构有序排列,呈 现出结晶,并且周期有序结构造成其应变减小,从 而内应力有所降低. 样品经氧离子后处理, 活性氧离 子一方面与薄膜结合,完善化学计量比,另一方面 对于薄膜沉积过程产生的缺陷也有一定程度的去除 和分解作用,同时一定能量的轰击还可使薄膜原子 优化重组,获得结构更为致密的薄膜.因此,经离子 后处理后,电子束蒸发工艺制备的薄膜应力减小.而 对于反应蒸发制备的样品,由于荷能活性氧离子轰 击膜层中有序排列原子时,离子注入效应增加了许 多空位、间隙原子、位错、位错团、空位团、间隙 原子团等缺陷, 故产生了较大的晶格畸变, 使得应 力稍有增大.

图4为HfO2薄膜样品经离子束后处理前后的透

图4 样品的透射光谱曲线 Fig.4 Transmission spectra of the samples

射率光谱曲线. 由图看出,作为高价氧化物的氧化 铪,在电子束热沉积和反应沉积过程中,均存在较 严重的失氧,在波长低于500 nm范围内,样品B的光 谱曲线稍高于样品A,样品D的光谱曲线明显高于样 品C. 这是由于离子束后处理后,使氧离子与薄膜发 生氧化作用,弥补了膜层的部分失氧.

图5显示了HfO₂ 薄膜的色散关系曲线,从中可 以看出经过离子束后处理的薄膜折射率有明显提高. 一般同种材料堆积密度大折射率也相应的高,所以 薄膜折射率的提高同时反映堆积密度有一定升高. 离子束后处理技术可以有效改善薄膜光谱特性,提 高膜层堆积密度,验证了之前的结论.

Fig.5 Refractive index dispersion of samples

2 结论

通过以上实验研究得出:采用电子束蒸发(EBE) 和反应蒸发(RE)制备的HfO₂薄膜皆为张应力,通 过对薄膜的应力性质及应力形成机理的探讨,本征 应力是最终应力状态的决定因素.施加离子束后处 理,薄膜应力状态没有改变,但直接蒸发的薄膜其 应力值大小明显减小,反应蒸发的薄膜应力值稍微 增大;薄膜结晶没有明显的影响,XRD分析表明EBE 方法制备的薄膜仍为非晶结构,RE方法制备的薄膜 呈现明显的结晶;薄膜的折射率提高,同时堆积密 度升高.

参考文献

 CALLEGARI A, CARTIER E, GRIBELYUK M, *et al.* Physical and electrical characterization of hafnium oxide and hafnium silicate sputtered films [J]. *J Appl Phys*, 2001, **90**: 6466-6475.

[2] YAN Zhi-jun, WANG Yin-yue, XU Run, et al. Structural characteristics of HfO₂ films grown by e-beam evaporation[J]. Acta Physica Sinica, 2004, 53: 2271-2274.
阎志军,王印月,徐闰,等. 电子束蒸发制备HfO₂薄膜的结构特性[J].物理学报, 2004, 53: 2271-2274.

[3] SHAO S Y, FAN Z X, SHAO J D, et al. Evolutions of residual

stress and microstructure in ZrO₂ thin films deposited at different temperatures and rates[J]. *Thin Solid Films*, 2003, **445**: 59-62.

- [4] FAN R Y, FAN Z X. Stress analysis of thin films and some testing results[J]. Optical Instruments, 2001, 23: 84-91.
 范瑞英,范正修. 薄膜应力分析及一些测量结果[J]. 光学仪器 2001, 23: 84-91.
- [5] LAO J J, HU X P,YU X J, et al. Phase transformation of AlN in AlN/VN nanomultilayers and its effect on the mechanical properties of films[J]. Acta Physica Sinica, 2003, 52: 2259-2263. 劳技军, 胡晓萍, 虞晓江, 等. AlN在AlN/VN纳米多层膜中的相 转变及其对薄膜力学性能的影响[J]. 物理学报, 2003, 52: 2259-2263.
- [6] SHEN Y M, HE H B, SHAO S Y, et al. Influences of deposition temperature on residual stress of HfO₂ films prepared by electron beam evaporation [J]. Chin J Lasers, 2006, 33(6): 827-831.
 申雁鸣,贺洪波,邵淑英,等. 沉积温度对电子束蒸发 HfO₂ 薄 膜残余应力的影响[J]. 中国激光, 2006, 33(6): 827-831.
- [7] SHEN Jun, LUO Ai-yun, WU Guang-ming, et al. Laser-induced damage threshold of HfO₂ thin films with chemical method[J]. High Power Laser and Particle Beams, 2007, 19(3): 403-407.
 沈军,罗爱云,吴广明,等. 化学法制备的HfO₂薄膜的激光损伤 阈值研究[J].强激光与粒子束, 2007, 19(3): 403-407.
- [8] ANLDRE B, POUPINET L, RAVEL G. Evaporation and ion assisted deposition of HfO₂: coatings-some key points for high power laser applications[J]. J Vac Sci Technol A, 2000, 18(5): 2372-2377.
- [9] WU Shi-gang, ZHANG Hong-ying, XIA Zhi-lin, et al. Structural and optical properties of Y₂O₃ stabilized ZrO₂thin films[J]. Acta Photonica Sinica, 2007, 36(6): 1092-1096.
 吴师岗,张红鹰,夏志林,等.Y₂O₃稳定ZrO₂薄膜的结构和光学 特性[J]. 光子学报, 2007, 36(6): 1092-1096.
- [10] YUAN L, ZHAO Y A, HE H B, et al. Femtosecond single pulse laser induced damage of single layer and high-reflective coating[J].

Acta Photonica Sinica, 2008, 37(3): 417-420.

袁磊,赵元安,贺洪波,等.单脉冲飞秒脉冲激光对单层和高反 光学薄膜的损伤[J].光子学报,2008,**37**(3):417-420.

- [11] THIELSCH R, GATTO A. Kaiser norbert mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region[J]. *App Opt*, 2002, **41**(16): 3211-3216.
- [12] WANG Cong-juan, JIN Yun-xia, SHAO Jian-da, et al. Characteristics of hafnium oxide deposited by reactive ion-assisted deposition[J]. *High Power Laser and Particle Beams*, 2007, 19(12): 2087-2090.
 王聪娟, 晋云霞, 邵建达, 等. 离子束辅助反应制备的氧化铪薄 膜特性[J]. 强激光与粒子束, 2007, 19(12): 2087-2090.
- [13] TAMULEVICIUS S. Stress and strain in the vacuum deposited thin films[J]. Vacuum, 1998, 51(2): 127-138.
- [14] SHANG Guang-qiang, WANG Cong-juan, YUAN Lei, et al. Influence of two post-treatment methods on properties of HfO₂ thin films[J]. Acta Photonica Sinica, 2007, 36(9): 1683-1686.
 尚光强, 王聪娟, 袁磊,等.两种后处理方法对 HfO₂ 薄膜性能 的影响[J]. 光子学报, 2007, 36(9): 1683-1686.
- [15] LI Heng-de, XIAO Ji-mei. Surface and interface of materials[M].
 Beijing: Tsinghua University Press, 1990: 146-149.
 李恒德,肖纪美. 材料表面与界面[M]. 北京:清华大学出版社, 1990: 146-149.
- [16] YUAN Jing-mei, TANG Zhao-sheng, QI Hong-ji, et al. Analysis of optical property for several ultraviolet thin film materials[J]. Acta Optica Sinica, 2003, 23(8): 984-988.
 袁景梅, 汤兆胜, 齐红基, 等. 几种紫外薄膜材料的光学常数和 性能分析[J]. 光学学报, 2003, 23(8): 984-988.
- [17] ANDREI P. Mirgorodsky lattice-dynamic treatment of vibrational and elastic properties of cotunnite-Type ZrO₂ and HfO₂: comparison with ambient pressure polymorphs[J]. *Journal of the American Ceramic Society*, 1999, **82**(11): 3121-3124.

Influences of Deposition Methods and Ion Post-treatment Technique on Residual Stress of HfO₂ Films

XIAO Qi-ling^{1,2}, WANG Cong-juan¹, SHAO Shu-ying¹, SHAO Jian-da¹, FAN Zheng-xiu¹

(1 Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China)

(2 Graduate University of Chinese Academy of Sciences, Beijing 100049, China)

Received date: 2008-11-18

Abstract: HfO_2 films were deposited on Bk7 glass substrates by electron beam evaporation(EBE) of hafnium oxide and reactive evaporation(RE) of metal hafnium. Some samples were treated with low energy O⁺² after deposition. The residual stress was measured by viewing the substrate deflection using ZYGO interferometer. The results showed that the residual stresses of HfO_2 films were tensile and the HfO_2 films deposited by RE method possessed smaller tensile stress. The residual stresses of HfO_2 films deposited by EBE decreased after ion post-treatment, however, the value deposited by RE increased a little comparing with the untreated samples. At the same time, the microstructure of the HfO_2 films was inspected with X-ray diffraction (XRD). The relationship between residual stress and the microstructure was discussed. Also the optical properties were studied.

Key words: Residual stress; HfO2 thin film; Physical vapor deposition; Ion post-treatment

XIAO Qi-ling was born in 1980. Now she is a Ph. D. degree candidate at Optical Coating Technology R & D Center, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences. Her research focuses on the residual stress of optical thin film.