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1. Introduction

This paper discusses structural risk minimization in the setting of classification
with a reject option. Binary classification is about classifying observations that
take values in an arbitrary feature space X into one of two classes, labelled −1 or
+1. A discriminant function f : X → R yields a classifier sgn(f(x)) ∈ {−1, +1}
that represents our guess of the label Y of a future observation X and we
err if the margin y · f(x) < 0. Since observations x for which the conditional
probability

η(x) = P{Y = +1|X = x} (1)

is close to 1/2 are difficult to classify, we introduce a reject option for classifiers,
by allowing for a third decision, r (reject), expressing doubt.

We built in the reject option by using a threshold value 0 ≤ τ < 1 as follows.
Given a discriminant function f : X → R, we report sgn(f(x)) ∈ {−1, 1} if
|f(x)| > τ , but we withhold decision if |f(x)| ≤ τ and report r. We assume
that the cost of making a wrong decision is 1 and the cost of utilizing the reject
option is d > 0. The appropriate risk function is then

E [ℓ(Y f(X))] = P{Y f(X) < −τ} + dP{|Y f(X)| ≤ τ} (2)
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for the discontinuous loss

ℓ(z) =






1 if z < −τ ,

d if |z| ≤ τ ,

0 otherwise.

(3)

Since we never reject if d > 1/2, see [11], we restrict ourselves to the cases
0 ≤ d ≤ 1/2. The generalized Bayes discriminant function, minimizing (2), is
then

f0(x) =






−1 if η(x) < d
0 if d ≤ η(x) ≤ 1 − d

+1 if η(x) > 1 − d
(4)

with risk
E [min{η(X), 1 − η(X), d}] ,

see [9, 13]. The case (τ, d) = (0, 1/2) reduces to the classical situation without the
reject option. We can view d as an upper bound on the conditional probability
of misclassification (given X) that is considered tolerable.

The estimators

fλ(x) =

M∑

i=1

λifi(x), λ ∈ R
M ,

of f0(x) that we study in this paper are linear combinations of base functions
fj from a dictionary FM = {f1, . . . , fM}. We suggest regularized empirical risk
minimization based using convex surrogate loss functions φ and a penalty term
p(λ) = 2rn|λ|1 that is proportional to the ℓ1-norm |λ|1 of the parameter λ. The
regularized empirical risk

1

n

n∑

i=1

φ(Yifλ(Xi)) + p(λ) (5)

is then convex in λ and its minimization can be solved by a (tractable) convex
program.

The organization of the paper is as follows. Section 2 presents a general
bound on the excess risk of minimizers λ̂ of the penalized empirical risk (5).
We define an oracle target λ∗, that provides an ideal approximation fλ∗ of f0

with possibly many fewer elements fi of the dictionary FM , and show under
mild assumptions that this oracle target can be recovered by minimization of
(5), even if M is larger than n. We advance the use of a novel type of oracle
inequality, explored in [8, 6], where the aim is to show that the sum of the excess

risk and the penalty term p(λ̂ − λ∗) achieves the optimal balance between the
excess risk and a regularization term. This allows us to determine that the oracle
can be recovered and gives us information about the ℓ1-distance between λ̂ and
the oracle vector λ∗. This extends the work of [4, 5, 6, 7] on lasso-type estimators
in regression and density estimation problems to empirical risk minimization of
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the general criterion (5) in the context of classification with a reject option. We
take a different approach than the recent technical report [17]. In particular, we
use the concept of mutual coherence, used in [4, 5, 6, 7], which is weaker than the
corresponding requirement in [17] and give a different, simple proof of the main
oracle inequality. We demonstrate that the choice of the the tuning parameter
rn in the penalty p(λ) = 2rn|λ|1 is crucial. We prove that the oracle inequality
holds on an event where rn exceeds a certain random quantity r̂. Then we show
that r̂ is highly concentrated around its mean using McDiarmid’s concentration
inequality and provide an upper bound for E[r̂].

Section 3 applies the results of Section 2 to the specific generalized hinge loss
function φd introduced in [1], extending the work [14] to classification with a
reject option. This loss is convex, so that the minimization of (5) is computa-
tionally feasible, and at the same time classification calibrated, as the minimizer
of E[φd(Y f(X))] is the Bayes discriminant f0, our parameter of interest.

Finally, the proofs are collected in Section 4.

2. Oracle inequalities for the excess risk

2.1. Preliminaries

The data (X1, Y1), . . . , (Xn, Yn) consist of independent copies of (X, Y ) where
X takes values in an arbitrary measurable space X and Y ∈ {−1, +1}. Let
FM = {f1, . . . , fM} be a finite set of functions (dictionary) with ‖fj‖∞ ≤ CF

and we consider discriminant functions

fλ(x) =

M∑

j=1

λjfj(x), λ ∈ R
M .

We consider a loss function φ : R → [0,∞) that is Lipschitz,

|φ(y) − φ(y′)| ≤ Cφ|y − y′|

with Cφ < ∞ and based on this loss function, we define the risk functions

Rφ(λ) = E [φ(Y fλ(X))] and R̂φ(λ) =
1

n

n∑

i=1

φ(Yifλ(Xi)).

We assume that f0 defined in (4) minimizes the risk E[φ(Y f(X))] over all mea-
surable f : X → R, and we denote its risk by R0, that is,

R0 = inf
f

E [φ(Y f(X))]

We measure the performance of our estimators in terms of the excess risk

∆φ(λ) = Rφ(λ) − R0.
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Based on the penalty

p(λ) = 2rn|λ|1 = 2rn

M∑

i=1

|λi|

with rn specified later in Section 2.4, the penalized empirical risk minimizer λ̂
satisfies

R̂φ(λ̂) + p(λ̂) ≤ R̂φ(λ) + p(λ) for all λ ∈ R
M . (6)

In particular, (6) ensures that for λ0 = (0, . . . , 0),

p(λ̂) ≤ R̂φ(λ̂) + p(λ̂) ≤ R̂φ(λ0) + p(λ0) = φ(0)

which in turn implies |λ̂|1 ≤ φ(0)/(2rn). This means that we effectively minimize

the penalized empirical risk R̂φ(λ) + p(λ) over λ in the set

Λn =
{
λ ∈ R

M : |λ|1 ≤ φ(0)/(2rn)
}

.

2.2. Assumptions

We impose two conditions. Given some finite measure µ on X , set

< f, g >=

∫
f(x)g(x)µ(dx) and ‖f‖2 =

∫
f2(x)µ(dx).

The first condition imposes a link between the distance ‖fλ − f0‖ and excess
risk ∆φ(λ):

Condition 1. There exist C∆,µ < ∞ and 0 ≤ β < 1 such that, for all λ ∈ Λn,

‖fλ − f0‖ ≤ C∆,µ∆β
φ(λ). (7)

In regression and density estimation problems as considered in [4, 5, 6, 7],
this condition trivially holds with β = 1/2 and C∆,µ = 1. This relation is more
delicate to establish in classification problems. It depends on the behavior of
the conditional probability η(X) near d and 1 − d, see Section 3 below.

Our goal is to estimate f0 via linear combinations fλ(x) and to evaluate
performance in terms of the excess risk ∆φ(λ). For any I = {i1, . . . , im} ⊆
{1, . . . , M}, we define the approximating parameter space

Λ(I) =
{
λ ∈ R

M : λi = 0 for all i 6∈ I
}

and let λ̂I minimize R̂φ(λ) over Λ(I). An oracle that knows f0 would be able
to tell us in advance which approximating space Λ(I) yields the smallest excess

risk ∆φ(λ̂I). However, f0 is unknown so the best we can do is to mimic the
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behavior of the oracle. General theory for empirical risk minimization in the
classification context [2, 3, 11] indicates that

∆φ(λ̂I) . inf
λ∈Λ(I)

∆φ(λ) +

( |I|
n

)ρ

,

where |I| denotes the cardinality of the set I and the symbol . means that
the inequality holds up to known multiplicative constants. Various choices are
possible for the parameter ρ depending on the margin exponent α ≥ 0 defined
in Section 3. Our target of interest, the oracle vector λ∗ ∈ Λn, depends on β.
Formally, we define it as follows:

Definition. Let cµ = min1≤i≤M ‖fi‖ and let λ∗ be the minimizer of

3∆φ(λ) + 2

(
8C∆,µ

cµ

) 1
1−β (

r2
n|λ|0

) 1
2−2β , (8)

over λ ∈ Λn, where |λ|0 =
∑M

i=1 |λi| is the number of non-zero coefficients of
the vector λ.

Thus λ∗ balances the approximation error, as measured by the excess risk
∆φ(λ), and the complexity of the parameter set Λ(I) to which λ∗ belongs to,
as measured by the regularization term (r2

n|λ|0)1/(2−2β). The constants 3 and
2(8C∆,µ)1/(1−β) can be changed: A decrease in the former will lead to a increase
in the latter, and vice-versa. The constant cµ can be avoided altogether if we

take the penalty p(λ) = 2rn

∑M
i=1 ‖fi‖|λi|, but in practice µ, and consequently

‖fi‖, is unknown. Surely we could plug in estimates for ‖fi‖ as in [4, 5, 6, 17],
but we chose to keep the exposition and proofs as simple as possible.

Let
I∗ = {i : λ∗

i 6= 0}
be the collection of non-zero coefficients of λ∗,

|λ∗|0 =
M∑

i=1

I{λ∗

i
6=0}

be the cardinality of I∗, and

ρ(i, j) =
< fi, fj >

‖fi‖ · ‖fj‖

be the correlation between fi and fj . Our second assumption requires that

ρ∗ = max
i∈I∗

max
j 6=i

|ρ(i, j)| (9)

is small:
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Condition 2. Let cµ = min1≤j≤M ‖fj‖ and assume that

12ρ∗|λ∗|0 ≤ cµ. (10)

This mainly states that the submatrix (< fi, fj >)i,j∈I∗ is positive definite
and that the correlations ρ(i, j) between elements fi, i ∈ I∗, of this submatrix
and outside elements fj , j 6∈ I∗, are relatively small. We refer to this assumption
as the local mutual coherence assumption, see [4, 5, 6, 7].

2.3. Oracle inequality

Instrumental in our argument is the random quantity

r̂ = sup
λ∈Λn

∣∣∣(R̂φ − Rφ)(λ) − (R̂φ − Rφ)(λ∗)
∣∣∣

|λ − λ∗|1 + εn
(11)

where we take εn = φ(0)/(nrn).
Our first result states the oracle inequality. It holds true as long as the tuning

parameter rn in the penalty term exceeds r̂.

Theorem 1. Assume that (7) and (10) hold. On the event rn > r̂,

∆φ(λ̂) + rn|λ̂ − λ∗|1 ≤ 3∆φ(λ∗) + 2

(
8C∆,µ

cµ

) 1
1−β

(r2
n|λ∗|0)

1
2−2β +

2φ(0)

n
.

(12)

The next section discusses choices of the tuning parameter rn that ensure
that the probability of the event {rn ≥ r̂} is large.

2.4. Choice of the tuning parameter rn

The next lemma states that r̂ is sharply concentrated around its mean.

Lemma 2. Let CF = max1≤j≤M ‖fj‖∞. We have

0 ≤ r̂ ≤ 2CφCF (13)

and, for all δ > 0,

P {r̂ − E[r̂] ≥ δ} ≤ exp

(
−1

2

nδ2

C2
φC2

F

)
(14)

Proof. The first assertion follows directly from the definition of r̂. The second
statement follows from an application of McDiarmid’s bounded differences in-
equality [10, Theorem 2.2, page 8] after observing that a change of a single pair
(Xi, Yi) changes r̂ by at most 2CφCF /n.
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The range of r̂ in (13) is important for implementation of the method: We
suggest to find a good value for rn based on cross validation and the grid can
be taken on the interval [0, 2CφCF ]. Inequality (14) is important for theoretical
considerations. It shows that we should take

rn = E[r̂] +

√
2 log(1/δ)

n
CφCF (15)

for some 0 < δ < 1, since then

P{rn ≥ r̂} ≥ 1 − δ.

The expected value E[r̂] is of order {log(M ∨ n)/n}1/2 by the following lemma.

Lemma 3. Let Jn be the smallest integer such that 2Jn ≥ n. Then, for all
M, n ≥ 1 and 0 < δ < 1

E[r̂] ≤ 7CφCF√
n

√
2 log 2(M ∨ n) +

JnCφCF

2(M ∨ n)2
.

Consequently,

Corollary 4. Assume that (7) and (10) hold, and take

rn ≥ 7CφCF√
n

√
2 log 2(M ∨ n) +

JnCφCF

2(M ∨ n)2
+ CφCF

√
2 log(1/δ)

n
. (16)

Then oracle inequality (12) holds with probability at least 1 − δ.

3. Example: generalized hinge loss

Throughout this section, we consider a fixed cost d and a fixed threshold value
τ with 0 ≤ d ≤ 1/2 and d ≤ τ ≤ 1 − d. Instead of the discontinuous loss ℓ(z)
defined in (3), [1] considers the convex surrogate loss

φd(z) =






1 − az if z < 0,

1 − z if 0 ≤ z < 1,

0 otherwise

(17)

where a = (1 − d)/d ≥ 1 and shows that the Bayes discriminant function f0

defined in (4) minimizes both the risks E[ℓ(Y f(X))] and E[φd(Y f(X))] over
all measurable f : X → R. We see that φd(z) ≥ ℓ(z) for all z ∈ R as long as
0 ≤ τ ≤ 1−d. Moreover, [1] shows that a relation like this holds not only for the
loss functions and hence the risks, but for the excess risks as well. In particular,
for all d ≤ τ ≤ 1 − d, we have

E [ℓ(Y f(X))] − E [ℓ(Y f0(X))] ≤ E [φd(Y f(X))] − E [φd(Y f0(X))] . (18)
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This is important since minimization of (5) produces oracle inequalities in terms
of the φd-excess risk (Theorem 1), not in terms of the original excess risk directly.
The latter risk has a sound statistical interpretation.

For plug-in rules and empirical risk minimizers, [1, 11] show that for classifi-
cation with a reject option, fast rates (faster than n−1/2) for the excess risk may
be obtained if the probability that η(X), defined in (1), is close to the critical
values of d and 1 − d, is small. More precisely, assume that there exist A ≥ 1
and α ≥ 0 such that for all t > 0,

P {|η(X) − d| ≤ t} ≤ Atα and P {|η(X) − (1 − d)| ≤ t} ≤ Atα. (19)

For d = 1/2, this asumption is equivalent to Tsybakov’s margin condition [15].
Then, [1, Proof of Lemma 7] shows that

∆φd
(λ) ≥ {E [ρη(fλ(X), f0(X))]}

1+α
α

2d{4A(1 + |λ|1CF )} 1
α

(20)

where

ρη(f, f0) =






η|f − f0| if η < d and f < −1,

(1 − η)|f − f0| if η > 1 − d and f > 1,

|f − f0| otherwise.

Following [14], we consider the measure µ defined by

µ(B) =

∫

B

η(x){1 − η(x)}P (dx), (21)

for any Borel set B, where P is the probability measure of X . Since

∫
{fλ(x) − f0(x)}2 µ(dx) ≤ (1 + |λ|1CF )

∫
|fλ(x) − f0(x)|µ(dx),

it follows from (20) that condition (7) holds for all λ with |λ|1 ≤ CΛ with

C∆,µ = (1 + CΛCF )
1+α
2+2α (2d)

α
2+2α {4A(1 + CΛCF )} 1

2+2α , (22)

and β = α/(2 + 2α).

Let λ̂ minimize the penalized empirical risk R̂φd
(λ)+p(λ) over the restricted

set
Λ = {λ ∈ R

M : |λ|1 ≤ CΛ}
for some finite CΛ and let λ∗ minimize

3∆φd
(λ) + 2

(
8C∆,µ

cµ

) 2+2α
2+α (

r2
n|λ|0

) 1+α
2+α (23)
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over λ ∈ Λ. Provided then that the mutual coherence assumption (10) holds,
Corollary 4 states that for all choices rn = rn(δ) in (16) with Cφ = (1 − d)/d,

∆φd
(λ̂) + rn|λ̂ − λ∗|1 ≤ 3∆φ(λ∗) + 2

(
8C∆,µ

cµ

) 2+2α
2+α

(r2
n|λ∗|0)

1+α
2+α +

2φ(0)

n
.

with probability at least 1 − δ, where 0 < δ < 1 is given in (16). Consequently,
via (18),

Theorem 5. Assume that (19) holds for some α ≥ 0 and that the dictionary
FM satisfies (10) with µ defined in (21). Let λ∗ ∈ Λ be as given in (23). Then

the minimizer λ̂ ∈ Λ with rn as in (16) with δ = 1/(n∨M) and Cφ = (1− d)/d
satisfies, for C∆,µ defined in (22),

E[ℓ(Y f
λ̂
(X))] − E[ℓ(Y f0(X))] + rn|λ̂ − λ∗|1 ≤

3∆φ(λ∗) + 2

(
8C∆,µ

cµ

) 2+2α
2+α

(r2
n|λ∗|0)

1+α
2+α +

2φ(0)

n

with probability tending to 1 as n → ∞.

The best possible “rate” (r2
n|λ∗|0)(1+α)/(2+α) is achieved at α = +∞. The

slowest possible rate is achieved at α = 0 in which case (19) imposes no restric-
tion at all on η(X).

4. Proofs

4.1. Proof of Theorem 1

Lemma 6. On the set r̂ ≤ rn, we have

∆φ(λ̂) − ∆φ(λ∗) + rn|λ̂ − λ∗|1 ≤ 4rn

∑

i∈I∗

|λ̂i − λ∗
i | + rnεn. (24)

Proof. Rewrite (6) to obtain, for Ĝ(λ) = R̂(λ) − R(λ),

Rφ(λ̂) − Rφ(λ∗) ≤ Ĝ(λ∗) − Ĝ(λ̂) + p(λ∗) − p(λ̂)

≤ r̂|λ̂ − λ∗|1 + εnr̂ + p(λ∗) − p(λ̂).

On the event rn ≥ r̂ then,

∆φ(λ̂) − ∆φ(λ∗) ≤ rn|λ̂ − λ∗|1 + εnrn + p(λ∗) − p(λ̂).

Add rn|λ̂ − λ∗|1 to both sides, and deduce

∆φ(λ̂) − ∆φ(λ∗) + rn|λ̂ − λ∗|1
≤ 2rn|λ̂ − λ∗|1 + rnεn + 2rn|λ∗|1 − 2rn|λ̂|1

≤ 2rn

∑

i∈I∗

|λ̂i − λ∗
i | + 2rn

∑

i6∈I∗

|λ̂i| − 2rn

M∑

i=1

|λ̂i| + 2rn

∑

i∈I∗

|λ∗
i | + rnεn

≤ 4rn

∑

i∈I∗

|λ̂i − λ∗
i | + rnεn,
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which proves our claim.

Lemma 7.

cµ

∑

i∈I∗

|λ̂i − λ∗
i | ≤ 2ρ∗|λ̂ − λ∗|1 + |λ∗|1/2

0 ‖f
λ̂−λ∗

‖ (25)

Proof. See the proof of Theorem 2 of [7, pages 536, 537]. For completeness, we
repeat the argument: Set

uj = λ̂j − λ∗
j , U∗ =

∑

j∈I∗

|uj|‖fj‖, U =

M∑

j=1

|uj |‖fj‖.

Clearly ∑∑

i,j 6∈I∗

< fi, fj > uiuj ≥ 0

and so we obtain
∑

j∈I∗

u2
j‖fj‖2 = ‖f

λ̂−λ∗
‖2 −

∑∑

i,j 6∈I∗

uiuj < fi, fj > −2
∑

i6∈I∗

∑

j∈I∗

uiuj < fi, fj >

−
∑∑

i,j∈I∗, i6=j

uiuj < fi, fj >

≤ ‖f
λ̂−λ∗

‖2 + 2ρ∗
∑

i6∈I∗

|ui|‖fi‖
∑

j∈I∗

|uj |‖fj‖

+ρ∗
∑∑

i,j∈I∗

|ui||uj |‖fi‖‖fj‖

= ‖f
λ̂−λ∗

‖2 + 2ρ∗U∗U − ρ∗(U∗)2. (26)

The left-hand side can be bounded by
∑

j∈I∗ u2
j‖fj‖2 ≥ (U∗)2/|λ∗|0 using the

Cauchy-Schwarz inequality, and we obtain that

(U∗)2 ≤ ‖f
λ̂−λ∗

‖2|λ∗|0 + 2ρ∗|λ∗|0U∗U

and, using the properties of a function of degree two in U(λ), we further obtain

U∗ ≤ 2ρ∗|λ∗|0U +
√
|λ∗|0‖fλ̂−λ∗

‖ (27)

and the results follows from cµ

∑
i∈I∗ |λ̂∗

i − λ∗
i | ≤ U∗.

Combining both lemmas with the mutual coherence assumption immediately
gives

Lemma 8. On the event rn ≥ r̂,

∆φ(λ̂) − ∆φ(λ∗) +
1

2
rn|λ̂ − λ∗|1 ≤ 4

cµ
rn|λ∗|1/2

0 ‖f
λ̂−λ∗

‖ + rnεn (28)
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Finally we use the link between the L2(µ) norm of fλ − f0 and the excess risk
∆φ(λ) and Young’s inequality that states

ab ≤ ap

p
+

bq

q
, p > 1, q =

p

p − 1

so that,

ab ≤ δ

p
ap +

p − 1

pδ1/(p−1)
bp/(p−1)

for all a, b, δ > 0. From Lemma 3 above and condition (7), on the event rn ≥ r̂,

∆φ(λ̂) − ∆φ(λ∗) +
1

2
rn|λ̂ − λ∗|1 ≤ 4C∆,µ

cµ
rn|λ∗|1/2

0 {∆β
φ(λ̂) + ∆β

φ(λ∗)} + rnεn

Now use the above Young’s inequality twice with p = 1/β, δ = 1/2, b =

4|r2
nλ∗|1/2

0 C∆,µ/cµ and a = ∆β
φ(λ̂) and a = ∆β

φ(λ∗), respectively, to deduce

∆φ(λ̂) − ∆φ(λ∗) +
1

2
rn|λ̂ − λ∗|1

≤ β

2

{
∆φ(λ̂) + ∆φ(λ∗)

}
+ (1 − β)|r2

nλ∗|
1

2(1−β)

0

(
8C∆,µ

cµ

) 1
1−β

+ rnεn

≤ 1

2

{
∆φ(λ̂) + ∆φ(λ∗)

}
+ |r2

nλ∗|
1

2(1−β)

0

(
8C∆,µ

cµ

) 1
1−β

+ rnεn

This concludes the proof of Theorem 1.

4.2. Proof of Lemma 3

Let σ1, . . . , σn be independent Rademacher variables, taking the values ±1, each
with probability 1/2, independent of the data (X1, Y1), . . . , (Xn, Yn). Set

Ĝ0(λ) =
1

n

n∑

i=1

σi{φ(Yifλ(Xi)) − φ(Yifλ∗(Xi))}

A standard symmetrization trick ([10, page 18]) shows that

E [r̂] ≤ E

[
sup

λ∈Λn

|Ĝ0(λ) − Ĝ0(λ∗)|
|λ − λ∗|1 + εn

]

≤ E

[
sup

|λ−λ∗|1≤εn

|Ĝ0(λ) − Ĝ0(λ∗)|
|λ − λ∗|1 + εn

]
+ E

[
sup

εn≤|λ−λ∗|1≤φ(0)/rn

|Ĝ0(λ) − Ĝ0(λ∗)|
|λ − λ∗|1 + εn

]

= (I) + (II)
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as |λ−λ∗|1 ≤ φ(0)/rn for all λ ∈ Λn. The first term can be bounded as follows:

(I) ≤ 1

εn
E

[
sup

|λ−λ∗|1≤εn

∣∣∣Ĝ0(λ) − Ĝ0(λ∗)
∣∣∣

]

≤ Cφ

εn
E

[
sup

|λ−λ∗|1≤εn

∣∣∣∣∣
1

n

n∑

i=1

σiYifλ−λ∗(Xi)

∣∣∣∣∣

]

by the contraction principle for Rademacher processes, see [12, pages 112 – 113].
This implies that

(I) ≤ Cφ

εn
E

[
sup

|λ−λ∗|1≤εn

|λ − λ∗|1 max
1≤j≤M

∣∣∣∣∣
1

n

n∑

i=1

σiYifj(Xi)

∣∣∣∣∣

]

≤ CφE

[
max

1≤j≤M

∣∣∣∣∣
1

n

n∑

i=1

σiYifj(Xi)

∣∣∣∣∣

]

≤ CφCF

√
2 log(2M)√

n

where we used [10, Lemma 2.2, page 7] to get the last inequality. We can apply
this result since

E

[
exp

{
s

n∑

i=1

σiYifj(Xi)

}]
≤ exp(ns2C2

F /2)

for all s, that follows in turn from [10, Lemma 2.1, page 5] .
The second term (II) requires a peeling argument [16, page 70]. Since 0 ≤

r̂ ≤ 2CφCF almost surely, we can use the bound

E[II] ≤ ζ + 2CφCF P{(II) ≥ ζ}. (29)

Observe that for any ζ > 0, and for Jn the smallest integer with 2Jnεn ≥ φ(0)/rn

or 2Jn ≥ n,

P

{
sup

εn≤|λ−λ∗|1≤φ(0)/rn

|Ĝ0(λ) − Ĝ0(λ∗)|
|λ − λ∗|1 + εn

≥ ζ

}

≤
Jn∑

j=1

P

{
sup

2j−1εn≤|λ−λ∗|1≤2jεn

|Ĝ0(λ) − Ĝ0(λ∗)|
|λ − λ∗|1 + εn

≥ ζ

}

≤
Jn∑

j=1

P

{
sup

2j−1εn≤|λ−λ∗|1≤2jεn

∣∣∣Ĝ0(λ) − Ĝ0(λ∗)
∣∣∣ ≥ 2j−1εnζ

}

Now, set

Zj = sup
|λ−λ∗|1≤2jεn

∣∣∣Ĝ0(λ) − Ĝ0(λ∗)
∣∣∣
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and the same considerations leading to the final bound of (I) above yield

E[Zj ] ≤ 2jεnCφCF

√
2 log(2M)√

n

and

Jn∑

j=1

P

{
sup

2j−1εn≤|λ−λ∗|1≤2jεn

∣∣∣Ĝ0(λ) − Ĝ0(λ∗)
∣∣∣ ≥ 2j−1εnζ

}

≤
Jn∑

j=1

P
{
Zj − E[Zj ] ≥ 2j−1εnζ − E[Zj ]

}
.

A change of a single pair (Xi, Yi) changes Zj by at most 2CφCF (2jεn)/n, so
that another application of the bounded differences inequality [10, Theorem 2.2,
page 8] gives, by taking

ζ = 6CφCF

√
2 log 2(M ∨ n)√

n
,

the final bound

Jn∑

j=1

P
{
Zj − E[Zj ] ≥ 2j−1εnζ − E[Zj ]

}

≤
Jn∑

j=1

P

{
Zj − E[Zj ] ≥ 2 · 2jεn

√
2 log(2M ∨ 2n)√

n

}

≤ Jn exp

{
−2(CφCF 2jεn)22 log(2M ∨ 2n)

(CφCF 2jεn)2

}

= Jn exp {−2 log(2M ∨ 2n)}
= Jn(2M ∨ 2n)−2.

Invoke (29) to conclude the proof of Lemma 3.
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