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Abstract: In this paper we investigate the performance of periodogram
based estimators of the spectral density matrix of possibly high-dimensional
time series. We suggest and study shrinkage as a remedy against numerical
instabilities due to deteriorating condition numbers of (kernel) smoothed
periodogram matrices. Moreover, shrinking the empirical eigenvalues in the
frequency domain towards one another also improves at the same time the
Mean Squared Error (MSE) of these widely used nonparametric spectral
estimators. Compared to some existing time domain approaches, restricted
to i.i.d. data, in the frequency domain it is necessary to take the size of
the smoothing span as “effective or local sample size” into account. While
Bohm & von Sachs (2007) proposes a multiple of the identity matrix as
optimal shrinkage target in the absence of knowledge about the multidi-
mensional structure of the data, here we consider “structural” shrinkage.
We assume that the spectral structure of the data is induced by underlying
factors. However, in contrast to actual factor modelling suffering from the
need to choose the number of factors, we suggest a model-free approach.
Our final estimator is the asymptotically MSE-optimal linear combination
of the smoothed periodogram and the parametric estimator based on an un-
derfitting (and hence deliberately misspecified) factor model. We complete
our theoretical considerations by some extensive simulation studies. In the
situation of data generated from a higher-order factor model, we compare all
four types of involved estimators (including the one of Bohm & von Sachs

(2007)).

Received April 2008.

1. Introduction

Spectral analysis of multivariate time series is known to be a useful tool to anal-
yse not only serial but also cross-correlations of dynamic data of possibly high
dimension (Shumway & Stoffer 2000). In the absence of some possibly restric-
tive parametric assumptions on the dynamics of the time series (such as vector
autoregressive - moving average of finite order), the standard nonparametric ap-
proach of smoothing the periodogram matrix over frequency usually shares well-
established and generally even for moderate sample sizes satisfactory properties
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such as approximate unbiasedness, approximate uncorrelatedness over different
frequencies and the usual variance-bias trade off known from classical nonpara-
metric theory (Brillinger (1975)). What is less known and explored, however,
and highly relevant for more and more frequently met situations of large dimen-
sionality of the time series, is the deterioration of the condition number of the
resulting nonparametric estimator (smoothed periodogram matrix). It is known
that a high condition number of such a matrix, i.e. the ratio lyax/lmin of its
largest to its smallest eigenvalue, leads to numerical instabilities, in particular
when the (estimated) spectral density matrix is used subsequently in sensitive
functionals such as its inverse or its determinant. A prominent example for
the latter ones is the use of the Kullback-Leibler discrimination information
(Kullback & Leibler 1952), as a measure of disparity between several estimated
multivariate spectra (as in Kakizawa, Shumway & Taniguchi (1998), e.g.), to be
used in classification of multivariate time series.

In many fields of application, including economic panel data (Bai & Ng 2002,
Forni, Hallin, Lippi & Reichlin 2000), but also genetic engineering or neuropsy-
chology, the dimension of the data can come close to the sample size, making
the smoothed periodogram become close to a singular matrix, in particular.

In this paper we suggest a remedy to improve upon the smoothed peri-
odogram as an estimator for the multivariate spectrum using regularization, i.e.
shrinkage, techniques. It is known from the statistical literature on estimation
in i.i.d. data situations (Hafl 1977, 1979, 1980), that shrinkage helps to correct
the following effect: the dispersion of the sample eigenvalues can be tremen-
dously larger than the dispersion of the population eigenvalues of the spectrum
as the large eigenvalues are biased upwards, the small ones downwards (Jolliffe
2002). Thus, the quality of an estimator of a high-dimensional target can be
improved, by shrinking the eigenvalues towards one another, not only numer-
ically, but even on the level of the widely used criterion of mean square error
(Beran & Diimbgen 1998, Ledoit & Wolf 2004).

We note that this technique is more than just standardizing each dimension
of the time series - which would improve the condition number in case of min-
imally coherent data, but not so with potentially highly cross-correlated data
(the interdependence over dimension being responsable for the afore-mentioned
dispersion effect).

Compared to existing work on shrinkage in the time domain, we show that in
the frequency domain it is necessary to take the size of the smoothing span m as
“effective or local sample size” into account. We note that simply choosing the
smoothing span of the smoothed periodogram sufficiently large is no reasonable
solution to the problem: depending on the roughness of the true spectral density
to be estimated, this might result into important oversmoothing.

For reasons of notational simplicity, in this work, we consider as simplest
smoothing method the averaged periodogram, that is a symmetric kernel
smoother of finite support (“boxcar”) with equal weights for each periodogram
ordinate within the smoothing span. One can easily check that all the results of
our paper carry directly over to the more frequently used kernels in the smooth-
ing literature.
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Our proposed shrinkage estimator is, pointwise at frequency w € (0, 27],
a convex combination of the averaged periodogram f%(w) with some shrink-
age target f% (w) in the frequency domain. Le., our estimators are of the form
Fr(@) == rp(W) fh(w) + (1 —rp(w)) f9(w) , where in order to reduce the disper-
sion of the eigenvalues of f%(w), the factor rr is chosen such that the sample
eigenvalues are shrunk towards each other linearly. The most direct target to
use would be (a multiple of) the identity matrix, i.e. fh(w) = pu(w) Id. This set-
up has been treated by the authors in a companion paper (Bohm & von Sachs
2007), where they determine the optimal amount of shrinkage by a data driven
approach in a framework of an asymptotically with sample size growing dimen-
sion.

Obviously, the technique of shrinkage has a certain relationship to ridge re-
gression. In fact, a linear combination of a sample covariance and the identity
matrix has been used as original motivation for ridge regression (Hoerl & Kennard
1970). However, shrinkage of empirical covariance matrices or spectral density
estimators is not the same thing as ridge estimation. In the first approach,
the eigenvalues of the matrices under consideration are shrunken towards each
other, and hence their dispersion is reduced. Constructing a ridge, all eigenval-
ues are moved away from zero (either by the same amount for ordinary ridge
or by some individual constant for generalized ridge regression) in order to
regularize the estimator. Recent theoretical work of Bickel & Levina (2007),
Rothman, Levina & Zhu (2008), e.g., using a lot more refined techniques such
as Lasso, or thresholding for regularization of large-dimensional covariance ma-
trices, are in this latter spirit.

Using the identity matrix as a shrinkage target is reasonable if there is little
or no knowledge about the underlying multidimensional structure of the data.
In this case, a shrinkage target should be used that imposes the least possible
amount of structure and which, at the same time, has the best of all possi-
ble condition numbers. In many settings, however, it is reasonable to assume
that the covariance or spectral structure of the data is induced by underlying,
known or hidden, factors. The general idea underlying factor models is that p
observed random variables can be expressed, except for an error term, as linear
functions of ¢ < p random factors. For instance, in econometrics, markets are
usually assumed to be driven by underlying global variables such as interest
rate, employment rate or gross national product. The models reach from simple
one-factor models, as in Sharpe (1963), to sophisticated approaches that use
multiple global and industry specific factors that may be intercorrelated, as,
e.g., in Forni et al. (2000).

A disadvantage of factor models is that, usually, the number of factors is
a parameter that must be either specified a priori or chosen by somewhat so-
phisticated data-driven procedures akin to model selection. Research on how
to propose a generally satisfying criterion is still going on (Bai & Ng 2002,
Hallin & Liska 2007), and it would be interesting to avoid this problem while
taking advantage of the structure imposed by a factor model to be a remedy to
the curse of dimensionality.
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We have developed a hybrid approach to circumvent the dilemma of model
choice and still retain the advantages of factor analysis. We combine a nonpara-
metric estimator, in our case the averaged periodogram f% (w), with a parametric
estimator f% (w) of the spectral matrix. The latter is our new shrinkage target.
It is given by fitting a one-factor model to the data. However, we do not as-
sume that this model is true; rather, we believe that the data follow a more
complicated structure. This may be a g-factor model (¢ > 1), a model driven by
different layers of factors, or the model may be completely unknown. By com-
bining a shrinkage target, which is actually underfitted, with a nonparametric
estimator of the spectrum, we circumvent the problem of model choice. In a
data driven approach, weights are chosen such that the new, hybrid estimator is
the asymptotically optimal linear combination of two conventional estimators.
The first component, the averaged periodogram, is asymptotically unbiased but
has high variance. The second component is biased due to misspecification but,
by imposing structure, has low variance.

We note that, instead of choosing a one-factor model as our shrinkage target,
we might as well opt for something more complicated, e.g. a g factor model with
q > 1. The only prerequisite for doing this is having background knowledge that
the underlying structure is more complicated than the shrinkage target, e.g. a ¢
factor model, ¢ > ¢. The theory we will give in section 3.1 can easily be adapted
to such a case.

To the best of the authors’ knowledge, there is no literature on shrinkage to a
factor model in time series analysis. In the literature on finance, an approach to
shrink to a factor model has been developed in the context of portfolio selection
(Ledoit & Wolf 2003) under iid assumptions on the data. However, the idea
of shrinking a nonparametric fit towards a parametric estimator drives quite
generally a variety of existing approaches, among which one finds the work of
Daniels & Cressie (2001), and to some extent, of Botts & Daniels (2006), in the
context of Bayesian covariance and spectral estimation, respectively.

The remainder of this paper is organized as follows: in the next section, we
will develop the theoretical background for data driven shrinkage to a 'market’
one-factor model, where the term 'market’ is just a wildcard term that does not
necessarily mean that we are in an economic context. We will first give the basic
assumptions and definitions in the following subsection. In section 3.2, we will
introduce the shrinkage target, which is a one-factor model. The model assump-
tions are that the p dimensional process is driven by a dynamic, hidden or known,
underlying process with spectral density fo(w). We will fit this model to the data;
however, at the same time we assume that the model be misspecified. The philos-
ophy behind this is that the model is just a parsimonious tool of describing the
data. In sections 3.4 and 3.5 we derive the MSE-optimal solution for the shrink-
age intensity which is a function of the true spectral density f(w). In section 3.6,
we will examine the asymptotic behaviour of the MSE-optimal shrinkage inten-
sity rr(w), which will help us to develop a data driven estimator in section 3.7.
Comprehensive Monte Carlo studies will show the usefulness of our estimator
in section 4. We note that most proofs are relegated to an appendix section.
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2. Multivariate spectral analysis

We assume that we observe a realization (X;)I_,; of a p-dimensional real-valued,
centered stationary Gaussian time series (X;). We aim at estimating the p x p
spectral density matrix function at frequency w € (0, 27]

(@) = —

=57 Z Cov (X, Xiyq) exp(—wwu), w € (0,27] (1)

UEZL

where ¢ = +/—1 . The most common nonparametric estimators of (1) are based
on the periodogram. If we denote by

T
dr(w) = ﬁ ZXt exp(—wt), w € (0,27 (2)

the vector-valued discrete Fourier transform of the realization (X;)7_,, then the
p X p periodogram matrix is defined as

Ir(w) := dr(w)dy(w) (3)

where * means conjugate complex transpose . Furthermore, we will denote con-
jugate complex (for a scalar value) by overline. The periodogram is not a consis-
tent estimator of the spectrum (1), but it is asymptotically unbiased. Moreover,
for p > 1, the periodogram is a singular matrix: if dr(w) = (di(w), ..., dp(w))’,
then (3) can be expressed as
dy(w) dy(w)
Irw) = |G@ | L@ | (4)
dp(w) dp(w)
and thus has almost surely rank 1. If the periodogram is smoothed over fre-
quency, the estimators derived this way are consistent under a classical asymp-
totical framework. We will restrict ourselves to the simplest form of smooth-
ing, the averaged periodogram with smoothing span myz , where the conditions

mrp/T — 0 and mp — oo as T — oo guarantee consistency and asymptotic

unbiasedness:
1 (mT —1 ) /2

f(w) = — Z Ir(w +w) , (5)
T = (mr—1)/2

where wy, denotes the Fourier frequency 27k/T .
3. Theoretical framework
3.1. Setup and assumptions

Our aim is to estimate the spectrum f(w) of a p-variate Gaussian time series.
We assume that we have realizations

(Xit)eeqr,... 7y = Xi1, - - ., Xir, it=1,...,p
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Moreover, we assume that we have realizations from another, one dimensional
time series

(Xot)teq,... 7y = Xo1, ..., Xor
to which we refer as the market or exogenous time series. The market time series
is thought to be a process that has a certain explanatory value for the other
time series (X;),i = 1,...,p. One possible choice is to use the average over
dimension in the time domain of the (Xj:)i=1, .. p,

1 p
Xor= 13X,
p =1

However, we make no special assumptions on the market time series. It would as
well be possible to choose an external variable or the first principal component
of the data.

We make the following assumptions:

Assumption 3.1. All our time series, including the market time series, are cen-
tered

EX; =0 1=0,...,p
and stationary.

In this paper, purely for reasons of simplifying the presentation, we do not
present our estimation results in terms of the spectrum directly, but rather
choosing the expected periodogram

f7w) = E fp(w) (6)

as estimation target. This is possibly without loss of generality because the
expected periodogram f3(w) approaches the true spectrum f(w) with a rate of
convergence suffiently fast to enable us to carry over our proofs immediately to
estimate f(w). In order to do so we make the following assumption:

Assumption 3.2. If
'-Yij(h):EXith,thh; i,jZO,...,p, hez

denotes the autocovariance function, then

o0

Sl y(R) <00 Vi j=0,....p

h=—o00

Then, we have the following well-known result from Brillinger (1975) or
Shumway & Stoffer (2000):

Lemma 3.1. Under assumption 3.2, f(w) has (elementwise and for real- and
imaginary parts separately) continuous derivatives of order one, and hence

fr(w) = f(w) = O (mr/T) .
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The enhanced estimator we want to construct is gained by linearly combining
a standard nonparametric estimator, in our case the averaged periodogram, with
a shrinkage target. The latter is gained by fitting a one-factor model to the data,
where the time series X is assumed to be the underlying factor.

We assume the dimension p to be fixed while still T" — oco. We denote the
ith component of the discrete Fourier transform of the data at frequency w as
di (w)

We furthermore make the following notational convention: whenever we use
vector- or matrix valued terms, we will mean the respective p-dimensional vec-
tor or the p X p matrix unless we explicitly state otherwise. Thus, f(w), f3(w)
and f% (w) refer to the spectrum, expected averaged periodogram and averaged
periodogram, respectively, of the time series (Xit)i=1,...p,. We will also refer to
the p-dimensional vector of the time series at time ¢ as X;. However, when we
look at components, we will use the index value zero to refer to the market time
series. E.g., we refer to the cross-spectrum between the market series and the
first component of X; as fo1(w).

3.2. One-factor model

The shrinkage target is given by fitting a one-factor model to the data (X;),i =
1,...,p, which we will define in this section. We will use a different notation for
the random variables to emphasize that this model is not assumed to hold true
for the data X;;. Rather, we use the model as a parsimonious tool to approximate
the spectral structure of the process.

Let us assume that we have a univariate ezogenous time series Xo;, 1 =
1,...,T with spectrum fo (w). When we speak of exogenous, we mean that this
data X can be used as a factor time series that has some explicative value for
the data in the sense of the following model:

Xi=BiXot+er i=1,....p (7)

The weights 3; € R are non-random. The idiosyncratic components ¢;; are
assumed to be normally distributed and independent over time and dimension,
and independent of (Xo;):

eir ~ N (0,2m(0%)?) (8)

In this simple factor model, all serial correlation in the data X;; originates from
serial correlation in the exogenous time series Xo:. The serial correlation of the
exogenous time series is determined by its spectrum fo(w).

The fact that the idiosyncratic components are uncorrelated over time and
dimension is important, as in either other case, it would be impossible to identify
the model under classical asymptotics (Forni et al. 2000). Together with the
independence between the idiosyncratic components and the exogenous time
series, this has two more advantages: first, it will allow us to use linear regression
to estimate the 3; and the (0¢)2. Second, this model implies, simply by linearity,
the following relationship for the DFTs of the data:
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Lemma 3.2.

di(w) = Bido(w) + d (w) 9)
where d¢(w) is the DFT of the idiosyncratic components. Furthermore,
df(w) ~ N9 (0,(05)%) Vw (10)

We see from (10) that the variance in the idiosyncratic components is inde-
pendent of frequency. Furthermore, the weights 8 = (81, ..., 8p)" are indepen-
dent of the frequency, too, due to (7). This means that the spectrum under the
above specified one-factor model (7) is

FHw) =88 folw) +A (11)
where
() ... 0
A=l oo (12)
0 o (op)?

When it comes to estimation of the one-factor model, we will as afore-mentioned
identify the spectrum with the expected averaged periodogram. Thus, instead
of using the model (11), we will use the slightly modified model

flw) =6 fo(w) + A, (13)

where fg (w) means the expected averaged periodogram of the factor time se-
ries Xo;.

3.3. Estimation of one-factor model

The model (13) is assumed not to hold true. However, even under these circum-
stances, it is possible to fit this model to the time series X;; by choosing weights
B; such that the Ly distance between f°(w) and 83 fo(w) becomes minimal.

We will refer to this minimum Ly distance spectral density under the one-
factor model as to f!(w).

The fact that both weights 3; and idiosyncratic variances (o§)? are indepen-
dent of lag and frequency, respectively, enables us to estimate these parameters
with standard methods. We use linear regression to obtain the following esti-
mators b; for the 3;s

y _ it (XorXin)
S i1 (Xor)?
which is just the standard estimator of the slope in linear regression.
Next, we need to estimate the variances (0f)? of the idiosyncratic compo-
nents. The standard way to do this is again to use the time domain estimator
of the residual variance, which we normalize by 1/2:

: (14)

T 2

— 1 (Xor — b Xit)

(0§)? = 5~ > — 7
t=1

(15)
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Furthermore, both estimators have the convenient property of being consistent,
and the stochastic rate of convergence is in both cases 1/v/T (Sachs & Hedderich

2()()(5):
bi= 06+ 0, (%) (16)

— 1
o§)2 = (65)* 4+ 0 (—) 17
@ = @ +0, (= a7)
Plugging the estimators from (16) and (17) and the averaged periodogram of
XOt;

and

(mr—1)/2

fw) = L > Teo(w+w)

MT o (mr—1)/2

into the definition of the one-factor model (13), we obtain an estimator of the
multivariate spectrum that is based on a one-factor model:

frw) = fg(w) + D, (18)

where . .
D = diag ((a;)‘z . (05)2) .

This estimator is our shrinkage target. By construction of the model, with equa-
tions (14) and (15), we observe that on the diagonal fh(w) = f(w).

3.4. Optimal shrinkage intensity

Our aim is to improve upon the averaged periodogram by shrinking to a target
matrix function that is more regular, at the price of possibly having larger bias.
Here, we make the assumption that a one-factor model is not far too crude
an approximation. We do, however, not believe that the underlying structure
is totally explained; we even make the opposite assumption, namely that the
model is misspecified:

Assumption 3.3. There exists a § > 0 such that, uniformly over all frequencies
w e 0,2r] and all 4,5 = 1,...,p, we have

i (@) = fhw)] =6 (19)

Assumption 3.3 is made for technical reasons: the estimator of the shrinkage
intensity which we are going to derive will have an estimator of the difference
fij(w) = f2(w) in the denominator. Because of this, assumption 3.3 is needed
to avoid problems of identifiability.

We search for a linear combination

Frw) = ) frw) + (1 = ¢r (W) f2(w)
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where (7 (w) is a data driven estimator of an optimal, oracle shrinkage intensity
(5 (w) that is the solution of the minimization problem

B||ff @) — )| = mint (20)
that is,

() fhw) + (1~ @) ) — )

¢ (w) = arg min,, ) E

We will proceed in three steps:

First, in subsection 3.5, we will derive the optimal, oracle shrinkage intensity
¢4 (w) which depends on background knowledge of the underlying process.

Second, in subsection 3.6 we will derive the asymptotic behaviour of the
oracle shrinkage intensity. We will see that the necessity to shrink vanishes
asymptotically. This is because the averaged periodogram is a consistent esti-
mator whereas the shrinkage target is misspecified due to assumption 3.3. As
a consequence, the data driven estimator of f%(w) will asymptotically have the
same behaviour as the averaged periodogram, as the data driven estimator of
the shrinkage intensity will converge to zero. Finally, we will construct a data
driven estimator in subsection 3.7.

3.5. Oracle shrinkage intensity

We will derive the oracle shrinkage intensity by solving the minimization prob-
lem given in formula (20). This can simply be done by differentiation. Let
z € [0, 1] denote a shrinkage intensity. The risk R(z) associated with z is derived
in Appendix A.1:

R = Blefbw) + 123w - )]

P

- ¥ (z2 Var f(w) + (1 — 2)? Var f9 (w) (21)

i,j=1
$2:(1— )R (cov (ﬁj(w), fg.(w)))
+ 22| 1) = 15 @)|)

where we have used that E fO(w) = f9(w)

and, according to (13), E fi(w) = fh(w).
The first derivative of R(z) with respect to z is:

R(z) = 23 (zVar Flw) = (1 = 2) Var f2(w)

1,j=1

+ (=22 (Cov (), @) +2[75) - 5 @)
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Moreover, the second derivative is

P
5 A 2
R'(z) = 2% (Var(flw) = @) + £ @) = f5@)°)
ij=1
> 0 (22)
where we use that f1(w) and f9(w) are hermitian, so that the imaginary parts
sum to zero.

Thus, we know that any local extremum will be a minimum. Setting the first
derivative equal to zero, we obtain the following theorem.

Theorem 3.3. The optimal shrinkage intensity is given by
it (Var f5(w) — 2R Cov (f(w), f5()))
- 2 2
i (Var(£ (@) = f9@)) + |15 @) - £ @)

Proof. The proof is found in A.1. O

(r(w) = (23)

3.6. Asymptotic behaviour of optimal shrinkage intensity

Now, we will examine the asymptotic behavior of the optimal shrinkage intensity
(23). This will enable us to derive a data driven estimator in the following
subsection. We first define the following parameters:

P

Tw) = Y mw) (24)

ij=1

pw) = Y i) (25)

1) = Y ww (26)

where the subcomponents are defined, respectively, as:

my(w) = AsyVar (Vmrfh(w) = |f()? (27)
pii(@) = AsyCov (Vimrfly(w), vz f(w)) = B foi(w) fio(w) (28)
1w = | - ) (29)

using the notation

AsyVar() := Tlim Var(+)
and with weights ; defined in equation (7). Now, we can express (}.(w) as a
function of (24) to (26) plus a remainder term which converges to zero suffi-
ciently fast under the following additional assumption:
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Assumption 3.4. The smoothing span my is supposed to fulfill m2./T — 0 as
T — oo.

This assumption 3.4 is made for the technical reason of proving the following
theorem which gives now the exact expression of (7 (w):

Theorem 3.4. The optimal shrinkage intensity can be expressed as the following
function of the parameters 7(w), p(w) and y(w):

mr Y(w)
Proof. The proof is found in A.2 O

This means that the optimal shrinkage intensity converges to zero at a rate
of 1/mp. At the same time, it can be approximated by the parameters (24)
to (26) with an error that vanishes, under assumption 3.4, with the faster rate
of T—1/2. This will allow us to derive a data driven estimator of the shrinkage
intensity, and thus of f2(w), by plugging in estimators for (24) to (26) in (30).

3.7. Data driven estimation

The final step in deriving a data driven estimator of the spectrum that combines
the averaged periodogram with a parsimonious, one-factor model based estima-
tor, is to derive estimators for the parameters 7(w), p(w) and y(w). We will start
by estimating m(w). According to (24), m;;(w) is the asymptotic variance of the
1, jth component of the averaged periodogram, scaled by the smoothing span
my. The following lemma will give a consistent estimator:

Lemma 3.5. w(w) is estimated consistently by

P
pw) = pij(w) (31)
ij=1
where
1 (mr—1)/2 .
Pl == 3 hylwtwn) — BN (32)
T k= (mr—1)/2
i.e. pij(w) is the standard estimator of the local variance of the (i, j)th compo-
nent of the periodogram at frequency w.

Proof. The proof is given in A.3 O

The next step is to estimate p(w). We will estimate its components and
distinguish between the components on the diagonal and the components on
the off-diagonal. As observed earlier, on the diagonal, f1(w) = f2(w), thus we
can use the estimator (32). On the off-diagonal, we can use the estimator given
by the following lemma:
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Lemma 3.6. For i # j, a consistent estimator of p;;(w) is given by

rij(w) = bib;fi (@) fjo(w) (33)
Proof. The proof is given in A.4. O

The estimator of the last of the three parameters, y(w), is derived in a
straightforward way:

Lemma 3.7. y(w) is estimated consistently by

P

gw) =Y gij(w) (34)

i,j=1
where
4w — (W)

Proof. Both f9(w) and fl(w) are consistent estimators of f9(w) and fh(w),
respectively. O

(35)

9ij(w) = ’2

With the help of lemmata 3.5 to 3.7, we can now construct the data driven
market shrinkage estimator of the spectrum, which is given by the following
theorem:

Theorem 3.8. The estimator
1 pw)—2R(r(w
CT(w)—_ () (())

mr g(w)

is a consistent estimator of

1 7m(w) = 2R (p(w))
mr ¥(w) '

Proof. This is implied by assumption 3.3 in conjunction with lemmata 3.5, 3.6
and 3.7. O

Thus, we have finally arrived at a shrinkage estimator that depends on the
data only, not on background knowledge of the underlying process:

Frw) = pw) = 2R (r(w)) (w) = 2R (r(w))
T mrg(w) mrg(w)

)+ (1- )@ e

We will refer to this estimator as to the DDMSE (data driven market shrinkage
estimator). The following theorem gives the asymptotic behavior of the DDMSE

Ff(w):
Theorem 3.9. Under assumptions 3.1 to 3.4, f; (w) is a consistent estimator of
the spectrum.
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Proof. Asymptotically, the optimal shrinkage intensity ;- (w) vanishes according
to theorem 3.4. According to theorem 3.8, (5 (w) is estimated consistently by
(r(w). This means that (r(w) converges to zero, too, and thus that f; (w)
converges to the averaged periodogram. O

The performance of the DDMSE in practice will be examined by extensive
Monte Carlo simulations in section 4.

4. Monte Carlo studies for the DDMSE

In this section, we will evaluate the performance of the data driven market
shrinkage estimator in practice. For this, we will perform comprehensive Monte
Carlo simulations. The DDMSE will have three benchmark estimators to com-
pete with:

1. the averaged periodogram

2. the one-factor model that is the shrinkage target

3. a competing shrinkage estimator, referred to as DDSSE, that uses the
identity matrix as the shrinkage target, see Bohm & von Sachs (2007)

In a setting where it is reasonable to use the DDMSE, it should outperform
all three benchmarks. Such a setting can be characterized as the frequently
encountered situation where one may fit a factor model to the data, but has no
background knowledge on how many factors to actually choose. In a screeplot of
the eigenvalues, one will typically encounter one or more prominent eigenvalues
followed by a longer tail of small eigenvalues. The method we have developed
will allow us to avoid the problem of model choice.

4.1. Setup

For the simulations, we have chosen to use a two-factor model as the true model.
The first factor is an MA(2) process. Its spectrum has a peak at /2. The second
factor driving the process is a Gaussian white noise time series; its variance will
be varied in a first simulation study, to examine the performance of the DDMSE
on the ’scale’ between almost one-factor model to true two-factor model. Figure 1
shows the spectrum of the two factors underlying the simulations. These two
factors are then projected onto a 5-dimensional time series according to the
following model:

Xt = Tft + €t, €~ N(O, Q) (38)
Here, T is a 5 x 2 weight matrix that was chosen at random initially, then fixed
for this section. The initial random distribution for the components of T was
uniform ~ U([.3,1]), the components being chosen independently.

5871 4510
5676 .9691
T = .4645 .7268
8691 5511

5379 4754
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2 2
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0 0
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Fig 1: True spectrum of the two underlying factors. The imaginary parts are all
Z€ero.

The covariance matrix of the idiosyncratic components was obtained likewise:
the off-diagonal components were set to zero, the diagonal components were
simulated as iid uniform ~ U([.2,.4]) and then fixed as

) = diag(.3213 .3726 .2646 .4169 .3257)

The market factor time series was obtained as the mean over dimension of the
simulated data. All simulations presented in this section were repeated for new
realizations of {Y, Cov(2)} without any major changes in the results, which is
why we will omit these repetitive studies. A length of 7' = 1,024 was chosen for
the time series in this section.

4.2. Influence of the true model

The only formal prerequisite for the true model in order for the DDMSE to
work is that its true spectrum is not that of a one-factor model such as the
one specified in section 3.2. In this subsection, we will examine the influence of
the ’distance’ from a one-factor model. This is accomplished by using the two-
factor model (38) to generate the data and systematically varying the standard
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Fig 2: MISE of DDMSE, averaged periodogram, 1-factor-model and DDSSE
for data from a 2 factor model. T" = 1,024, smoothing span m = 19, different
standard deviations of second factor. Based on M = 1,500 Monte Carlo runs.
Confidence intervals are not printed as there is no intersection at 99% level for
the solid curves.

deviation of the second, flat-spectrum factor. For small standard deviation, the
data are very close to a one-factor model; as the standard deviation of the second
factor increases, so does its influence. The results are given in figure 2. The effects
we observe in the simulations study confirm our assumptions on the respective
behavior of averaged periodogram, one-factor model, DDSSE and DDMSE. First
of all, we remark that the DDMSE performs best for all choices of the white noise
variance in the simulations. The averaged periodogram, upon which we want to
improve, exhibits the worst performance. Not only is it outperformed by the
DDSSE, which we would have expected based on the results of the preceding
section, but also by the one-factor model. This shows that, in this context,
the one-factor model is a useful model in itself, even although it is actually
misspecified. It even outperforms the DDSSE for most choices of white noise
variance. Overall, the MISE increases with the variance of the second factor,
and the different estimators follow the MISE in a parallel shape.
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Fig 3: MISE of DDMSE, averaged periodogram, 1-factor-model and DDSSE for
data from a 2 factor model. T" = 1,024, different smoothing spans. Based on
M = 1,500 Monte Carlo runs.

4.3. Influence of the smoothing span

In the next Monte Carlo study, we have varied the smoothing span and examined
its influence on the MISE. The results are given in figure 3. Not surprisingly, we
observe that the overall MISE decreases as the sample size is increased for all
three estimators. For small smoothing span, the averaged periodogram exhibits
the worst performance. The DDSSE performs better than the averaged peri-
odogram for small smoothing span, but is outperformed by the one-factor model
and by the DDMSE. For the very small smoothing span m = 7, the DDMSE
and the one-factor model have approximately the same MISE. Then, we have
again the ranking averaged periodogram-DDSSE-one-factor model-DDMSE, as
in the preceding subsection. Finally, for a comparatively large smoothing span
of m = 31 or larger, the DDMSE, DDSSE and averaged periodogram seem to
have approximately the same MISE. This is again not surprising, as for fixed
dimension, both data driven estimators converge to the averaged periodogram.
Moreover, for large smoothing span, the one-factor model performs worse than
the averaged periodogram. This is, however, not due to a loss of performance of
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the one-factor model, which improves monotonously with m, but rather due to
the faster improvement of the averaged periodogram in terms of MISE. Finally,
the deterioration of the estimator based the one-factor model with respect to
the averaged periodogram for large smoothing span does not make the DDMSE
perform worse than the averaged periodogram. This can be explained by the
fact that, for large m, the shrinkage intensity becomes negligibly small.

5. Conclusions

Our work deals with the concept of shrinkage in the frequency domain of multi-
variate time series. Similarly to our companion paper Bohm & von Sachs (2007),
it uses a new, localized concept of shrinkage that allows for the development
of estimators that simultaneously overcome the problem of numerical instabil-
ity due to high dimensionality or collinearity and have lower quadratic risk.
In contrast to the developments in the time domain of Ledoit & Wolf (2003),
in the frequency domain of nonparametric estimation of the spectral density
matrix by smoothing the periodogram matrix, all considerations have to be un-
dertaken with respect to the (locally) effectively available sample size, which
is governed by the smoothing parameter (and not the sample size alone). In
Bohm & von Sachs (2007) asymptotic theory has been derived for the situation
of shrinkage towards a multiple of the identity matrix where both the dimension-
ality p = pr and the smoothing span m = my tend to infinity as the length of the
time series 1" — oo. In this paper, we have contented ourselves to investigate the
theoretical properties of our proposed estimator by classical asymptotics, noting
that a transfer to the more complex situation of “Kolmogorov” or double asymp-
totics would be possible as well. However, with this work on structural shrinkage,
we want to put emphasis onto a different aspect of shrinkage, perhaps driven by
a more applied interest. Using the identity matrix as a shrinkage target is rea-
sonable if there is little or no knowledge about the underlying multidimensional
structure of the data. However, in many situations, in particular in economic ap-
plications, it is more rewarding to incorporate potentially available background
knowledge on the underlying cross dimensional structure of the data into the
shrinkage target. This opens up the way to designing 'custom made’ shrinkage
estimators that offer a new answer to problems of model choice. In a given set-
ting where a class of parametric or semi-parametric estimators is eligible, and
the order has to be chosen, instead of relying on criteria such as AIC or BIC, the
minimum order model can be used as a target towards which to shrink. Instead
of calling the method “shrinkage” we might as well describe it as stretching: a
too parsimonious model is fitted and the estimate is then refined by adding the
periodogram as a stretching target that has low bias and high variance.

In addition to showing that a MISE-optimal “oracle” shrinkage intensity can
be consistenly estimated from the data, we have shown by our Monte Carlo
simulations, even for small sample size, the large gain in terms of Lo risk of
our estimator, in a situation of disposing additional structure, over the follow-
ing competitors: the classical averaged periodogram, the “shrinkage to iden-
tity” estimator of Bohm & von Sachs (2007) and an estimator based on a fully
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parametric factor model. Simulations not reported here also demonstrate that
shrinkage can be applied to tapered data; as tapering improves the rate of the
bias without changing the rate of consistency, it is easy to transfer this to theory.
For similar reasons, it is possible to replace the averaging of the periodogram
by kernel smoothing.

An important field of application of our approach would be factor modelling
of panels of economic time series data of comparatively high dimensionality.
We recall that “high dimension” needs to be understood as high compared to
the “effective sample size” myp. Our achievements of this paper suggest that
it could be possible to circumvent the problem of searching for an appropriate
factor dimension - a problem still not satisfactorily solved in the literature, in
particular for dynamic factor models. This latter application calls for a possible
theoretical direction of future research: the generalization of our approach to a
dynamic (and latent) factor model setting that allows for lag effects.
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Appendix A: Proofs

We will make frequent use of the abbreviations @, which means the Fourier
frequency nearest w, and wy ‘= w + wg.

A.1. Proofs of equation (21) and of theorem 3.3
We begin by showing equation (21) which can be decomposed as follows:

R(z) E

@) + (- 23w - B
> Blef@) + (1 - %@ - )]

ij=1

p
= ZVar

1,j=1

£ 3 B + - - 5e)|

i,j=1

2f(@) + (1= 2)f% (@) - f5()|
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p
Z Var

2fhw) + (1= 2)fiy (W) = fi(w)

i,j=1
+ Z ’qu Zfl] )’
1,7=1
p
_ Z (22 Var fllj(w) + (1 —2)*Var floj(w)
i,j=1

+ 2(1 — z) Cov (fll] (W), JEzOJ (W))
+ 2(1 — z) Cov (floj (W), le; (W))
2
+ 2| @)~ B @)I)
P A .
= Z (z2 Var fl-lj(w) + (1 —2)* Var f?j(w)
ij=1
+22(1 — 2)R (COV (ﬁj(w% £ (w)))
2
+ 22| (@) — 15 @)[)
Then we want to derive the optimal shrinkage intensity (r(w), which is the so-
lution of the optimization problem (20). According to (22), any local extremum

of the function R(z) is a minimum. Thus, ¢;(w) is the value obtained for z by
setting the first derivative equal to zero:

R/ (¢h(w))
= 0_2Z{<T w) Var fi;(w) = (1 = Gi(w)) Var f}} ()

1,7=1

+ (1= 265 (@)R (Cov (), /()
+ G @) | £ (@) = 15 @)}

P
& 2w Y {Var L (@) + Var f2(w)

ij=1

2% (Cov (f4(@), f5@)) + [ (@) = 15@)|*}
=2 ij {var f8(w) = 2% (Cov (L @) - %)) }

o 26 3 {Var (f0) - 7)) + 175 - £

ij=1
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=92 i {Var floj(w) — 2R (COV (le;(w) - fzoj(w)))}

ij=1

hi=1 (Var () — 2R Cov ( (), Pj(w)))
Lo (Var (f5@) = £5@) +[£5@) = 15 @)

= () =

A.2. Proof of theorem 3.

Theorem 3.4 is proven using two technical lemmata which we will give immedi-
ately after the proof, which we give first:
If we multiply (23) by mz, we obtain

Sy (Var (viz 5 () — 2R (Cov (virfh (@), vimr f () )
s (Var(f () = @) + [£5@) - £ @)[°)

mr(r(w) =

(39)

;Oj (w) and Allj (w) are consistent estimators of f{;(w) and f};(w), respectively.

This means that

Var (f(@) = f(@)) = o() (40)
Using assumption 3.3 and (40), we obtain that the denominator of the right
hand side of (39) is O(1). The numerator of the right hand side of (39) is
m(w) — 2R(p(w)) + O (m—\/%) according to lemmata A.1 and A.2. This yields

m(w) + p(w) + O ( BE
i) = ——— (%) (a1)

or, equivalently,

A.2.1. Lemmata needed for A.2 (proof of theorem 3.4)

Lemma A.1.
Var (Vi f5(w)) = mi;(w) + 0 (5F) (43)
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Proof.
N 1 (mTfl)/Q
Var(y/mr fij(w)) = Var D (8
VI (mr—1)/2
1 (mr—1)/2
= — > Var(l(@)
mr
k:*(mTfl)/Q
1 (mTfl)/Q
to- > Cov(Ii (@)1 (@)
kl=—(mp—1)/2
k£l
—= |f--(w)|2+0(@) +LO mr
Y T mr T
— ()2 mr
= |fu@P+0(%F)
This proves equation (43) and yields that
mij(w) = | fij(@)[? (44)

Lemma A.2. For i # j,

Cor (VT £y ) VT ) = i)+ 0 (TE) . )

Proof. In the following estimate, we make use of (16), i.e. the convergence in
probability of b; coming from equation (14),

bi—ﬂﬁop(%).

In order to control the error in replacing the random b; by their limiting 3; we
use Cauchy’s inequality applied to all occuring remainder terms of the following
or similar type

Cov ((bs — B:)BiIoo(@r), Liz(@1)) -
With this we can derive that

Cov (\/m—TﬁlJ(w), \/m—ng(W))

(mTfl)/Q (mTfl)/Q

1
Z bibjloo(Wk), Z Lij (&)
vinT VT o (mr—1)/2

k:*(mTfl)/Q

=Cov

1 (mr—1)/2
:m—Tﬁzﬂj Z Cov (Loo(wk), Lij(@r))

k:*(mTfl)/Q
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(mr—1)/2

~ - m
+ Y Cov(oo(@x), Iij(@)) p + O (—T>
k,l= T
J=—(mp—1)/2
k#L
(mp—1)/2

_1 g5 (o). Toa( mr mr
o 3 Coriolan) 5@ +0 (17 J+o("2) . uo

where we have used that Cov (loo(@k), 1i;(@1)) = O (%) for k # (. Showing this
is parallel to treating the leading term, i.e. the covariance term in (46) using
lemma A.3 and lemma A.4:

COV(IOO (w), Iij (w))
= Cov (do(w)do (@), di(w)d; (w))

= Cov (do(w), d; (w)) Cov (do @), d; (@)

)

+ Cov (do(w), d (w)) Cov (do(w), di(w))
—\ o (T 1 1
—E (do(w) 4:() ) B (4] dj(w)) +0 (f> 0 (f>

—fui()fow) +0 (7 ) (")

Combining this with (46) and (47) yields thus

mr

Cov (Ve ) V(@) = i ) in(e) +0 (U2) - (as)
which proves (45) and at the same time yields

pij(w) = Bif foi(w) fijo(w) - (49)

A.3. Proof of lemma 3.5
Proof. According to (Brockwell & Davis 1987, theorem 10.3.2), we have
Var Iy (@) = |fi5(@)* + 0 (1/VT) (50)

and
Cov([ij(wk), Lij(@)) = O (1/T) (51)

for 0 < @y, # & < 7. Furthermore, fg(w) =EI;;(@r)+0 (mp/T)+0, (1/mr) =
op(1) for all @y, in the span of mp.
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This allows us to write

pij(w)
b

= Iij(wk) - ij(w)

mr

k=—(mr—1)/2
(mp—1)/2

=— > |Lj(@) — ELj(@) + op(1)?

mr

k=—(mr—1)/2

(mr—1)/2
= Z £ (@r) — EIlJ(wk)| +0p(1) ,

MT Y mr—1)/2

having used that |I;; (&) — E L; (@) is Op (1). It remains to show that

1 (mr—1)/2
~ ~ 2
— E i (@r) — E Lij (@)
mr
k=—(mz—1)/2

converges to | fi;(w)|? = 7 (w) in probability.
We observe that (50) allows to control convergence of the mean, whereas

we can control the variance by borrowing strength from a proof of a CLT for
1 N~(mr—1)/2

mr k—i(mT 1)/2

in Brillinger (1975), proof of Theorem 7.4.4., is to show that the cumulants

of higher order than 2 of ‘/meLT Z,(:_li(:l)Tﬂ 12 Lig (Or) tend to zero, i.e. in

particuler the cumulants of order 4. But this includes in particular that

( ) D237 Cov (15 @), (@) 0.

which is what is needed here. (An explicit calculation of this covariance would
also be possible by application of Brillinger (1975), Theorem 4.3.1, using the
fact that all but the second-order cumulants of order one up to eight of the
occurring Gaussian mean zero d;(w) are identical zero, and that the second-
order cumulants are products of expressions of the form Cov (d;(@x), d;(@1))
which tend to zero for k # £.)

I;;(&r). One technique, frequently used and to be found, e.g.,

A.J}. Proof of lemma 3.6

Proof. b;, bj, fgi(w) and AJQO(w) are consistent estimators of 3;, f;, foi(w) and
fjo(w). This yields, in conjunction with (49), the result. O
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A.5. Additional lemmata

Lemma A.3. Let (X1, Xo, X3, X4) be a 4-variate normal random variable. Then
we have

COV(XlXQ, X3X4)
= COV(Xl,Xg) COV(XQ,X4) —|—COV(X1,X4) COV(XQ,Xg)

Proof. The proof is found in Brillinger (1975, p. 21). O
Lemma A.4. For i # j, we have that

Bdi(un)dez) = O (7 (52)

where the null convergence is uniform in {wy,ws} € (0, 27] x (0, 27].

Proof. The proof of this can be found in Shumway & Stoffer (2000, p. 275ff). O
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