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Abstract: Ordinary differential equations (ODE’s) are widespread models
in physics, chemistry and biology. In particular, this mathematical formal-
ism is used for describing the evolution of complex systems and it might
consist of high-dimensional sets of coupled nonlinear differential equations.
In this setting, we propose a general method for estimating the parame-
ters indexing ODE’s from times series. Our method is able to alleviate the
computational difficulties encountered by the classical parametric methods.
These difficulties are due to the implicit definition of the model. We propose
the use of a nonparametric estimator of regression functions as a first-step
in the construction of an M-estimator, and we show the consistency of the
derived estimator under general conditions. In the case of spline estimators,
we prove asymptotic normality, and that the rate of convergence is the usual
√

n-rate for parametric estimators. Some perspectives of refinements of this
new family of parametric estimators are given.
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1. Introduction

Ordinary differential equations are used for the modelling of dynamic processes
in physics, engineering, chemistry, biology, and so forth. In particular, such a
formalism is used for the description of ecosystems (for example competing
species in biology), or of cell regulatory systems such as signaling pathways
and gene regulatory networks [12]. Usually, the model for the state variables
x = (x1, . . . , xd)

⊤ consists of an initial value problem

{

ẋ(t) = F (t, x(t), θ), ∀t ∈ [0, 1],
x(0) = x0,

(1.1)
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where F is a time-dependent vector field from Rd to Rd, d ∈ N, and θ ∈ Θ,
Θ being a subset of a Euclidean space. When data are available such as a
time series, we are interested in the problem of estimation of the coefficients
parametrizing the ODE. In principle, this may be done by some classical para-
metric estimators, usually the least squares estimator [28] or the Maximum
Likelihood estimator (MLE). Different estimators have been derived in order
to take into account some particular features of the differential equation such
as special boundary values (there exists a function g linking the values at the
boundary i.e. g(x(0), x(1)) = 0 instead of the simple initial value problem), or
random initial values or random parameters [9]. Otherwise, there may be some
variations on the observational process such as noisy observation times that
necessitate the introduction of appropriate minimization criteria [26].

Despite their satisfactory theoretical properties, the efficiency of these esti-
mators may be dramatically degraded in practice by computational problems
that arise from the implicit and nonlinear definition of the model. Indeed, these
estimators give rise to nonlinear optimization problems that necessitate the ap-
proximation of the solution of the ODE and the exploration of the (usually
high-dimensional) parameter space. Hence, we have to face possibly numerous
local optima and a huge computation time. Instead of considering the estimation
of θ straightforwardly as a parametric problem, it may be useful to look at it as
the estimation of a univariate regression function t 7→ x(t) that belongs to the
(finite dimensional) family of functions satisfying (1.1). Alternative approaches
to MLE has been used in applications, such as two-step methods: in a first step,
a proxy for the solution of the ODE is obtained by nonparametric methods, and
in a second step, estimates of the ODE parameter are derived by minimizing a
given distance. Varah [40] initiated this approach by using and differentiating
a smooth approximation of the solution based on least-squares splines as [38],
or Madar et al. [29] with cubic splines (and a well-chosen sequence of knots).
In the same spirit, approximation of the solutions of the ODE are provided by
smoothing methods such as local polynomial regression [22, 30, 11], or neural
networks [42], within the same two-step estimation scheme. Slight modifications
of these approaches are the adaptation of collocation methods to statistical
estimation where the solution is approximated by Lagrange polynomials [20].
This two-step approach has also been considered in the functional data analy-
sis (FDA) framework proposed Ramsay and Silverman [34], which is based on
the transformation of data into functions with smoothing cubic splines. Ram-
say proposed Principal differential Analysis (PDA) [32] for the estimation of
linear ODE’s. PDA has been recently extended to nonlinear ODE’s and ame-
liorated by repeating the two steps, introducing iterated PDA (iPDA) [31, 41].
Recently, the iPDA approach has then been extended to a so-called generalized
smoothing approach by Ramsay et al., [33]. In this algorithm, the smoothing
and the estimation of the parameter ODE are considered jointly, and Ramsay
et al. proposed an estimation algorithm inspired from profile likelihood meth-
ods. The paper provides a versatile estimator, as a lucid account of the current
status and open questions concerning the statistical estimation of differential
equations. We refer to [33] and the subsequent discussions for a broad view of
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the difficulties for parameter estimation of ODE’s. The use of nonparametric es-
timators is motivated by the computational simplicity of the estimation method,
but an additional motivation is that the functional point of view enables one to
use prior knowledge on the solutions of the ODE such as positivity or bound-
edness whereas it is difficult to exploit the strictly parametric form. Indeed, it
implies that we have a thorough knowledge of the influence of the parameters
on the qualitative behavior of the solutions of (1.1), which is rarely the case. In
this paper, we study the consistency and asymptotic properties of this general
two-step estimator based on nonparametric estimators of the trajectories of the
ODE. We focus in particular on the use of spline regression in the first step, as
it is one of the estimator used previously in the construction of the proxy, but
we discuss also the generality and potential ameliorations of this approach.

In the next section, we introduce the statistical model and we define the
so-called two-step estimator of θ. We show that under broad conditions this
estimator is consistent, and we discuss some straightforward extensions of this
estimator to different cases. In section 3, we derive an asymptotic representa-
tion of the two-step estimator, and we focus on the case of the least squares
splines. We discuss also the generality of this result with respect to other types
of nonparametric estimators. In the last section, we give some simulation results
obtained with the classical Lotka-Volterra’s population model coming from bi-
ology.

2. Two-step estimator

2.1. Statistical model

We want to estimate the parameter θ of the ordinary differential equation (1.1)
from noisy observations at n points in [0, 1], 0 ≤ t1 < · · · < tn ≤ 1,

yi = x(ti) + ǫi, i = 1, . . . , n, (2.1)

where the ǫi’s are i.i.d centered random variables. The ODE is indexed by a
parameter θ ∈ Θ ⊂ Rp and initial value x0; the true parameter value is θ∗ and
the corresponding solution of (1.1) is x∗.

The vector field defining the ODE is a function F : [0, 1] × X × Θ → Rd

(X ⊂ Rd) of class Cm w.r.t x for every θ and with m ≥ 1. It is a Lipschitz
function so that we have existence and uniqueness of a solution xθ,x0

to (1.1)
on a neighborhood of 0 for each θ and x0; and we assume that every corre-
sponding solution can be defined on [0, 1]. Hence, the solutions xθ,x0

belong to
Cm+1([0, 1], Rd). Moreover, we suppose also that F is a smooth function in θ so
that each solution xθ,x0

depends smoothly1 on the parameters θ and x0. Then,
we suppose that F is of class C1 in θ for every x. Let fΣ be the density of the

1if F depends smoothly on x and θ then the solution depends on the parameter by the
same order of smoothness, see Anosov & Arnold, Dynamical systems, p.17.
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noise ǫ, then the log-likelihood in the i.i.d case is

l(θ, x0, Σ) =

n
∑

i=1

log fΣ(yi − xθ,x0
(ti)) (2.2)

and the model that we want to identify is parametrized by (θ, x0, Σ) ∈ Θ×X×S+

for instance when the noise is centered Gaussian with covariance matrix Σ (S+

is the set of symmetric positive matrices). An alternative parametrization is
(θ, xθ,x0

, Σ) ∈ Θ × F × S+, with F the set of functions that solve (1.1) for
some θ and x0, thanks to the injective mapping between initial conditions and
a solution.

In most applications, we are not really interested in the initial conditions
but rather in the parameter θ, so that x0 or xθ,x0

can be viewed as a nuisance
parameter like the covariance matrix Σ of the noise. We want to define esti-
mators of the “true” parameters (x∗, θ∗) (x∗ = xθ∗,x∗

0
) that will be denoted

by (x̂n, θ̂n). The estimation problem appears as a standard parametric prob-
lem that can be dealt with by the classical theory in order to provide good
estimators (with good properties, e.g.

√
n-consistency) such as the Maximum

Likelihood Estimator (MLE). Indeed, from the smoothness properties of F , the
log-likelihood l(θ, x0) is at least C1 w.r.t (θ, x0) so that we can define the score

s(θ, x0) = ( ∂l
∂θ

⊤ ∂l
∂x0

⊤
)⊤. If s(θ, x0) is square integrable under the true prob-

ability P(x∗,θ∗), we can claim under weak conditions (e.g. theorem 5.39 [39])
that the MLE is an asymptotically efficient estimator. The difficulty of this ap-
proach is then essentially practical because of the implicit dependence of x on
the parameter (θ, x0), which prohibits proper maximization of l(θ, x0). Indeed,
derivative-based methods like Newton-Raphson are not easy to handle then and
evaluation of the likelihood necessitates the integration of the ODE, which be-
comes a burden when we have to explore a huge parameter space. Moreover,
the ODE’s proposed for modelling may be expected to give a particular quali-
tative behavior which can be easily interpreted in terms of systems theory, e.g.
convergence to an equilibrium state or oscillations. Typically, these qualitative
properties of ODE are hard to control and involve bifurcation analysis [25] and
may necessitate a mathematical knowledge which is not always accessible for
huge systems. Moreover, boundedness of the solution x∗ (a ≤ x∗(t) ≤ b, with
a, b ∈ Rd) may be difficult to use during the estimation via the classical device of
a constraint optimization. Hence, these remarks motivate us to consider the es-
timation of an ODE as a functional estimation and use flexible methods coming
from nonparametric regression from which we could derive a likely parameter
for the ODE.

2.2. Principle

We use consistent nonparametric estimators of the solution x∗ and its deriva-
tive ẋ∗ in order to derive a fitting criterion for the ODE and subsequently
the M-estimator of θ∗ corresponding to the criterion. We denote by ‖f‖q,w =
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(∫ 1

0
|f(t)|qw(t)dt

)1/q
, 0 < q ≤ ∞, the Lq(w) norm on the space of integrable

functions on [0, 1] w.r.t. the measure w (and Lq is the classical norm with re-
spect to Lebesgue measure). We suppose that w is a continuous and positive
function on [0, 1]. The principle of two-step estimators is motivated by the fact
that it is rather easy to construct consistent estimators of x∗ and of its deriva-
tive ẋ∗. The estimation of the regression function and its derivatives is a largely
addressed subject and several types of estimators can be used such as smooth-
ing splines (more generally smoothing in Reproducing Kernel Hilbert Spaces
[43, 3]), kernel and local polynomial regression [13], series estimators [10]. So,
one can construct a consistent estimator x̂n of x∗ that can achieve the optimal
rate of convergence with an appropriate choice of regularization parameters.
One can derive also from x̂n an estimator of the derivative ẋ∗ by differenti-
ating directly the smoothed curved x̂n so that we have ˆ̇xn = ˙̂xn. This simple
device provides consistent estimator of the derivative for Nadaraya-Watson es-
timators [17], spline regression [45], smoothing splines [43], but other consistent
estimators of the derivative can be obtained from local polynomial regression or
wavelet estimator (e.g [6]). In this section, we consider then simply that we have
two general nonparametric estimators x̂n and ˆ̇xn, such that ‖x̂n−x∗‖q = oP (1)

and ‖ ˆ̇xn − ẋ∗‖q = oP (1). Hence, for the estimation of the parameter θ, we may

choose as criterion to minimize the function Rq
n,w(θ) = ‖ ˙̂xn − F (t, x̂n, θ)‖q,w

from which we derive the two-step estimator

θ̂n = arg min
θ

Rq
n,w(θ). (2.3)

Thanks to the previous convergence results and under additional suitable con-
ditions to be specified below, we can show that

Rq
n,w(θ) → Rq

w(θ) = ‖ẋ∗ − F (·, x∗, θ)‖q,w

in probability, and that this discrepancy measure enables us to construct a
consistent estimator θ̂n.

We are left with three choices of practical and theoretical importance: the
choice of q, the choice of w and the choice of the nonparametric estimators.
In this paper, we show the consistency in a general situation, but we provide
a detailed analysis of the asymptotics of θ̂n when q = 2, x̂n is a regression
spline (least-squares splines, with a number of knots depending on the number
of observations n), and when ˆ̇xn = ˙̂xn. In that case, the two-step estimation
procedure is then computationally attractive as we have to deal with two (rela-
tively simple) least-squares optimization problems (linear regression in the first
step and nonlinear regression in the second step). As a consequence, this is a
common approach in applications and we will put emphasis on the importance
of the weight function w in asymptotics. Despite the limitation to regression
splines, it is likely that our result can be extended to classical nonparametric
estimators, as the ones listed above.
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2.3. Consistency

We show that the minimization of Rq
n,w(θ) gives a consistent estimator for θ.

We introduce the asymptotic criterion

Rq
w(θ) =

(
∫ 1

0

(F (·, x∗, θ∗) − F (·, x∗, θ))
q
w dt

)1/q

derived from Rq
n,w and we make the additional assumption:

∀ǫ > 0, inf
‖θ−θ∗‖≥ǫ

Rq
w(θ) > Rq

w(θ∗), (2.4)

which may be viewed as an identifiability criterion for the model.

Proposition 2.1. We suppose there exists a compact set K ⊂ X such that
∀ θ ∈ Θ, ∀x0 ∈ X , ∀t ∈ [0, 1], xθ,x0

(t) is in K, and w is a positive continuous
function on [0, 1]. Moreover we suppose that uniformly in (t, θ) ∈ [0, 1] × Θ,
F (t, ·, θ) is K− Lipschitz on K. If x̂n and ˆ̇xn are consistent, and x̂n(t) ∈ K
almost surely, then we have

sup
θ∈Θ

|Rq
n,w(θ) − Rq

w(θ)| = oP (1).

Moreover, if the identifiability condition (2.4) is fulfilled the two-step estimator
is consistent, i.e.

θ̂n − θ∗ = oP (1).

Proof. In order to show the convergence of |Rq
n,w(θ) − Rq

w(θ)| = |‖ ˆ̇xn −
F (·, x̂n, θ)‖w,q −‖F (·, x∗, θ)−F (·, x∗, θ∗)‖q|, we make the following decomposi-
tion

|Rq
n,w(θ) − Rq

w(θ)| ≤ ‖
(

ˆ̇xn − F (·, x̂n, θ)
)

+ (F (·, x∗, θ) − F (·, x∗, θ∗)) ‖q,w

≤ ‖ ˆ̇xn − F (·, x∗, θ∗)‖q,w + ‖F (·, x̂n, θ) − F (·, x∗, θ)‖q,w.

(2.5)

Since all the solutions xθ,x0
(t) and x̂n(t) stay in K ⊂ X , and x 7→ F (t, x, θ) are

K− Lipschitz uniformly in (t, θ), we obtain for all (t, θ) ∈ [0, 1]× Θ

‖F (·, x̂n, θ)−F (·, x∗, θ)‖q,w ≤ KM

(
∫ 1

0

|x̂n(t) − x∗(t)|qdt

)1/q

= KM‖x̂n−x∗‖q.

(2.6)
where M is a upper bound for w. Together, (2.5) and (2.6) imply

sup
θ∈Θ

|Rq
n,w(θ) − Rq

w(θ)| ≤ ‖ ˆ̇xn − F (·, x∗, θ∗)‖w,q

+ sup
θ∈Θ

‖F (·, x̂n, θ) − F (·, x∗, θ)‖w,q

≤ M × ‖ ˆ̇xn − F (x∗, θ∗)‖q + KM × ‖x̂n − x∗‖q.



N. J-B. Brunel/Parameter estimation of ODE’s via nonparametric estimators 1248

and consequently, by the consistency of x̂n and ˙̂xn,

sup
θ∈Θ

|Rq
n,w(θ) − Rq

w(θ)| = oP (1).

With the additional identifiability condition (2.4) for the vector field F , Theorem

5.7 of [39] implies that the estimator θ̂n converges in probability to θ∗.

The minimization of a distance between a nonparametric estimator and a
parametric family is a classical device for parametric estimation (Minimum Dis-
tance Estimators, MDE). For instance, it has been used for density estimation
with Hellinger distance [2], or for regression with L2 distance in the framework
of regression model checking [24]. The difference between two-estimators and
MDE’s is that two-step estimators do not minimize directly the distance be-
tween the regression function and a parametric model, but between the deriva-
tive of the regression function and the parametric model. This slight difference
causes some differences concerning the asymptotic behavior of the parametric
estimators. Nevertheless, two-step estimators are closer to MDE’s than the gen-
eralized smoothing approach of Ramsay et al. [33] that uses also parametric and
nonparametric estimators. These ingredients are used in a different manner, as
the criterion maximized by the generalized smoothing estimator can be seen as
the Lagrangian relaxation of a constrained optimization problem in a space of
cubic splines (with given knots): the parametric and nonparametric estimators
solve

min
g,θ

n
∑

i=1

|yi − g(ti)|22 subject to ‖ġ − F (·, g, θ)‖2
2 < ǫ.

The smoothing approach finds a curve that solves approximately a differential
equation, which is then close to the spline approximation of the solution of
the ODE (with parameter θ̂) computed by collocation [7]. Moreover, the op-
timization problem is solved iteratively which implies that the nonparametric
estimator is computed adaptively with respect to the parametric model and the
data are repeatedly during estimation, whereas two-step estimators used the
data once without exploiting the parametric model.

Remark 2.1 (Local identifiability). The global identifiability condition (2.4)
is difficult to check in practice and in all generality. In the case q = 2, we can
focus on a simpler criterion by considering the Hessian J∗ of R2

w(θ) at θ = θ∗:

J∗ =

∫ 1

0

(D2F (t, x∗(t), θ∗))
⊤

D2F (t, x∗(t), θ∗)w(t)dt.

If J∗ is then nonsingular, the asymptotic criterion behaves like a positive definite
quadratic form on a neighborhood V(θ∗) of θ∗, so the criterion R2 separate
the parameters. It is then critical to use a positive weight function w, or else
some part of the path t 7→ x∗(t) might be useless for the identification of the
identification and discrimination of the parameter. At the opposite, w might be
used to emphasize some differences between parameters. As it is shown in the
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next section, the value of w at the boundaries has a dramatic influence on the
asymptotics of the two-step estimator.

Remark 2.2 (Random times and errors in times). If the observation times
t1, . . . , tn are realizations of i.i.d. random variables (T1, . . . , Tn) with common
c.d.f Q, the nonparametric estimators x̂n, as the one used before, are relevant
candidates for the definition of the two-step estimator since they are still con-
sistent under some additional assumptions on Q.

As in the setting considered by Lalam and Klaassen [26], the observation
times may be observed with some random errors τi = ti + ηi, i = 1, . . . , n, (the
ηi’s being some white noise) so we have to estimate x from the noisy bivariate
measurements (τi, yi). Consistent nonparametric estimators have been proposed
for the so-called “errors-in-variables” regression and some examples are kernel
estimators [14] and splines estimators [23] (in the L2 sense). Hence, we can
define exactly the same criterion function R2

n and derive a consistent parametric
estimator.

2.4. Partially observed ODE

The estimator proposed can be easily extended to cases where several variables
are not observed. Indeed, if the differential system (1.1) is partially linear in the
following sense

{

u̇ = G(u, v; η)
v̇ = H(u; η) + Av

(2.7)

with x = (u⊤ v⊤)⊤, u ∈ Rd1 , being observed, v ∈ Rd2 being unobserved, and
d1 + d2 = d (the initial conditions are x0 = (u⊤

0 v⊤0 )⊤), i.e. x(ti) is replaced by
u(ti) in (2.1) (the noise ǫi being then d1-dimensional). We want to estimate the
parameter θ = (η, A) when H is a nonlinear function and A is a matrix, so we can
take advantage of the linearity in v in order to derive an estimator for v. We can
derive a nonparametric estimator for v by using ûn and the fact that t 7→ v(t)
must be the solution of the non-homogeneous linear ODE v̇ = Av + H(ûn; η),
v(0) = v0. The solution of this ODE is given by Duhamel’s formula [19]

∀t ∈ [0, 1], v̂n(t) = exp (tA) v0 +

∫ t

0

exp ((t − s)A)H(ûn(s); θ)ds, (2.8)

which then can be plugged into the criterion Rq
n(θ). This estimator depends

explicitly on the initial condition v0 which must be estimated at the same time

(θ̂, v̂0) = arg min
(η,A,v0)

Rq
n(η, A, v0) =

∥

∥

∥

˙̂un − F (ûn, v̂n; η)
∥

∥

∥

w,q
.

As previously, if H is uniformly Lipschitz the integral
∫ t

0
exp ((t − s)A) H(ûn; θ)ds

converges (uniformly) in probability in the Lq sense to
∫ t

0
exp ((t − s)A) H(u∗; θ)ds

as soon as ûn does, hence Rq
n(θ, A, v0) converges also uniformly to the asymp-

totic criterion
Rq

w(θ, v0) = ‖u̇∗ − F (u∗, v∗; θ)‖w,q .
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The estimator (θ̂, v̂0) is consistent as soon as Rq
w(θ, v0) satisfies the identifiability

criterion (2.4).

3. Asymptotics of two-step estimators

We give in this section an analysis of the asymptotics of two-step estimators. We
focus on the least squares criterion R2

n,w when the estimator of the derivative

is ˙̂xn. In that case, we show that the two-step estimator behaves as the sum of
two linear functionals of x̂n of different nature: a smooth and a non-smooth one.
Under broad conditions, we show that the two-step estimator is asymptotically
normal and that we can derive the rate of convergence. In particular, we show
that it is the case for the regression splines. A key result is that the use of a
weight function w with boundary conditions w(0) = w(1) = 0 makes the non-
smooth part vanish, implying that the two-step estimator can have a parametric
rate of convergence. In the contrary, the two-step estimator has a nonparametric
rate.

3.1. Asymptotic representation of two-step estimators

We derive an asymptotic representation of θ̂n by linearization techniques based
on Taylor’s expansion of R2

n,w around θ∗. This shows that the two-step estima-
tor behaves as a simple linear functional of x̂n. We introduce the differentials
of F at (x, θ) w.r.t. x and θ and we denote them D1F (x, θ) and D2F (x, θ) re-
spectively. For short, we adopt the notation DiF

∗, i = 1, 2 for the functions
t 7→ DiF (x∗(t), θ∗), i = 1, 2, and D12F

∗ for t 7→ D1D2F (x∗(t), θ∗).

Proposition 3.1. We suppose that D12 exists and w is differentiable. We in-
troduce the two linear operators Γs,w and Γb,w defined by

Γs,w(x) =

∫ 1

0

(

D2F
∗⊤(t)D1F

∗(t)w(t) − d

dt
(D2F

∗(t)w(t))

)

x(t)dt

and
Γb,w(x) = w(1)D2F

∗⊤(1)x(1) − w(0)D2F
∗⊤(0)x(0)

If D1F , D2F are Lipschitz in (x, θ), J∗ is invertible, and x̂n, ˙̂xn are (resp.)
consistent estimators of x∗ and ẋ∗, then

θ̂n − θ∗ = J∗−1 (Γs,w(x̂n) − Γs,w(x∗) + Γb,w(x̂n) − Γb,w(x∗)) + oP (1).

Proof. For sake of simplicity, we suppose that the vector field F does not de-
pend on t, but the proof remains unchanged in the non-autonomous case. We
remove also the dependence in t and n for notational convenience and intro-
duce F ∗ and F (x̂, θ∗). The first order condition ∇θR

2
n(θ̂) = 0 implies that

∫ 1

0
(D2F (x̂, θ̂))⊤( ˙̂x − F (x̂(t), θ̂))w dt = 0. This gives

∫ 1

0

(

D2F (x̂, θ̂)
)⊤

(

( ˙̂x − ẋ∗) + F ∗ − F (x̂, θ∗) + F (x̂, θ∗) − F (x̂, θ̂)
)

w dt = 0
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and
∫ 1

0

(

D2F (x̂, θ̂)
)⊤

(

( ˙̂x− ẋ∗)+D1F (x̃∗, θ∗)(x∗ − x̂)+D2F (x̂, θ̃∗)(θ∗ − θ̂)
)

w dt =0

with x̃∗ and θ̃∗ being random points between x∗ and x̂, and θ∗ and θ̂ respectively.
We introduce ˆD2F = D2F (x̂, θ̂), and an asymptotic expression for (θ∗ − θ̂) is

(θ∗ − θ̂)

∫ 1

0

ˆD2F
⊤

D2F (x̂, θ∗)w dt = −
∫ 1

0

ˆD2F
⊤

( ˙̂x − ẋ∗)w dt

−
∫ 1

0

ˆD2F
⊤

D1F (x̃∗, θ∗)(x∗ − x̂)w dt.

It suffices to consider the convergence in law of the random integral Hn =
∫ 1

0

(

D2F
∗
)⊤(

( ˙̂x − ẋ
∗

) + D1F
∗(x∗ − x̂)

)

w dt because the random variable

Gn =

∫ 1

0

ˆD2F
⊤

(

( ˙̂x − ẋ∗) + D1F (x̃∗, θ∗)(x∗ − x̂)
)

w dt

is such that Gn−Hn → 0 in probability (in the L2 sense), moreover we have the

convergence in probability of
∫ 1

0
ˆD2F

⊤
D2F (x̂, θ∗)dt to J∗, the Hessian of R2

w.
Indeed, we consider the map D : (x, θ) 7→ (t 7→ D2F (x(t), θ)) defined on

C([0, 1],K)×Θ (with the product Hilbert metric) with values in C([0, 1], Rn×p)

(with the L2 norm ‖A‖2 =
∫ 1

0
Tr(A⊤(t)A(t))dt). Since D2F is Lipschitz in (x, θ),

the functional map D is a continuous map, and we can claim by the continu-
ous mapping theorem that the random functions ˆD2F and t 7→ D2F (x̂(t), θ∗)
converge in probability (in the L2sense) to D2F

∗. As a consequence, ‖ ˆD2F‖2

converges in probability to ‖D2F
∗‖2 so it is also bounded, and ‖D2F (x̂, θ∗) −

D2F
∗‖2 → 0 in probability. This statement is also true for all entries of these

(function) matrices, which enables to claim that all entries of the matrix

∫ 1

0

(

ˆD2F
)⊤

(

D2F (x̂, θ∗) − D2F
∗
)

w(t)dt

tend to zero in probability (by applying the Cauchy-Schwarz inequality com-
ponentwise). Moreover, we have convergence in probability of each entry of
∫ 1

0
( ˆD2F )⊤D2F

∗w dt to the corresponding entry of
∫ 1

0
(D2F

∗)
⊤

D2F
∗dt (conse-

quence of the convergence of D2F (x̂, θ̂) to D2F
∗ in the L2 sense), which implies

finally that
∫ 1

0

(

D2F (x̂, θ̂)
)⊤

D2F (x̂, θ∗)w dt
P−→ J∗.

By the same arguments and by using the fact that D1F is also Lipschitz in
(x, θ), we have convergence of the matrix Gn − Hn to 0 in probability. The

asymptotic behavior of (θ̂n − θ∗) is then given by the random integral

J∗−1

∫ 1

0

(D2F
∗)⊤

(

( ˙̂x − ẋ∗) + D1F
∗(x∗ − x̂)

)

w dt. (3.1)
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As this functional is linear in ( ˙̂x − ẋ∗) and (x∗ − x̂), this is equivalent to study
the convergence of the functional Γ(x̂) to Γ(x∗), where

Γ(x) =

∫ 1

0

(D2F
∗)

⊤
ẋ(t)w dt +

∫ 1

0

D2F
∗⊤D1F

∗x(t)w dt.

Since D12F and ẇ exist, we can integrate by part the first term of the right-hand
side,

∫ 1

0

(D2F
∗(t))

⊤
ẋ(t)w(t)dt =

[

D2F
∗⊤x w

]1

0
−

∫ 1

0

d

dt
(D2F

∗(t)w(t))x(t)dt.

As a consequence, Γ is the sum of the linear functionals Γs,w, Γb,w introduced
before:

Γ(x) =

∫ 1

0

(

D2F
∗⊤D1F

∗w(t) − d

dt
(D2F

∗(t)w(t))

)

x(t)dt

+ D2F
∗⊤(1)x(1)w(1) − D2F

∗⊤(0)x(0)w(0).

Finally, by linearity we can write

θ̂ − θ∗ = (Γs(x̂) − Γs(x
∗) + Γb,w(x̂) − Γb,w(x∗)) + oP (1).

Proposition 3.1 shows that two-step estimators behave asymptotically as the
sum of two plug-in estimators of linear operators: a smooth functional Γs,w

and a non-smooth functional Γb,w, the latter being a weighted evaluation func-
tional (at the boundaries). It is well-known that the asymptotic behavior of
these plug-in estimators are of different nature: Stone [35] showed that the best
achievable rate for pointwise estimation over Sobolev classes is nα/2α+1 (where
α is the number of continuous derivatives of x), whereas integral functionals
∫

h(t)x(t)dt can be estimated at a root-n in a wide variety of situations, e.g.
Bickel and Ritov [4]. In particular, we will show in the next section that Γs,w(x∗)
can be estimated at a root-n rate with regression splines. A direct consequence
of this asymptotic consequence is that two-step estimators does not achieve the
optimal parametric rate in generality (with whatever weight function w). Hence,
two-step estimators used in applications computed with a constant weight func-
tion have degraded asymptotic properties. Moreover, the classical bias-variance
analysis of pointwise nonparametric estimation enables to give additional in-
sight in the behavior of x̂. Indeed, it is well known that the quadratic error
∀t ∈ [0, 1], E[(x̂(t) − x∗(t))

2
] = b(t)2 +v(t), where b is the bias function and v is

the variance function. Although Γs,w(x̂n) is also a biased estimator of Γs,w(x∗),
this bias can converge at a faster rate than root-n (under appropriate conditions

on x̂n), so that the bias of θ̂n is mainly due to the bias terms b(0) and b(1).
This remark strongly motivates the use of nonparametric estimators with good
boundary properties for reducing the bias of θ̂: a practical consequence of propo-
sition 3.1 is that local polynomials should be preferred to the classical kernel
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regression estimator because local polynomials have better boundary properties
at the boundaries of the interval [13]. Nevertheless, a neat approach to the ef-
ficiency of two-step estimators is to restrict to the case of a weight function w
with boundary conditions w(0) = w(1) = 0, so that Γb,w does vanish and the
two step estimator is then asymptotically equivalent to the smooth functional
Γs,w(x̂), i.e.

θ̂ − θ∗ = Γs,w(x̂) − Γs,w(x∗) + oP (1).

Then, it suffices to check that the plug-in estimator Γs(x̂) is a root-n rate esti-
mator of Γ(x∗), which depends on the definition of x̂n. We detail then essential
properties of regression splines in the next section, and derive the desired plug-in
property.

3.2. Two-step estimator with least squares splines

A spline is defined as a piecewise polynomial that is smoothly connected at its
knots. For a fixed integer k ≥ 2, we denote S(ξ, k) the space of spline functions
of order k with knots ξ = (0 = ξ0 < ξ1 < · · · < ξL+1 = 1): a function s in S(ξ, k)
is a polynomial of degree k − 1, on each interval [ξi, ξi+1], i = 0, . . . , L and s
is in Ck−2. S(ξ, k) is a vector space of dimension L + k and the most common
basis used in applications are the truncated power basis and the B-spline basis.
The latter is usually used in statistical applications as it is a basis of compactly
supported functions which are nearly orthogonal. B-splines can be defined re-
cursively from the augmented knot sequence τ = (τj, j = 1, . . . , L + 2k) with
τ1 = · · · = τk = 0, τj+k = ξj, j = 1, . . . , L and τL+k+1 = · · · = τL+2k = 1.
We note Bi,k′ , the ith B-spline basis function of order k′ (1 ≤ k′ ≤ k) with the
corresponding knot sequence τ . The B-spline basis of order k′ = 1, . . . , k are
linked then by the recurrence equation:

∀i = 1, . . . , L + 2k − 1, ∀t ∈ [0, 1], Bi,1(t) = 1[τi,τi+1 ](t)

and ∀i = 1, . . . , L + 2k − k′, ∀k′ = 2, . . . , k, ∀t ∈ [0, 1],

Bi,k′(t) =
t − τi

τi+k′−1 − τi
Bi,k′−1(t) +

τi+k′ − t

τi+k′ − τi+1
Bi+1,k′−1(t).

A (univariate) nonparametric estimator x̂n is then computed by classical
least-squares (the so-called least-squares splines or regression splines). Most of
the time, cubic splines (k = 4) are used and the essential assumptions are made
on the knots sequence ξ in an asymptotic setting: it is supposed that the number
of knots Ln tends to infinity with a controlled repartition. The well-posedness
of the B-spline basis (and corresponding design matrix) is critical for the good
behavior of the regression spline, and the needed material for the asymptotic
analysis can be found in [44]. We define below the nonparametric estimator that
we use.

We have n observations y1, . . . , yn corresponding to noisy observations of
the solution of the ODE (1.1), and we introduce Qn the empirical distribu-
tion of the sampling times times t1, . . . , tn. We suppose that this empirical
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distribution converges to a distribution function Q (which possesses a density
q w.r.t Lebesgue measure). We construct our estimator x̂n of x∗ as a func-
tion in the space S(ξn, k) of spline functions of degree k and knots sequence
ξn = (ξ0, ξ1, . . . , ξLn+1) (Kn is the dimension of S(ξn, k)). The knots sequence
is chosen such that max1≤i≤Ln

|hi+1 − hi| = o(L−1
n ), |ξ|/ mini hi ≤ M where

hi = (ξi+1−ξi) and |ξ| = supi hi is the mesh size of ξ. As a consequence, we have
|ξ| = O(L−1

n ). Like in Zhou et al. [44], we suppose that we have convergence of
Qn towards Q at a rate controlled by the mesh size, i.e.

sup
t∈[0,1]

|Qn(t) − Q(t)| = o(|ξ|). (3.2)

The estimator x̂n we consider is written componentwise in the basis of B-splines
(B1 , . . . , BKn

)

∀i = 1, . . . , d, x̂n,i =

Kn
∑

k=1

cikBk (3.3)

or in matrix form x̂n = CnB with the vector-valued function B = (B1, . . . , BKn
)⊤

and the d × Kn coefficient matrix Cn = (cn
ik)1≤i,k≤d,Kn

(and column vectors
ci,n = (ci1, . . . , ci,Kn

)⊤ ∈ RKn). We stress the fact that all the components x̂n,i

are approximated via the same space, although it may be inappropriate in some
practical situations but it enables to keep simple expressions for the estimator.
The fact that we look for a function in the vector space spanned by B-splines,
puts emphasis on the regression interpretation of the first step of our estimating
procedure. The estimation of the parameter Cn can be cast into the classical
multivariate regression setting

Yn = BnC⊤
n + ǫn, (3.4)

where Yn = (Y1 . . .Yd) is the n×d matrix of observations, ǫ is the n×d matrix
of errors, C⊤

n is the Kn×d matrix of coefficients and Bn = (Bj (ti))1≤i≤n,1≤j≤Kn

is the design matrix. We look for a function close to the data in the L2 sense,
i.e. we estimate the coefficient matrix Cn by least-squares

ĉi,n = arg min
c∈RKn

n
∑

j=1

(yij − B(tj)
⊤c)2, i = 1, . . . , d,

which gives the least squares estimator Ĉn = (B⊤
n Bn)+B⊤

n Y where (·)+ denotes
the Moore-Penrose inverse. We have

∀i ∈ {1, . . . , d}, ∀t ∈ [0, 1], x̂i,n(t) = B⊤(t)ĉi,n,

where ĉi = (B⊤
n Bn)+B⊤

n Yi. Finally, we introduce the projection matrix PB,n =
Bn(B⊤

n Bn)+B⊤
n . We will use the notation x . y to denote that there exists a

constant M > 0 such that x ≤ My.

General results given by Huang in [21] ensure that x̂n
L2

−→ x∗ in probability for
sequences of suitably chosen approximating spaces S(k, ξn) with an increasing
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number of knots. Indeed, corollary 1 in [21] enables us to claim that if the
observation times are random with Q(B) ≥ cλ(B) (0 < c ≤ 1 and λ(·) is the
Lebesgue measure on [0, 1]), the function x∗ is in the Besov space Bα

2,∞ (with

k ≥ α − 1) and the dimension grows such that limn
Kn log Kn

n
= 0 then

1

n

n
∑

i=1

(yij − x̂i(tj))
2 + ‖x̂i − x∗

i ‖2 = OP

(

Kn

n
+ K−2α

n

)

.

Moreover, the optimal rate OP (n−2α/(2α+1)) (given by Stone [36]) is reached for
Kn ∼ n1/(2α+1). For this nonparametric estimator, it is possible to construct a
consistent two-step estimator θ̂n by minimization of R2

n,w(θ).

We need then a general result for the asymptotics of linear functionals of
spline estimators. This can be seen as a special case of a general result derived
by Andrews for series estimators [1]. First, we need to have a precise picture
of the evolution of the basis (B1, . . . , BKn

) as Kn → ∞ and particularly the
asymptotic behavior of the empirical covariance GKn,n = 1

n(B⊤
n Bn) and of the

(theoretical) covariance GKn
=

∫ 1

0
B(t)B(t)⊤dQ(t). From [44], we have that if

Kn = o(n),

∀t ∈]0, 1], B⊤(t)
(

B⊤
n Bn

)−1
B(t) =

1

n
B(t)⊤G−1

Kn
B(t) + o

(

1

n|ξ|

)

. (3.5)

The analysis of section 3.1 gives interest in the asymptotic behavior of Γa(x̂n)

where Γa is a linear functional Γ(x) =
∫ 1

0 a(s)⊤x(s)ds where a is a function in

C1([0, 1], Rd). If x = C⊤B, Γ(x) =
∑d

i=1 c⊤i γi = Trace(C⊤γ) with γi the

columns of the K × d matrix γ =
∫ 1

0
B(s)A⊤(s)ds. Hence, the asymptotic

behavior is derived directly from the asymptotics of Ĉn and of matrix γ. By
using the results from Andrews [1], we derive the asymptotic normality of this
functional. For simplicity, we consider only the case d = 1, the extension to
higher dimensions is cumbersome but straightforward. If the variance of the
noise is σ2, the variance of ĉn is

V (ĉn) = σ2(B⊤
n Bn)+ (3.6)

and the variance of the estimator of the functional is

Vn = V (Γ(x̂n)) = σ2γ⊤
n (B⊤

n Bn)+γn. (3.7)

Proposition 3.2 (Convergenceof linear functionalsof regression splines).
Let (ξn)n≥1 be a sequence of knot sequences of length Ln + 2, and Kn =
dim(S(ξn, k)), with k ≤ 2. We suppose that Ln → ∞ is such that n1/2|ξn| → 0
and n|ξn| → ∞. If a : [0, 1] → R is in C1, and x is in Cα, 2 ≤ α ≤ k,

Γ(x) =
∫ 1

0
a(s)x(s)ds then:

(i) Γ(x̂n)−Γ(x) = OP (n−1/2) and
√

n(Γ(x̂n)−Γ(x)) is asymptotically normal,
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(ii) ∀t ∈ [0, 1], x̂n(t) − x(t) = OP (n−1/2|ξn|−1/2),
(iii) V (x̂n(t))−1/2(x̂n(t) − x(t)) is asymptotically normal, t ∈ [0, 1].

Proof. In order to prove the asymptotic normality of Γ(x̂n) − Γ(x), we check
the assumptions of theorem 2.1 of [1]. Assumption A is satisfied because the ǫi’s
are i.i.d. with finite variance. For assumption B, since a is C1, the functional is
continuous with respect to the Sobolev norm (or simply the sup norm). From the
approximation property of spline spaces [7], it is possible to construct a spline

ã =
∑Kn

i=1 αiBi = α⊤
n B ∈ S(ξn, k) such that ‖a − ã‖∞ = O(|ξ|1). The quality

of approximation of the functional Γa is directly derived: |Γa(x) − Γã(x)| =

|
∫ 1

0
(a − ã)(s)x(s)ds| . |ξ|‖x‖∞. Hence, it suffices to look at the case a = α⊤

n B

because Γa(x) − Γã(x) will tend to zero at faster rate than n1/2. We introduce
the vectors γn = (Γa(B1) . . .Γa(BKn

))⊤ , so we have γ⊤
n γn = α⊤G⊤

Kn
GKn

α ≥
λ2

minGKn
× ‖α‖2

2. From lemma 6.2 of [44] (giving bounds on the eigenvalues of
GKn

), we get γ⊤
n γn & |ξ|‖α‖2

2. Lemma 6.1 from [44] (about the equivalence of L2

norm and Euclidean norm of spline coefficients) ensures that γ⊤
n γn is bounded

away from 0 because

|ξ|‖α‖2
2 &

∫ 1

0

a2(s)dQn(s)

hence lim infn γ⊤
n γn > 0 and assumption B is satisfied.

From (3.5), we get the behavior of the diagonal entries of PB,n:

∀i ∈ [1..Kn], (PB,n)ii =
1

n
B(ξi)

⊤G−1
Kn

B(ξi) + o
(

(n|ξ|)−1
)

(3.8)

we see that assumption C(ii) is true because B(ξi)
⊤G−1

Kn
B(ξi) ≤ c1‖B(ξi)‖2

2|ξ|−1

and ‖B(ξi)‖2
2 ≤ k (because the B-splines are bounded by 1 and only k of them

are strictly positive) ensure that maxi(PB,n)ii = O((n|ξ|)−1) → 0. It is clear
that Bn is of full rank for n large enough.

Since α ≤ k, it exists a sequence (x̃n) ∈ S(ξn, k) such that ‖x̃n − x∗‖∞ =
O(|ξ|α) [7], hence

n1/2‖x̃n − x∗‖∞ → 0.

If we use again the spline approximation of the function a, we derive the following
expression for

γ⊤
n

(

B⊤B

n

)−1

γn = α⊤G⊤
KG−1

K,nGKα.

From lemma 6.2. of [44], we have α⊤G⊤
KG−1

K,nGKα & α⊤GKα. As for γ⊤
n γn,

we have

lim inf
n

γ⊤
n

(

B⊤B

n

)−1

γn > 0,

which remains true when a is any smooth function in C1.

According to Andrews, we can conclude V
−1/2

n (Γa(x̂n)− Γa(x∗)) N(0, 1).
We obtain an equivalent of the rate of convergence by the same approximation
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as above

Vn = γ⊤
n

(

B⊤B
)−1

γn

=
1

n
α⊤GKG−1

K,nGKα

≃ 1

n
α⊤GKα

i.e. Vn ∼ ‖α‖2|ξ|
n and we obtain finally that Vn ∼ n−1.

The technique used by Andrews for his theorem 2.1 gives also asymptotic
normality of x̂n(t) = B(t)⊤ĉi,n. We have then

∀t ∈ [0, 1], V (x̂n(t)) = σ2B(t)⊤(B⊤
n Bn)+B(t)

and from (3.5) we get V (x̂n(t)) = σ2

n B(t)⊤G−1
Kn

B(t)+o( 1
n|ξ| ), so that V (x̂n(t)) ∼

C
n|ξ|

from lemma 6.6 in [44].

For deriving the asymptotics of the two-step estimator when regression splines
are used in the first, we just need to put the results of propositions 3.1 and 3.2
together.

Theorem 3.1 (Asymptotic normality and rates of the two-step esti-
mator). Let F a Cm vector field w.r.t (θ, x) (m ≥ 1), such that D1F, D2F
are Lipschitz w.r.t (θ, x), and D12F exists. We suppose that the Hessian J∗

of the asymptotic criterion R2
w(θ) evaluated at θ∗ is nonsingular, and that the

conditions of proposition 2.1 are satisfied.
Let x̂n ∈ S(ξn, k) a regression spline with k ≥ 2, such that n1/2|ξn| → 0 and

n|ξn| → ∞, then the two-step estimator θ̂n = arg minθ R2
n,w(θ) is asymptotically

normal and

(i) if w(0) = w(1) = 0, then (θ̂n − θ∗) = OP (n−1/2)

(ii) if w(0) 6= 0 or w(1) 6= 0, then (θ̂n − θ∗) = OP (n−1/2|ξn|−1/2).

In the case (ii), the optimal rate of convergence for the Mean Square Error is ob-

tained for Kn = O(n1/(2m+3)) and we have then (θ̂n−θ∗) = OP (n−(m+1)/(2m+3)).

Proof. From proposition 3.1, we have

θ̂ − θ∗ = J∗−1 (Γs,w(x̂) − Γs,w(x∗) + Γb,w(x̂) − Γb,w(x∗)) + oP (1).

so that we just have to apply proposition 3.2 to Γs,w(x̂) and Γb,w(x̂). We can

claim the asymptotic normality of
√

n(Γs(x̂n)−Γs(x
∗)) and of

√

n|ξn|(Γb,w(x̂n)−
Γb,w(x∗)) (normality is extended from scalar functional to multidimensional
functional by the Cramér-Wold device). We have then two cases for the rate of

convergence of θ̂n , depending on the values w(0), w(1). When w(0) = w(1) = 0,
there is only the parametric part, but when Γb,w does not vanish the nonpara-

metric part with rate
√

n|ξn| remains. We can determine the optimal rate of
convergence in the mean square sense by using the Bias - Variance decompo-
sition for the evaluation functional ‖θ̂n − θ∗‖2 = OP

(

(E(x̂n(t)) − x(t))2
)

+
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OP (V ar(x̂n(t))). Theorem 2.1 of [44] gives E
(

(x̂n(t) − x∗(t))2
)

= O(|ξn|m+1)
(because x∗ is Cm+1) and V ar(x̂n(t)) = OP (n−1|ξn|−1) so the optimal rate is
reached for |ξn| = O(n−1/(2m+3)) and is O(n−(2m+2)/(2m+3)).

Remark 3.1 (Random observational times). The asymptotic result given
for the deterministic observational times 0 ≤ t1 < · · · < ctn ≤ 1 remains true
when they are replaced by realizations of some random variables T1, . . . , Tn as
long as the assumptions of the two previous propositions are true with proba-
bility one. Andrews gives some conditions (theorem 2) in order to obtain this.
It turns out that in the case of T1, . . . , Tn i.i.d. random variables drawn from
the distribution Q, it suffices to have K4

n . nr with 0 < r < 1. In particular, as
soon as m ≥ 1, the conclusion of proposition 3.1 holds with probability one for
the optimal rate Kn = n1/(2m+3).

We have restricted theorem 3.1 to regression splines in order to a have precise
and self-content statement of conditions under which the asymptotics of the
two-step estimator is known. In particular cubic splines gives root-n consistent
estimators for smooth differential equation (m ≥ 2) and appropriate weight
function.

The main point of our study is that the asymptotic normality and parametric
rate are derived from the behavior of the smooth functional Γs,w, which can be
derived for series estimators (polynomials or Fourier series) from [1]. Moreover,
the same theorem can be derived for kernel regression (Nadaraya-Watson) by
using the results on plug-in estimators of Goldstein and Messer [18]. More gen-
erally, the same theorem may be obtained for other nonparametric estimators
such as local polynomial regression, orthonormal series, or wavelets.

4. Experiments

The Lotka-Volterra equation is a standard model for the evolution of prey-
predator populations. It is a planar ODE

{

ẋ = ax + bxy
ẏ = cy + dxy

(4.1)

whose behavior is well-known [19]. Despite its simplicity, it can exhibit conver-
gence to limit cycles which is one of the main features of nonlinear dynamical
systems, which has usually a meaningful interpretation. Due to this simplicity
and the interpretability of the solution, it is often used in biology (population
dynamics or phenomena with competing species), but the statistical estimation
of parameters a, b, c, d in 4.1 has not been extensively addressed. Neverthe-
less, Varah (1982) illustrates the two-step method with cubic splines and knots
chosen by an expert on the same model as (4.1). Froda et al. (2005) [16] have
considered another original method exploiting the fact that the orbit may be
a closed curve for some values of the parameters. In this section, we will con-
sider a slight generalization and reparametrization of the previous model which
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consists in adding the squared terms x2 and y2:
{

ẋ = x(a1x + a2y + a3)
ẏ = y(b1x + b2y + b3)

(4.2)

We use the two-step estimator obtained by minimizing R2
n,w(θ) in order to illus-

trate the consistency and the asymptotic normality of the estimator proved in
the previous section. In particular, we will consider two estimators: one obtained
with a uniform weight function w = 1, and a second one with a weight vanish-
ing at the boundaries. According to theorem 3.1, it gives two different rates
of convergence: we consider then the influence of the number of observations
n = 20, 30, 50, 100, 200, 500, 1000. We consider also a small number of obser-
vations (n = 20, 30) as the nonparametric procedure can give poor results in
the small-sample case, and the simulation can give an insight into the expected
properties in this practical situation. As the reconstruction of the solution in
the first step is critical, we consider the estimation of an ODE with two different
parameters θ1 with a1 = 0, a2 = −1.5, a3 = 1, b1 = 2, b2 = 0 and b3 = −1.5,
and θ2 with a1 = 0, a2 = −1.5, a3 = 1, b1 = 2, b2 = 1 and b3 = −1.5. In
both cases, the parameters of the quadratic terms a1 and b2 are supposed to be
known, so that 4 parameters have to be estimated from noisy discrete observa-
tions of the solution of the ODE. We suppose also that the initial conditions are
not known, so that they are nuisance parameters that are not estimated by our
procedure. These two parameters θ1, θ2 gives rise to two different qualitative
behavior of the solution as it can be seen in figures 1, 2 and it gives a view of
the influence of their shapes on the inference. The shape of the solution has two
consequences: the identifiability of the model through the asymptotic criterion
R2

w, and the difficulty of the first step (if the curve is rather wiggly or flat).
The data are simulated according to 2.1 where ǫ is a Gaussian white noise with
standard-deviation σ = 0.2, and the observation times are deterministic and
equal to tj = j 20

n
, j = 0, . . . , n− 1.

We define now exactly the two-step estimator that have been used in the
experiments. In the first step, we have used a least square cubic spline with an
increasing number of knots Kn. The selection of Kn and of the position of the
knots is a classical problem in the spline regression literature. The study of the
asymptotics gives only the rate of Kn (or |ξn|) in order to optimize the rate of
convergence, but one has to find practical devices in order to compute a correct
estimator. For instance, this choice was left to the practitioner in Varah’s paper,
but due to the intensive simulation framework for the estimation of the bias and
variance of two-step estimators, we have used an adaptive selection of the knots
in order to obtain an automatic first step with reliable and stable approximation
properties. This procedure permits then to focus on the quality of the two-step
estimator, and not in particular on the first step. We have considered 3 different
basis of splines with uniformly spaced knots ξj = j 20

Kn+1 , j = 0, . . . , Kn:

• if n = 20, 30, Kn = 15,
• if n = 50, Kn = 20,
• if n = 100, 200, 500, 1000, Kn = 30.
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Figure 1. Solution of Lotka-Volterra system in the phase plane for θ1 and x(0)=1 et y(0) =2.
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Figure 2. Solution of Lotka-Volterra system in the phase plane for θ2 and x(0)=4 et y(0) =2.
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Table 1

Case 1: Mean and standard deviation of the two-step estimator with a weight function
vanishing at the boundaries (θ̂1,w) and with uniform weigth (θ̂1). True parameter is

θ1 = (−1.5, 1, 2, −1.5)

n mean(θ̂1,w) mean(θ̂1) std(θ̂1,w) std(θ̂1)

20 (−0.97, 0.68, 0.99, −0.75) (−0.87, 0.57, 0.95, −0.77) (0.13, 0.12, 0.17, 0.17) (013, 0.12, 0.17, 0.17)

30 (−0.95, 0.71, 1.12, −0.95) (−0.97, 0.72, 1.10, −0.97) (0.10, 0.10, 0.13, 0.12) (0.11, 0.10, 0.13, 0.12)

50 (−1.12, 0.81, 1.41, −1.14) (−1.11, 0.81, 1.38, −1.16) (0.11, 0.10, 0.14, 0.13) (0.11, 0.10, 0.14, 0.13)

100 (−1.28, 0.88, 1.73, −1.34) (−1.26, 0.87, 1.71, −1.36) (0.14, 0.11, 0.18, 0.16) (0.13, 0.10, 0.19, 0.15)

200 (−1.37, 0.92, 1.83, −1.4) (−1.35, 0.91, 1.81, −1.41) (0.09, 0.07, 0.12, 0.1) (0.10, 0.07, 0.13, 0.1)

500 (−1.42, 0.95, 1.90, −1.44) (−1.42, 0.95, 1.90, −1.45) (0.06, 0.05, 0.08, 0.06) (0.07, 0.05, 0.09, 0.06)

1000 (−1.45, 0.97, 1.94, −1.46) (−1.45, 0.96, 1.93, −1.46) (0.04, 0.03, 0.06, 0.05) (0.045, 0.03, 0.07, 0.05)

Table 2

Case 1: Mean Squared Errors of the weighted and unweighted parametric estimators versus
the Mean Squared Error of the nonparametric estimators of the 2 curves

n RMSE(θ̂1,w) RMSE(θ̂1) RMSE(φ̂)

20 1.41 1.5 (1.32, 1.56)

30 1.21 1.21 (1.05, 1.21)

50 0.83 0.84 (0.83, 0.9)

100 0.47 0.49 (0.54, 0.55)

200 0.3 0.32 (0.38, 0.4)

500 0.18 0.19 (0.25, 0.26)

1000 0.12 0.13 (0.18, 0.20)

and we have selected the knots by applying a variable selection approach to
the truncated power basis (instead of the B-spline basis) defined as the set of
functions 1, t, . . . , tk−1, (t − ξ1)

k−1
+ , . . . , (t − ξL)k−1

+ . The knots are selected by
minimizing the Generalized Cross Validation criterion (GCV):

GCV (Km) =

n
∑

i=1

yi − φ(ti)

1− d(Km)/n

where Km is a subset (of size m) of {ξj, j = 0, . . . , Kn}, and d(Km) is the effective
number of parameters. As in [15, 27], we use d(Km) = 3m + 1, and we use an
heuristic for considering efficiently the various subsets, which is based on the
elimination of the less informative knots (for GCV), and the addition of the more
informative knots in order to minimize the GCV criterion (ElimAdd procedure in
[27]). This procedure is not optimal but it gives a simple and reliable adaptive
nonparametric estimators. Other knots selection procedure would have been
based on free-knot splines [8, 37]. Experiments have been also performed in the
non-adaptive case [5].

The quality of the nonparametric estimation procedure is measured by the
Root Mean Squared Error (RMSE)

RMSE =

(
∫ 20

0

(

x̂j − x∗
j

)2
(t)dt

)1/2

and is given in tables 2, 5, so that the MSE of the two-step estimator can be
related directly to the quality of the first step.
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Table 3

Case 1: Minima of the criteria Rn

n R2
n,w(θ̂1,w) R2

n(θ̂1)

20 (6.86, 9.35) (11.4, 15.4)

30 (3.44, 4.11) (4.25, 5.25)

50 (2.41, 2.97) (2.94, 3.87)

100 (1.86, 2.46) (2.31, 3.67)

200 (1.25, 1.62) (1.62, 2.68)

500 (0.70, 0.96) (0.96, 1.56)

1000 (0.47, 0.64) (0.64, 1.0)

Table 4

Case 2:Bias and standard deviation of two-step estimators with a weight function vanishing
at the boundaries (θ̂2,w) and with uniform weight (θ̂2). True parameter is

θ2 = (−1.5, 1, 1.5, −1.5)

n meanθ̂2,w meanθ̂2 std(θ̂2,w) std(θ̂2)

20 (−0.88, 0.56, 0.48, 0.03) (−1.18, 0.74, 0.22, 0.38) (0.27, 0.18, 0.36, 0.52) (0.28, 0.20, 0.35, 0.49)

30 (−1.18, 0.77, 0.72, −0.34) (−1.42, 0.92, 0.46, 0.04) (0.25, 0.18, 0.24, 0.35) (0.22, 0.16, 0.19, 0.26)

50 (−1.17, 0.78, 1.15, −0.94) (−1.58, 1.03, 0.99, −0.69) (0.18, 0.13, 0.33, 0.49) (0.29, 0.20, 0.44, 0.64)

100 (−1.39, 0.92, 1.12, −0.93) (−1.45, 0.95, 1.01, −0.78) (0.18, 0.12, 0.33, 0.48) (0.18, 0.19, 0.53, 0.77)

200 (−1.43, 0.95, 1.29, −1.19) (−1.54, 1.0, 1.17, −1.00) (0.13, 0.09, 0.25, 0.37) (0.24, 0.16, 0.43, 0.63)

500 (−1.45, 0.97, 1.43, −1.40) (−1.58, 1.05, 1.34, −1.26) (0.08, 0.05, 0.16, 0.24) (0.19, 0.12, 0.31, 0.45)

1000 (−1.47, 0.98, 1.47, −1.45) (−1.58, 1.05, 1.41, −1.37) (0.05, 0.04, 0.10, 0.14) (0.14, 0.09, 0.20, 0.29)

In a general manner, the second step can be addressed by using whatever
(nonlinear) optimization procedures. Nevertheless, in the case of the Lotka-

Volterra model, it turns out that we have a closed-form expression for θ̂. Indeed,
the criterion R2

n,w for the first dimension can be written

R2
n,w(θ) =

∫ 20

0

( ˙̂x − x̂(a1x̂ + a2ŷ + a3))
2w(t)dt

≈
∑

j

∆jw(tj)x̂(tj)

( ˙̂x

x̂
(tj) − a1x̂(tj) + a2ŷ(tj) + a3

)2

=
∑

j

w̃j

( ˙̂x

x̂
(tj) − (a1x̂(tj) + a2ŷ(tj) + a3)

)2

where the criterion is approximated by a Riemann sum (∆j is the size of the
subdivision, supposed to be uniform) and w̃j = ∆jw(sj)x̂(sj) is a new weight
function. Hence, the estimator is the solution of a weighted least-square program
whose solution exists, is unique and has a known expression. This means that
the two-step estimator remarkably furnishes a fast and reliable procedure, where
there is no problem of local minima, although we deal with a nonlinear regression
model.

The quality of the two-steps estimator has been evaluated by computing its
mean and standard deviation through a Monte-Carlo study with 1000 indepen-
dent drawings. The results are shown in tables 1, 4 for the models with θ1 and
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Table 5

Case 2: Mean Squared Errors of the weighted and unweighted parametrics estimators versus
the mean squared of the nonparametric estimators of the 2 curves

n MSE(θ̂2,w) MSE(θ̂2) MSE(φ̂)

20 2.0 2.34 (0.93, 0.97)

30 1.48 1.88 (0.68, 0.73)

50 0.91 1.14 (0.57, 0.59)

100 0.83 1.18 (0.44, 0.40)

200 0.52 0.87 (0.53, 0.34)

500 0.28 0.56 (0.20, 0.20)

1000 0.17 0.37 (0.15, 0.14)

Table 6

Case 2: Minima of the criterions

n R2
n,w(θ̂2,w) R2

n(θ̂2)

20 (3.66, 1.99) (5.8, 2.80)

30 (2.35, 1.16) (3.4, 1.57)

50 (2.01, 1.55) (3.46, 2.29)

100 (0.89, 0.40) (1.60, 0.69)

200 (0.52, 0.34) (1.20, 0.61)

500 (0.30, 0.19) (0.95, 0.36)

1000 (0.18, 0.11) (0.66, 0.21)

θ2, and illustrates the consistency of the two-step procedures as n grows to in-
finity. We compute with the same nonparametric estimator x̂, and either with
a uniform weight function w = 1, or boundaries vanishing weight. In our exper-
iment, we use a piecewise linear function with w(0) = 0, w(1) = 1, w(19) = 1
and w(20) = 0 (and w(t) = 1, t ∈ [1, 19]). We have also a picture of the behavior
of the estimator for small sample size and it appears that the two-step estimator
(weighted or unweighted) is biased, for cases 1 and 2, and the bias diminishes
significantly when n ≤ 100. An important feature is that the weighted estimator
is better behaved than the unweighted one, in both experiments and for small n
and big n. Indeed, the standard deviation of θ̂1,w is equal (in case 1) or smaller

(in case 2) to the one of θ̂1, but the main difference between the two estimators
comes from the bias term which induces a bigger RMSE for the unweighted
estimator, see tables 2, 5. This difference comes from the presence of bias term
in the evaluation functionals in the unweighted estimator (as it is emphasized
in theorem 3.1), which can be particularly important at the boundaries. In case
2, this difference is very important, due to the flat part for t ≥ 10.

From the expression of the R2
n,w, it is clear that the quality of the θ̂ is di-

rectly related to the distance ‖x̂ − x‖2
2, as one can see in tables 2, 5 but our

experiment shows that it is not sufficient. First, one need also to estimate cor-
rectly the derivative of the solution, and second a low minimum of the criterion
(R2

n,w(θ̂n,w)) does not indicate a good estimator. This difficulty arises when we
compare the distance of the nonparametric estimator and the value of the cri-
terion (see tables 3, 6). For instance, we have a better nonparametric estimator
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and criterion in case 2 than in case 1 (e.g. n = 100), but we have a lower RMSE
in case 1. Hence, case 2 appears as a more difficult model to estimate, and the
shape of the solution has a direct influence on the asymptotic criterion R2

w and
on the ability to approximate it. We have also controlled the normality of the
two-step estimator with a univariate Kolmogorov-Smirnov test for the four pa-
rameters. The test used was adapted to the case of unknown mean and variance
(via Lilliefors procedure), and the normality assumption cannot be rejected (at
a level of 5%) as soon as n = 20 for all parameters.

5. Conclusion

We have proposed a new family of parametric estimators of ODE’s relying on
nonparametric estimators, which are simpler to compute than straightforward
parametric estimators such as MLE or LSE. The construction of this parametric
estimator puts emphasis on the regression interpretation of the ODE’s estima-
tion problem, and on the link between a parameter of the ODE and an associated
function. By using an intermediate functional proxy, we expect to gain infor-
mation and precision on likely value of the parameters. We do not have studied
the effect of using shape or inequality constraints of the estimator x̂n but it
might be valuable information for the inference of complex models, either by
shortening the computation time (it gives more suitable initial conditions) or
by accelerating the rate of convergence of the estimator thanks to restriction to
smaller sets of admissible parameter values.

We have particularly studied the case R2
n,w(θ), but other M-estimators such as

the one obtained from R1
n,w(θ) may possess interesting theoretical and practical

properties such as robustness. This could be particularly useful in the case of
noisy data which can give oscillating estimates of the derivatives of the function.

We have given a general study of the two-step estimator (consistency, asymp-
totic expansion), and we have shown that the weight function used in R2

n,w

controls dramatically the rate of convergence of the estimator, and that this
method can furnish root-n consistent estimators. We have then provided a de-
tailed account of the asymptotic behavior of spline-based estimators. This choice
is mainly due to the practical interest and the wide use of splines, but the con-
clusions may remain the same for usual nonparametric estimators (series esti-
mators, kernel estimators). Indeed, we have shown that the asymptotic behavior
of the two-step estimator comes from the behavior of a linear functional of the
regression function.

In the experiments, we have illustrated the influence of the weight function,
as the influence of the solution in the quality of the estimators. In particular,
we have shown that the approximation quality of the solution is not sufficient
in order to have a good estimator, and that it depends on the shape of the
solution.
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