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Abstract: We present a sequential Monte Carlo sampler algorithm for
the Bayesian analysis of generalised linear mixed models (GLMMs). These
models support a variety of interesting regression-type analyses, but per-
forming inference is often extremely difficult, even when using the Bayesian
approach combined with Markov chain Monte Carlo (MCMC). The Sequen-
tial Monte Carlo sampler (SMC) is a new and general method for producing
samples from posterior distributions. In this article we demonstrate use of
the SMC method for performing inference for GLMMs. We demonstrate
the effectiveness of the method on both simulated and real data, and find
that sequential Monte Carlo is a competitive alternative to the available
MCMC techniques.

Keywords and phrases: generalised additive models, longitudinal data
analysis, nonparametric regression, sequential Monte Carlo sampler.

Received December 2007.

1. Introduction

Effective strategies for generalised linear mixed model (GLMM) analysis con-
tinues to be a vibrant research area. Reasons include:

• GLMMs have become an indispensable vehicle for analysing a significant
portion of contemporary complex data sets.
• GLMMs are inherently difficult to fit compared with ordinary linear mixed

models and generalised linear models.
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• Existing strategies involve a number of trade-offs concerning, for example,
approximation accuracy, computational times and Markov chain conver-
gence.

Overviews of the usefulness and difficulties of GLMM-based analysis may be
found in, for example, [23, 27] and [28].

Most practical GLMM methodology falls into two categories: analytic approx-
imations (e.g. [2]) and Monte Carlo methods (e.g. [6]). Monte Carlo methods
have the advantage of providing direct approximations to quantities of interest
[1]. On the other hand, analytic approximations, such as Laplace approximation,
are indirect and prone to substantial bias (e.g. [3]). The most common Monte
Carlo approach is Markov Chain Monte Carlo (MCMC), where approximation
accuracy is associated with Markov chain convergence.

[30] is a recent example of research concerned with practical GLMM analy-
sis via Markov chain Monte Carlo. Those authors explored use of the MCMC
computing package WinBUGS and showed it to exhibit good performance for a
number of examples.

One of the major difficulties associated with using MCMC is the need to as-
sess convergence. Popular methods for convergence assessment often rely on the
comparison of multiple sample output; see [7] for a comparative review. These
methods can invariably fail to detect a lack of convergence and one needs to be
cautious when taking such an approach. Another major drawback of MCMC is
the difficulty in designing efficient samplers for complex problems. The use of
historical information from MCMC sample paths has to be treated very care-
fully, so that the equilibrium distribution of the Markov chain is not disturbed.
Various methods have been proposed in the literature, (see [14]), however the
practical applicability of these so-called adaptive methods can be limited.

Both problems associated with MCMC discussed above are inherently due to
the Markovian nature of the MCMC sampler. Sequential Monte Carlo (SMC)
methods provide an alternative framework for posterior sampling, which is not
dependent on the convergence of a Markov chain as in the MCMC sampler case.
Though careful assessment of posterior samples is also applicable in the SMC
case, these are more in line with the standard Monte Carlo methods. SMC sam-
plers can be seen as an extension of the well known importance sampling method.
The fact that SMC methods do not rely on Markov chain theory means that it
is a more flexible sampler. In the sense that for example, if the historical sample
path of the SMC sampler is informative for the design of an efficient algorithm,
this can be done quite easily in the SMC framework. In this article we show that
sequential Monte Carlo methods provide an effective means of Bayesian GLMM
analysis. We provide a general yet simple framework for efficient design of the
sampler, and demonstrate that this approach is a viable alternative to MCMC,
and since SMC samplers require a number of user-specified inputs, we will give
recommendations in the GLMM framework on how these are chosen.

Section 2 contains a brief summary of Bayesian approaches to generalised
linear mixed models. In Section 3 we provide details on analysis for such models
via sequential Monte Carlo sampling. In Section 4 we present two examples. In
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a simulated Poisson regression example, we compare the efficiencies of the SMC
sampler with alternative Monte Carlo methods, and then demonstrate the ef-
fectiveness of the SMC sampler in a binary logistic regression example involving
real data. Some comparisons of algorithm efficiencies for the two examples are
carried out in Section 5 and concluding remarks are given in Section 6. The
software used for this paper is available from the authors on request.

2. Bayesian generalised linear mixed models

GLMMs for canonical one-parameter exponential families (e.g. Poisson, logistic)
and Gaussian random effects take the general form

[y|βββ,u,G] = exp{yT (Xβββ + Zu)− 1T b(Xβββ + Zu) + 1T c(y)}, (1)

[u|G] ∼ N(0,G) (2)

where here, and throughout, the distribution of a random vector x is denoted
by [x] and the conditional distribution of y given x is denoted by [y|x]. In
the Poisson case b(x) = ex, while in the logistic case b(x) = log(1 + ex). An
important special case of (1)–(2) is the variance components model

[y|βββ,u, σ2
u1, . . . , σ

2
uL] = exp{yT (Xβββ + Zu) − 1T b(Xβββ + Zu) + 1T c(y)},

u =




u1

...
uL



 ,

[u|σ2
u1, . . . , σ

2
uL] ∼ N(0, blockdiag1≤ℓ≤L(σ2

uℓIqℓ
)).

(3)
where qℓ is the number of elements in uℓ. While (3) is not as general as (1)–
(2) it still handles many important situations such as random intercepts and
generalised additive models [30]. With simplicity in mind, we will focus on this
GLMM for the remainder of the paper. However, the methodology of Section 3
is quite general and is extendable to more elaborate GLMMs.

In this study we have worked with diffuse conjugate priors although, once
again, the methodology extends to other types of priors. To ensure scale-invariance
all continuous predictors are standardised at the start of the Bayesian analysis.
The prior on βββ is a diffuse Gaussian:

βββ ∼ N(0, σ2
βI) (4)

for some large σ2
β > 0. The prior for (σ2

u1, . . . , σ
2
uL) is assumed to have indepen-

dent components; i.e.

[σ2
u1, . . . , σ

2
uL] = [σ2

u1] · · · [σ
2
uL].

A number of possibilities for [σ2
uℓ] could be considered [18]. These include an in-

verse gamma distribution, a uniform distribution, and a folded Cauchy distribu-
tion. In this paper we use a conditionally conjugate inverse gamma distribution:
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[σ2
uℓ] = A

Auℓ
uℓ

Γ(Auℓ)
(σ2

uℓ)
−Auℓ−1e−Auℓ/σ2

uℓ , σ2
uℓ > 0 . (5)

This prior distribution was advocated by [30] for Auℓ = 0.01. The prior is there-
fore fairly non-informative, yet results in a slightly simpler sampling procedure.

It will be convenient to introduce some additional notation to enable the
model to be described more succinctly. We start by writing

C = [X Z] and ννν =

[
βββ
u

]
.

We also write qβ for the number of elements in β, and

V = blockdiag(σ2
βIqβ

, σ2
u1Iq1

, . . . , σ2
uLIqL

)

for the prior covariance of ννν. Writing σσσ2 for (σ2
u1, . . . , σ

2
uL), we can then combine

(3), (4) and (5) to give the joint density of all parameters and data:

[y, ννν, σσσ2] = exp

[
yTCννν − 1T b(Cννν) + 1T c(y)− 1

2ννν
TV−1ννν −

L∑

ℓ=1

qℓ

2 log(σ2
uℓ)

+

L∑

ℓ=1

{
Auℓ log(Auℓ)− logΓ(Auℓ)− (Auℓ +1) log(σ2

uℓ)−Auℓ/σ
2
uℓ

}]
.

From this, and noting that νννT V−1ννν = ‖βββ‖2/σ2
β +

∑L
ℓ=1 ‖uℓ‖

2/σ2
uℓ, it is clear

that the density of the posterior distribution of the parameters is simply pro-
portional to the function

π(ννν, σσσ2) = exp

[
yTCννν − 1T b(Cννν)−

1

2σ2
β

‖βββ‖2

−
L∑

ℓ=1

{
(Auℓ + qℓ

2
+ 1) log(σ2

uℓ) + (Auℓ +
1

2
‖uℓ‖

2)/σ2
uℓ

}]
. (6)

In Section 3, we will develop a sequential Monte Carlo sampler to produce
samples from the distribution proportional to π.

3. Sequential Monte Carlo sampling

The Monte Carlo approach to GLMM analysis performs inference by drawing
samples from the joint posterior distribution of the parameters θθθ = (βββ,u, σ2

u1,
. . . , σ2

uL). We write π(θθθ) for the (unnormalised) density of this posterior distri-
bution. Instead of using a Markov chain with π as its stationary distribution to
produce these samples, the sequential Monte Carlo (SMC) sampling method is
a generalisation of importance sampling that produces a weighted sample from
π while retaining some of the benefits of MCMC analysis [8].
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The use of SMC for static problems (as opposed to particle filters for dynamic
problems; [12] requires the introduction of auxiliary distributions π0, π1,. . . ,
πS−1. At stage s of the sampler we use a (weighted) sample from the previous
distribution πs−1 to produce a (weighted) sample from πs. We set πS = π so
that after S stages we have a sample from the posterior distribution of interest.
The introduction of the intermediate distributions allows the initial distribution
π0 to be gradually corrected to resemble the target distribution π, and can
often overcome problems such as particle depletion where, if the two consecutive
distributions are too dissimilar, then a small number of particles carry all the
weight in the final sample.

The auxiliary distributions can be constructed in several ways: [5] introduces
the observations incrementally to evolve the distribution from the prior to the
posterior; [13] uses a similar technique, but increases the size of the state space
as more observations are added; [8] use

πs ∝ π1−γs

0 πγs , where (7)

0 = γ0 ≤ γ1 ≤ · · · ≤ γS = 1

and π0 is chosen to be the prior distribution for the parameters. In this arti-
cle, due to the diffuse nature of the prior distribution, the initial distribution
π0 is instead chosen to be a multivariate Normal distribution with mean and
covariance matrix chosen based on estimates obtained using classical methods
for fitting GLMMs.

The SMC sampler algorithm starts by sampling N samples, termed “parti-
cles”, from the initial distribution π0. Denote by θθθ0i the ith particle at initial
stage s = 0, and allocate weight w0

i ≡ 1 to each of the N particles, so that
{θθθ0

i , w
0
i } is a weighted sample from π0.

The SMC sampling technique uses the weighted particles from distribution
πs−1 to produce particles from distribution πs through moving, reweighting and
(possibly) resampling; see [8]. For simplicity, the formulation we use is that
described in detail in Section 3.3.2.3 of that paper, which essentially results in
the resample–move algorithm used by [5] and [19]. This is also similar to the
annealed importance sampling method of [24], but the use of resampling within
the algorithm greatly improves the efficiency of the method. Writing θθθs

i for the
ith particle at stage s, at each stage 0 < s ≤ S of the algorithm we perform the
following steps:

Reweight Given N weighted particles {θθθs−1
i , ws−1

i } from πs−1, set

ws
i = ws−1

i

πs(θθθ
s−1
i )

πs−1(θθθ
s−1
i )

.

{θθθs−1
i , ws

i } is now a weighted sample from πs.

Resample If the effective sample size (ESS, [20]), defined as (
∑N

i=1w
s
i )

2/∑N
i=1(w

s
i )

2, is less than kN , where k is some constant typically taken to be
1/2, then we perform stratified resampling [21]. ESS estimates the number
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of simple random samples from the target distribution that are required
to obtain an estimate with the same Monte Carlo variation as the esti-
mate using the N weighted particles. Resampling refers to a suite of tech-
niques that replicate the particles in such a way that the expected value
of particle-based estimators is retained, but particles with low weights are
discarded and particles with high weights multiplied; see [11] for a sum-
mary and comparison of several such approaches. This standard practise
in the sequential Monte Carlo literature allows further computational ef-
fort to focus on samples that are likely to contribute non-negligibly to the
final estimate. Finally, resampled particle weights are reset to {ws

i } ≡ 1.
Move Let {θ̃θθs, w

s
i }, i = 1, . . . , N denote samples from at the current distribu-

tion πs after reweighting and (possibly) resampling. To increase particle
diversity we replace each sample according to

θθθs
i ∼ Ks(θ̃θθ

s
i, ·)

where Ks is an MCMC transition kernel that admits πs as stationary
distribution. [15] provides detail on MCMC transition kernels.

It is known [8] that this particular formulation of the SMC sampling is sub-
optimal, in terms of the variance of the importance weights {ws

i }, especially
if the distributions on consecutive stages are too far apart. However, since the
optimal formulation is intractable, and for the static problem we have here it
is easy to ensure that the difference between πs−1 and πs is small, we use this
simpler formulation. (Contrast this situation with that of an SMC algorithm
for a dynamic problem, or the technique of [5] where data arrive over time and
there is no control over the distance between πs−1 and πs.)

The “parameters” of the algorithm that must be chosen when implementing
this sampler are therefore:

• the initial distribution π0,
• the sequence of values γs that govern the rate of transition from the initial

distribution π0 to the posterior distribution π,
• the transition kernels Ks, used to move the particles within the distribu-

tion proportional to πs, and
• the number of particles N .
• the total number of distributions S.

Specific choices of these parameters used in this paper are discussed in the
following subsections. We give a more algorithmic description of our method in
the Appendix.

3.1. Initial distribution π0

As previously observed, using the prior distribution as an initial distribution is
flawed in this case, since the prior is highly diffuse. Instead we use the penalised
quasi-likelihood (PQL) method [2] to obtain an approximate fit of the model.
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Let ν̂ννPQL and σ̂σσ2
PQL

be the estimate of ννν and σσσ2 obtained using PQL. We will
calculate a normal approximation of the posterior distribution of ννν centred
at this approximate maximum likelihood estimate, which can then be used to
construct an initial distribution π0 for the SMC sampling procedure. Note from
(6) that

π(ννν, σσσ2) = exp
{
yTCννν − 1T b(Cννν)− 1

2
νννTV−1ννν + f(σσσ2)

}
,

where f is some function that does not depend on ννν . It is a simple calculation
to see that the matrix of second derivatives with respect to components of ννν is
−CT diag{b′′(Cννν)}C −V−1; we therefore initialise our algorithm by taking a
normal distribution for ννν with mean ν̂ννPQL and covariance matrix

ΣΣΣ =
[
CT diag{b′′(Cν̂ννPQL)}C + V̂−1

PQL

]−1

, (8)

where the entries in V̂PQL are taken from σ̂σσ2
PQL

.
It remains to specify a distribution for the variance vector σσσ2. We have found

it convenient to specify this conditional on ννν , and of a form that is consistent
with the posterior distribution π. We take

π0(σσσ
2 | ννν) =

L∏

ℓ=1

(Auℓ + 1
2‖uℓ‖

2)(Auℓ+qℓ/2)

Γ(Auℓ + qℓ/2)
(σ2

uℓ)
−Auℓ−qℓ/2−1e−(Auℓ+

1
2
‖uℓ‖

2)/σ2
uℓ ,

(9)
i.e. the σ2

uℓ are conditionally independent given ννν, and each has an inverse
gamma distribution depending on the corresponding components of u. Hence, an
initial sample from π0 can easily be generated by first sampling from the normal
distribution for ννν then sampling the σ2

uℓ from their conditional distributions.
Furthermore, we will see in Sections 3.2 and 3.3 that this results in simple
conditional distributions for σ2

uℓ at all stages of the sampler.
Putting together the initial distributions of ννν and σσσ2, we see that

π0(ννν, σσσ
2) ∝ exp

[
−

1

2
(ννν − ν̂ννPQL)T ΣΣΣ−1(ννν − ν̂ννPQL)

+

L∑

ℓ=1

{
(Auℓ +

qℓ

2
) log(Auℓ +

1

2
‖uℓ‖

2)

− (Auℓ + qℓ

2 + 1) log σ2
uℓ− (Auℓ + 1

2‖uℓ‖
2)/σ2

uℓ

}]
. (10)

In the GLMM examples of this paper, there is no reason to suspect that
the posterior distribution is particularly spread out or multi-modal. Hence this
π0 is sufficient, as demonstrated by the fact that several different Monte Carlo
methods provide identical inference in the examples of Section 4. In other ex-
amples where these complications are likely to occur, π0 should be chosen with
an inflated variance, or to be a t distribution, to help dominate the posterior
distribution. Note that multi-modality is less of a problem for the sequential
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Monte Carlo approach than it would be for MCMC, since there is no difficulty
in having samples in both modes simultaneously, whereas an MCMC approach
must move between the nodes through areas of low posterior probability.

3.2. Sequence of intermediary distributions

In this section we describe the sequence of distributions used to transition from
π0 to πS = π. Recall that we choose to use the formulation (7). Using (10) and
(6) it is clear that the intermediate distributions are proportional to πs where

πs(ννν, σσσ
2)

= exp

[
γs

{
yTCννν − 1T b(Cννν)−

1

2σ2
β

‖βββ‖2 +
L∑

ℓ=1

(Auℓ +
qℓ

2
) log(Auℓ +

1

2
‖uℓ‖

2)

−

L∑

ℓ=1

(
(Auℓ + qℓ

2 + 1) log(σ2
uℓ) + (Auℓ + ‖uℓ‖

2)/σ2
uℓ

) }

+(1− γs)
{
−

1

2
(ννν − ν̂ννPQL)T ΣΣΣ−1(ννν − ν̂ννPQL)

−
L∑

ℓ=1

(
(Auℓ + qℓ

2
+ 1) logσ2

uℓ + (Auℓ + 1
2
‖uℓ‖

2)/σ2
uℓ

) }]

= exp

[
γs

{
yTCννν− 1T b(Cννν) −

1

2σ2
β

‖βββ‖2
}

+

L∑

ℓ=1

(Auℓ +
qℓ

2
) log(Auℓ +

1

2
‖uℓ‖

2)

+ (1− γs)
{
−

1

2
(ννν − ν̂ννPQL)

T ΣΣΣ−1(ννν − ν̂ννPQL)
}

(11)

−

L∑

ℓ=1

{
(Auℓ + qℓ

2 + 1) logσ2
uℓ + (Auℓ + 1

2‖uℓ‖
2)/σ2

uℓ

}]

In the absence of any additional information about the shapes of these distri-
butions, it is difficult to specify a sensible generic sequence of γs values. Hence
for the rest of the paper we choose to increase γs from γ0 = 0 to γS−5 = 1 in
a linear fashion, that is, values of γs are sequentially incremented by the same
amount. Additionally, we append γS−4 = · · · = γS = 1 to this sequence to give
five stages at the end of the sampler on which the particles are not resampled.
This means that the final sample is well spread out over the distribution π (it
was found that if resampling happened too close to the end of the sampler then
several samples might be identical, resulting in poor density estimates being
produced using the standard techniques).

It is an interesting and open research question as to whether the sequence
γs can be chosen in a more principled manner. One option would be to choose
the sequence in advance using some properties of the distributions π0 and π.
An alternative would be to choose the next γs adaptively while the sampler
proceeds through the sequence of distributions; however it is not straightforward
to generalise the proofs of validity of the sampler in this case.
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3.3. Transition kernels

For this paper we choose to use Metropolis-Hastings transition kernels for the
parameters in ννν . The choice of inverse gamma distributions for the components
of σσσ2 within π0 means that we can simply use Gibbs sampling steps, [17], to up-
date those components. At each step s we use a Metropolis–Hastings transition
kernels Ks. Since π0 is an approximation to π, and πs is in some sense between
π0 and π, we use the same proposal distributions at each step s. These proposal
distributions are derived from π0 as described in this section.

We form a partition {I1, . . . , IJ} of {1, . . . , P }, where P is the number of
columns in C, so that [CI1

· · ·CIJ
] is the matrix C, but with columns possibly

re-ordered; and 


νννI1

...
νννIJ





is the corresponding partition of ννν. (The case J = 1 corresponds to no par-
titioning.) On each move step of the algorithm we move through the series of
subsets Ij, for j = 1, . . . , J . We apply a Metropolis-Hastings transition kernel
to the components νννIj

= (νi)i∈Ij
.

To describe the transitions we introduce the matrices ΣΣΣIj
, where ΣΣΣIj

is the
conditional covariance under π0 of νννIj

given the values of ννν−Ij
= (νi)i/∈Ij

.
These can be calculated at the start of the algorithm. Recall that since π0 is an
approximation of π, the ΣΣΣIj

matrices therefore correspond to approximations
of the conditional covariance of νννIj

given ννν−Ij
under the posterior distribution

π. Note that we are here assuming that the approximate covariance matrices
ΣΣΣIj

are close enough to the truth to be useful as proposal distributions in the
random walk Metropolis–Hastings kernel.

The proposal distribution for νννIj
is then a normal distribution centered on

the current value of νννIj
with covariance τν

j ΣΣΣIj
. The acceptance probability for

the move, applied after reweighting to get a weighted distribution from πs, is
simply calculated from the ratio of πs values for the proposed and current values.

The scaling parameters τν
j are by default chosen to be 2.4/

√
|Ij| following the

heuristic of [25]. However in practice they are usually chosen, based on several
runs of the algorithm, to ensure that the acceptance rates remain close to 0.23
(again following [25]). Details of specific choices used are given in the examples.

To update the variance parameters σσσ2, a Gibbs sampling step can be applied.
Note from (11) that for each s the full conditional distribution of σ2

uℓ is simply an
inverse gamma distribution, depending on the corresponding vector of regression
coefficients uℓ. However if a different prior is used for σσσ2 then Gibbs sampling
will not be available and a Metropolis–Hastings update should be performed for
each σ2

uℓ in turn.



Y. Fan et al./GLM model analysis via SMC sampling 925

4. Examples

In this section we will demonstrate the methodology on two examples. The first
example is a semiparametric Poisson regression model, with simulated data so
that fair comparisons can be drawn with alternative MCMC approaches. The
second example is a binary logistic regression involving respiratory infection
in Indonesian children, with both a semiparametric component and random
effects. All computations were carried out in the R language [29], using a single
core AMD Opteron 2.0GHz, this is similar to running the program on a standard
PC.

4.1. Semiparametric Poisson regression

In this section, we generate n = 500 Poisson random variables yi, i = 1, . . . , n
from

yi ∼ Poisson(exp {0.7x1i + 2x2i + cos(4πx2i)})

where x1i is 0 or 1 with probability 0.5, and x2i is uniformly sampled from the
interval [0, 1].

We fit model (3), with

b(x) = ex, βββ =




β0

β1

β2



 , X =





1 x11 x21

1 x12 x22

...
...

...
1 x1n x2n




.

The radial cubic basis function is used to model the function f(x2i) = cos(4πx2i).
This implies modelling f(x2i) = βx2

x2i+Zx2i
u, where for knot points κk, chosen

to be the ( k+1
K+2 )th quantile of the unique predictor values, for k = 1, . . . , K,K =

10,

u =




u1

...
u10



 , [u|σ2
u] ∼ N(0, σ2

uI), and Zx2i
= [|x2i− κk|

3

1≤k≤10

][|κk′ − κk|
3

1≤k,k′≤10

]−1/2

The glmmPQL method of the R statistical package gives an approximate MLE
for the regression coefficients ν̂ννPQL, and the variance parameters σ̂σσ2

PQL
.We follow

the general algorithm given in Section 3. There are 13 regression coefficients
to be estimated for this model, and one variance parameter. We updated each
of the regression coefficients ννν singly using random walk Metropolis-Hastings
(RWMH) updates for the move step of the algorithm and a Gibbs update for
the variance parameter. As with MCMC, the tuning of this kernel is crucial
to the success of the algorithm; to achieve an acceptance rate in the MCMC
step between 20–30% we set τν

I = 1/3. We also choose the number of steps
S = 105 and the number of particles N = 1000 based on preliminary runs. We
will discuss the choices of N and S in more detail in Section 5.
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We compare the performance of the SMC sampler simulations by monitoring
the QQ-plots of samples from a simple importance sampler, a single-variable slice
sampler which updates one parameter at a time and a standard RWMH sampler
with the same transition kernels as used in the SMC sampler (i.e. those described
in Section 3.3). Figure 1(a) shows the QQ-plot for the β1 parameter, and the
corresponding density estimates for β1 is given in (b). With the exception of the
importance sampler, which can perform badly on different simulated data sets,
the remaining samplers achieved good concordance. This required 1,000 particles
with 105 steps for the SMC sampler. For comparison, we used 20,000 iterations of
both slice sampler and RWMH MCMC scheme, with the first 10,000 discarded as
burn-in. These took approximately 1394 and 2430 seconds respectively, whereas
the SMC sampler took approximately 700 seconds. The majority of the gains in
computational time for the SMC sampler come from the fact that the particles
at each step can be updated simultaneously without the need to cycle through
a loop, compared with MCMC samplers where each iteration has to be updated
sequentially depending on the value of the parameter at the previous step. In
the R programming language used for this research, as with many other high
level programming languages, this provides a very significant computational
advantage.

The nonparametric fits of the model, calculated using the estimated posterior
mean of u, are displayed in Figure 2. The model has successfully recovered the
nonlinearity in the dependency on x2 and fits the data well.

4.2. Example: Respiratory infection in Indonesian children

Here we apply sequential Monte Carlo algorithm to an example involving res-
piratory infection in Indonesian children (see [10, 22]). The data contain lon-
gitudinal measurements on 275 Indonesian children, where the indicator for
respiratory infection is the binary response. The covariates include age, height,
indicators for vitamin A deficiency, sex, stunting and visit numbers (one to six).

Previous analyses have shown the effect of age of the child to be non-linear,
hence we use a logistic additive mixed model of the form

logit{P (respiratory infectionij = 1|Ui, uk)} = β0 + Ui + βββTxij + f(ageij)

for 1 ≤ i ≤ 275 children and 1 ≤ j ≤ ni repeated measures within a child.

Ui
i.i.d.

∼ N(0, σ2
U) is a random child effect, xij is the measurement on a vector

of the remaining 9 covariates, and f is modelled using penalized splines with
spline basis coefficients uk i.i.d. N(0, σ2

u).
As recommended by [16], we use hierarchical centering of random effects. All

continuous covariates are standardised to have zero mean and unit standard
deviation, so that the choices of hyperparameters can be independent of scale.
Radial cubic basis functions are used to fit the covariate age, where

f(age) = βageage + Zageu
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Fig 1. QQ-plots of SMC sampler output against simple importance sampler, the slice sampler
and the RW Metropolis-Hastings sampler for β1 (a). The corresponding density estimates (b).
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Fig 2. The data, the true mean values (solid lines), and the estimated mean values (dotted
lines) for the simulated Poisson example. The fit was based on a SMC sampler run with 1000
particles and 105 intermediate steps, as described in the text.

where
Zage = [|age− κk

1≤κ≤K
|3][|κk − κk′

1≤k,k′≤K
|3]−1/2 and u ∼ N(0, σ2

uI)

with κk chosen to be the ( k+1
K+2 )th quantile of the unique predictor values. We

take K = 20 in this example.
We use a vague prior N(0, 108) for the fixed effects. For both variance com-

ponents, we use the conjugate Inverse Gamma prior IG(0.01, 0.01). Other prior
choices are available, see [30]. Here, random walk Metropolis-hastings updates
were carried out for each regression coefficients separately, with Gibbs sampling
used for the variance parameters. The tuning parameters τν

Ij
for the Metropolis-

Hastings update are again chosen to achieve an acceptance rate in the MCMC
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coeff. density summary

vit. A defic.

−2 −1 0 1 2 3

posterior mean: 0.61

95% credible interval: 

(−0.542,1.62)

male

−0.5 0 0.5 1 1.5

posterior mean: 0.563

95% credible interval: 

(0.0439,1.06)

height

−0.05 0 0.05 0.1 0.15

posterior mean: 0.0338

95% credible interval: 

(−0.0208,0.0893)

stunted

−1 0 1 2

posterior mean: 0.474

95% credible interval: 

(−0.402,1.31)

visit 2

−3 −2 −1 0

posterior mean: −1.2

95% credible interval: 

(−2.1,−0.431)

visit 3

−2 −1 0 1

posterior mean: −0.629

95% credible interval: 

(−1.41,0.11)

visit 4

−3 −2 −1 0

posterior mean: −1.37

95% credible interval: 

(−2.3,−0.467)

visit 5

−1 −0.5 0 0.5 1 1.5

posterior mean: 0.468

95% credible interval: 

(−0.158,1.14)

visit 6

−1 0 1

posterior mean: −0.0384

95% credible interval: 

(−0.722,0.67)

st.dev.(subject)

0.5 1 1.5

posterior mean: 0.928

95% credible interval: 

(0.7,1.23)

Fig 3. Summary of coefficients in respiratory infections in Indonesian children example.

step between 20–30%, we used τν
Ij

= 3 for the fixed effect coefficients, τν
Ij

= 6
for the random effect coefficients, and τν

Ij
= 5 for the spline coefficients.

Figure 3 show the results from simulation, using 1000 particles and 305 in-
termediate steps. The Figure shows borderline positive effect of Vitamin A de-
ficiency, sex and some visit numbers on respiratory infection. These results are
in keeping with previous analyses. Figure 4(a) shows the nonlinear effect of
age; 4(b) shows the effective sample size at each of 300 sequential steps of the
simulation, vertical lines indicate the occurrence of resampling.

Again, we compare the performance of the SMC sampler with the importance
sampler, slice sampler and RWMH sampler with the same transition kernel as
Step 3 of the SMC sampler. Results for 5,000 samples of the importance sam-
pler, 1,000 SMC particles and 5,000 slice samples with 5,000 burn-in and 5,000
RWMH samples with 5,000 burn-in are plotted in Figure 5, good agreements
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Fig 4. Respiratory infections in Indonesian children example. (a) Posterior mean of the esti-
mated probability of respiratory infection f(age) with all other covariates set to their average
values. (b) Effective sample size over 300 distributions, vertical lines indicate instances of
resampling.

are found between the SMC, slice and MCMC samplers. The sampler which
performed badly appears to be the importance sampler, where in this case, the
sampler appears to suffers from particle depletion where one or few particles
from an area of high posterior density is dominating the other particles.

Finally, the SMC sampler took approximately the same amount of time as
the slice sampler at 2.8 hours and the RWMH took about 9 hours (similarly 9
hours was required in WinBUGS). In the next section we discuss the effect of the
sample size and step size specifications on the efficiency of the SMC sampler.

5. Improving sampler performance

In this section we investigate the SMC sampler performance by looking at the
effects of user-defined specifications such as the number of sequential steps (S);
the number of particles to sample (N) and block updating strategies.

Here we base efficiency comparisons on the effective sample size diagnostic
calculation of [4]. (Note this is different from the ESS [20] used in determining
whether resampling is performed.) This diagnostic is essentially an analysis of
variance approach based on several parallel runs of the algorithm, which provides
the number of independent samples from the posterior distribution that would
be required to gain the same degree of accuracy: higher numbers are obviously
preferrable. This estimate of effective sample size is not affected by resampling
and in addition, can be used to compare SMC sampler with MCMC approaches
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Fig 5. QQ-plots of SMC sampler output against simple importance sampler, the slice sampler
and the RW Metropolis-Hastings sampler for the coefficient of vitamin A deficiency (a). The
corresponding density estimates (b).
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under a consistent framework. Thus, for a given parameter, we calculate the
ratio of the average estimate of the posterior variance of the parameter to the
variance of the posterior means of the parameter across independent runs. All
our experiments were carried out using the two examples in Sections 4.1 and
4.2, where β1 is used for the Poisson regression example, and the coefficient of
Vitamin A deficiency is used for the logistic regression example.

In experimenting with block/simultaneous updating the parameters for the
move step of the SMC sampler, we found that in some cases, particularly for the
logistic example, näive blocking updating (i.e., blocking regression coefficients,
random effects coefficients, and spline coefficients) can in fact adversely affect
the performance of the sampler. We also found that careful tuning of accep-
tance probabilities in the RWMH step to be between 20-30% can be crucial to
the performance. Finally, we found that increasing the number of sequential dis-
tributions S, as well as increasing the number of particles N can greatly improve
the effective sample size.

Figure 6 shows the effective sample size for β1 calculated from a total of
10 independent runs of the sampler for the Poisson regression example. We
calculated the diagnostic for the SMC sampler over S = 10, 20, 50, 100, 200. For
each S, we implemented the sampler with a single block update using N = 1000
and N = 2000 particles, and a sampler without blocking with N = 1000. For
comparison, the diagnostic for β1 was also calculated for a (single-variable) slice
sampler and a RWMH sampler, each of 20,000 iterations with 10,000 burnin.
The RWMH algorithm used the same transition kernels as Step 3 of the SMC
sampler, with and without block updating.

Clearly, the effective sample size of the sampler with no blocking is larger than
that of the sampler with one block for all S, and increases with larger values
of S and N . We can see that the effective sample size of the slice sampler is
comparable to the SMC sampler with S = 50 and N = 1000, while the RWMH
sampler achieves the smallest effective sample size.

For the logistic regression example of Section 4.2, we found that by updating
regression parameters singly, and choosing S = 200 and N = 2000 achieved an
effective sample size of 2604, and S = 300 and N = 1000 achieved an effective
sample size of 2377. The two samplers took about 3.8 and 2.9 hours to run
respectively. As a comparison, the slice sampler with 10,000 iterations with
5,000 burn in took 2.8 hours to run and achieves an effective sample size of
1948, while a RWMH sampler of length 10,000 with 5,000 burn in achieves an
effective sample size of only 177, and taking 9 hours to run.

6. Conclusion

In this paper we presented a general sequential Monte Carlo algorithm to pro-
duce samples from the posterior distribution for Bayesian analysis of generalised
linear mixed models. The algorithm is an alternative to the popular Markov
chain Monte Carlo methods. We have demonstrated that the algorithm can
handle problems where the number of parameters to be estimated in the model
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Fig 6. Comparison of effective sample size for β1 from the SMC sampler (over increasing
number of sequential distributions (S), and the slice and RWMH samplers in the Poisson
regression examples.

is high. For example, in the spline formulation of the Indonesian children exam-
ple, there were over 300 parameters in the model. In addition, the algorithm is
generally easy to apply. We have also demonstrated that it can have substan-
tial gains in computational time over traditional MCMC in both a simulated
poisson example and a real data binomial example. Finally, perhaps the biggest
advantage of SMC over MCMC samplers is the fact convergence of SMC sam-
plers does not rely on convergence of Markov chains, which can be problematic
in designing more efficient algorithms in complex problems.

We have found that in the context of Bayesian GLMM analysis, the design
of the initial sequential Monte Carlo distribution may be helped by using ap-
proximate parameter estimates from classical GLMM analysis, such as using the
PQL method to find MLE of the likelihood. Note that in the case where such
estimates cannot be easily found, and the only sensible choice is a diffuse prior,
then a SMC sampler with many more particles and sequential distributions will
be needed to obtain good results. In choosing the schedule for the tempering
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sequence γs in (7), we have found no substantial difference between the different
types of schedules currently used in the literature, hence we recommend that a
simple linear schedule be adopted in the GLMM context. We have also found
that by tuning the acceptance rate of the Random-Walk Metropolis-Hastings
kernel in the Move step of the SMC sampler to around 20-30% significantly
improves the performance of the sampler, see [9], although this practical finding
does not yet have rigorous theoretical support.

Finally, in implementing the Move step of the SMC sampler, one has some
degree of flexibility when the Markov chain Monte Carlo update is used. For
example, one may consider a better choice of proposal distributions for the
Metropolis-Hastings algorithm, by allowing the algorithm to automatically scale
a proposal distribution, see for example [5]. Here a major advantage over the
traditional MCMC is that the algorithm does not suffer from the restrictions
associated with a Markov chain, and information from previous samples can be
freely used to obtain future samples. Furthermore, one is not restricted to only
MCMC type of moves in this step, other move types are possible, see [8].

However, sequential Monte Carlo algorithms are not black-box algorithms,
requiring a certain amount of tuning and user input. In particular, one needs to
set the number of sequential distributions (S) the number of particles to sample
(N) and tuning parameters for the Metropolis-Hastings kernels in the move step
of the algorithm.
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Appendix: Algorithmic description of the SMC sampler method for

GLMMs

In this appendix we give a detailed description of how to use the SMC sampler
method to perform inference in GLMMs. We use the notation of Section 2;
choices made in the implementation of the algorithm are explained in Section 3.

For any subset I of {1, . . . , P } we write CI for the submatrix of of the
design matrix C consisting of columns in I, C−I for the submatrix consisting
of columns of C not in I, νννI and ννν−I for the analogously defined subvectors
of ννν. Also for any square matrix Q we write QII for the square submatrix
corresponding to rows and columns in I, QI,−I for the submatrix with rows
in I and columns not in I, Q−I,I for the submatrix with rows not in I and
columns in I, and Q−I,−I for the square submatrix with rows and columns not
in I.
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Initialisation

• Set the number of particles N and the number of intermediary distribu-
tions S.
• Construct a vector γγγ with sth entry ψ(s), s = 0, 1, . . . , S, where ψ :
{0, 1, . . . , S} → [0, 1] is an increasing function such that ψ(0) = 0 and
ψ(S) = 1. For the results in this paper we used ψ(s) = min{1, s/(S− 5)}.

• Construct subsets I1, . . . , IJ of {1, . . . , P } such that
⋃J

j=1 Ij = {1, . . . , P }.
The case J = 1 corresponds to no blocking of variables for the move step.
• Set tuning parameters τν

j > 0, j = 1, . . . , J for the Metropolis–Hastings
updates. Usually these will be set based on preliminary runs of the algo-
rithm, and convenient defaults are τν

j = 2.4/
√
|Ij|.

• Use the Breslow & Clayton (1993) penalised quasi-likelihood (PQL) algo-
rithm to obtain initial estimates:

ν̂ννPQL and σ̂σσ2
PQL

.

This is facilitated by software such as glmmPQL() in the R package MASS

[29]. Use these estimates in (8) to calculate ΣΣΣ.
• For each j = 1, . . . , J , calculate the conditional covariance under π0 of
νννI conditional of ννν−I . If Q = Σ−1, then this conditional covariance is
ΣΣΣIj

:= (QII)−1.

Initial sample from π0

• Produce a sample of size N from π0: for each i = 1, . . . , N sample νi from
the normal distribution with mean ν̂ννPQL and covariance ΣΣΣ, then sample
σσσ2

i from the conditional inverse gamma distributions (9).
• Set the weights wi = 1/N for each i = 1, . . . , N .

Sequential sampling from each πs

For each s = 1, . . . , S in turn,

Reweight For each i = 1, . . . , N , update wi according to

wi ← wi
πs(νi, σσσ

2
i )

πs−1(νi, σσσ2
i )

=

(
π(νi, σσσ

2
i )

π0(νi, σσσ2
i )

)γs−γs−1

then normalise the weights by setting wi ← wi/
∑N

j=1 wj. To avoid over-
flow and underflow problems it is recommended that logarithms be used
in this step.

Resample Calculate the effective sample size (ESS) using

ESS = (

N∑

i=1

wi)
2/

N∑

i=1

(wi)
2.
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If ESS < N/2 (or if s = min{s : γs = 1}) then resample the particles. The
naive version of resampling, which introduces unnecessary Monte Carlo
variation into the scheme, simply samples (with replacement) from the
pool of particles, with particle i selected with probability wi. However in
our implementation we use stratified resampling [21] to reduce the Monte
Carlo variation. After resampling set wi = 1/N for all i = 1, . . . , N .

Move • For each j = 1, . . . , J and each i = 1, . . . , N , generate proposals
(ν̃ννi)Ij

∼ N((ν̃ννi)Ij
, τν

j ΣΣΣIj
), 1 ≤ i ≤ N . With probability

α(i) = max

{
1,
πs((ν̃ννi)Ij

|(νννi)−Ij
, σσσ2

i )

πs(νννi, σσσ2
i )

}

accept the proposal and set (νννi)Ij
= (ν̃ννi)Ij

. Otherwise reject the
proposal and leave (νννi)Ij

unchanged. Again, it is recommended that
logarithms be used when calculating α to avoid overflow and under-
flow problems. Note that several parts of the ratio in the calculation
of α are the same in both the numerator and denominator and need
not be calculated.

• For each ℓ = 1, . . . , L, and for each i = 1, . . . , N , sample (σσσ2
i )ℓ

from the inverse gamma distribution with shape Auℓ + qℓ/2 and rate
Auℓ +‖uℓ‖

2/2. Note that if inverse gamma distributions are not used
as the prior distribution for σσσ2 then sampling from inverse gamma
distributions here would not result in a transition kernel that admits
πs as a stationary distribution. Instead further Metropolis–Hastings
can be used for each σ2

uℓ in turn.

Note that the decision to resample on the first step at which γs = 1 means
that the final sample is an unweighted sample from π. Hence standard techniques
for dealing with samples from posterior distributions can be used. However the
plug-in rule for the bandwidth used in the density estimates performed poorly
for resampling close to step S, since some particles were identical. This is the
reason that we generally set γS−5 = 1 and finish with five applications of the
transition kernel to the unweighted sample, resulting in a suitably diverse sample
from π.
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