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1. Introduction

The class of Gibbs point processes is interesting because it allows us to introduce
and study interactions between points through the modelling of an associated en-
ergy function. Historical aspects of the mathematical theory are covered briefly
in Kallenberg (1983). When the energy function is parametrized, one among
many other methods of estimation, is the maximization of the pseudolikelihood.
Baddeley and Turner (2000) dealt with some practical aspects of such a para-
metric method and gave a survey on asymptotic results. They noticed that
some classical examples (such as the area-interaction model, the Multi-Strauss
model, the 2-type Strauss model) do not satisfy the assumptions of the existing
asymptotic normality results. This paper aims at filling this gap.

Many proposals tried to estimate the energy function from the available point
pattern data generated by some marked Gibbs point processes. If the energy be-
longs to a parametric family model, the most well-known methodology is the
use of the likelihood function, see e.g. Møller and Waggepetersen (2003) and
the references therein. The main drawback of this approach is that the likeli-
hood function contains an unknown scaling factor whose value depends on the
parameters and which is difficult to calculate. An alternative approach relies on
the use of the pseudolikelihood. This idea originated from Besag (1974) in the
study of lattice processes. Besag et al. (1982) further considered this method
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for pairwise interaction point processes, while Jensen and Møller (1991) gener-
alized it to the general class of marked Gibbs point processes. A general review
of the problem of statistical inference on spatial point processes including the
Takacs-Fiksel method (a parametric method based on a characteristic prop-
erty of marked Gibbs point processes using Palm measure) and non-parametric
methods can be found in the recent monograph of Møller and Waggepetersen
(2003).

In order to underline our theoretical contributions, let us present the differ-
ent papers discussing asymptotic properties of the maximum pseudolikelihood
estimator. The first work was done by Jensen and Møller (1991). The authors
obtained consistency for exponential family models of marked point processes.
They mainly considered inhibition and hard-core models. They notably applied
their results on the marked Strauss process. Jensen and Künsch (1994) and Mase
(1995) focused on specific models with two parameters -the chemical potential
and the inverse temperature- which can be viewed as particular exponential
family models. Jensen and Künsch (1994) obtained an asymptotic normality re-
sult by first assuming the inhibition or hard-core property and then the finite
range property. Mase (1995) established consistency for the class of superstable
and lower regular potentials introduced by Ruelle (1970). Mase (2000) extended
his work to the context of marked point processes and provided asymptotic nor-
mality by adding the assumption of finite range. Our goal is to deal with most
classical models (see Baddeley and Turner (2000), Møller and Waggepetersen
(2003) and Bertin et al. (1999b)) that could be interesting for practical pur-
poses. They have been put into three categories according to their validity with
respect to the previous existing works: 1) Overlap area point process 2) Multi-
Strauss marked model, Strauss disc type process. 3) area-interaction, Geyer’s
triplet process, k-nearest-neighbour multi-Strauss marked model. Let us notice
first that all the examples belong to the exponential family and satisfy the local
stability and finite range properties. Due to the parametrization proposed by
Jensen and Künsch (1994) and Mase (2000), they only consider the first cate-
gory. By considering the exponential family, Jensen and Møller (1991) include
a larger class of models. However, the required inhibition or hard-core type
assumptions are only satisfied for examples 1 and 2. Examples 3 are only lo-
cally stable. What remains to be established is consistency for examples 3 and
asymptotic normality for examples 2 and 3. In this paper, a general framework
is proposed taking into consideration the previous remarks. Results are obtained
using the general theory on minimum contrast estimators, e.g. Guyon (1995).

Section 2 introduces some background on marked Gibbs point processes. Our
models are defined in Section 3. In the same spirit as Bertin et al. (1999a), pro-
viding existence results of stationary Gibbs states, assumptions on these models
are expressed in terms of the local energy function. We also describe examples
of interest of this work. Section 4 presents the pseudolikelihood method and our
main results requiring two additional assumptions. The first one is an identifi-
ability condition ensuring strong consistency. The second one is related to the
definiteness of the asymptotic covariance matrix of the maximum pseudolikeli-
hood estimator. These two assumptions allow us to derive a practical asymptotic
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normality result. They are verified for all the considered examples in Section 5.
It is the belief of the authors that these assumptions are not restrictive since they
should be true for every well-parametrized model. Proofs have been postponed
until Section 6.

2. Background on marked Gibbs point processes

For the sake of simplicity, the framework of this paper is restricted to two-
dimensional marked Gibbs point processes. All the results must remain valid in
the general d-dimensional (d ≥ 1) case. Define B2 the Borel σ-algebra on R

2, B2
b

the set of bounded Borel susbsets of R
2 and λ2 the Lebesgue measure on R

2.
Denote also by M, M and λm the mark space and its corresponding σ-algebra
and probability measure. Let S := R

2 ×M, B := B2 ⊗ M and µ := λ2 ⊗ λm
denote respectively the state space and its corresponding σ-algebra and measure.

For shortness, let us denote xm = (x,m) for any x ∈ R
2 and any mark

m ∈ M and |Λ| := λ2(Λ) for any Λ ∈ B2. In addition, |I| designates the
number of elements of some countable set I, Λc is the complementary of some
set Λ in R

2 and || · || is the ℓ2-norm. Let us define for all i = (i1, i2) ∈ Z
2,

d > 0 and ρ ≥ 0 ∆i(d) :=
{
z ∈ R

2, d
(
ij −

1
2

)
≤ zj ≤ d

(
ij + 1

2

)
, j = 1, 2

}
andB (i, ρ) := {k ∈ Z

2 : |k− i| ≤ ρ} with |i| := max(|i1|, |i2|).

Let Ω̃ denote the set of so-called configurations -of marked points- ϕ :=
{xmi

i }i∈I where I is a subset of N and ((xi, mi))i∈I is a sequence of elements of S.

In particular, any element ϕ ∈ Ω̃ has the following representation ϕ =
∑
i∈I δxmi

i

as an integer-valued measure on S such that for every F ∈ B2
b , ϕ(F ) ∈ N, where

δxm is the Dirac measure at some element xm ∈ S. The subset of Ω̃ with elements
ϕ satisfying |ϕ| := ϕ(S) < +∞ is denoted by Ω̃f . The space Ω̃ is equipped with

the σ-algebra F generated by the family of sets
{
ϕ ∈ Ω̃ : ϕ(F ) = n

}
with n ∈ N

and F ∈ B2
b . For every F ∈ B2 and ϕ ∈ Ω̃ represented as ϕ =

∑
i∈I δxmi

i
, one

introduces ϕF :=
∑

i∈I,x
mi
i

∈F δxmi
i

which can be viewed as the configuration

of marked points of ϕ in F . Furthermore, for every Λ ∈ B2
b , ϕΛ conveniently

denotes ϕΛ×M.

A marked point process is a Ω̃-valued random variable, denoted by Φ, with
probability distribution P on (Ω̃,F). The intensity measure NP of P is defined
as a measure on B2 such that for any F ∈ B2

b :

NP (F ) =

∫

Ω̃

ϕ(F )P (dϕ) := E(Φ(F )).

In the stationary case, NP (F ) = νPλ
2(F ) where νP is called the intensity of P .

A marked Gibbs point process is usually defined using a family of local spec-
ifications with respect to a weight process (often a stationary marked Poisson
process with distribution Q and intensity λQ = 1). Let Λ be a bounded region
in R

2. For such a process, given some configuration ϕΛc on Λc, the conditional
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probability on Λ is of the form, for any F ∈ F :

ΠΛ(ϕ, F ) =

{
1

ZΛ(ϕ)

∫

Ω̃Λ

e−V (ψ|ϕΛc)1F (ψ ∪ ϕΛc)QΛ(dψ)

}
1RΛ(ϕ),

with the partition function

ZΛ(ϕ) =

∫

Ω̃Λ

e−V (ψ|ϕΛc)QΛ(dψ)

and RΛ = {ϕ ∈ Ω̃ : 0 < ZΛ(ϕ) < +∞} where

∫
f(ψ)QΛ(ψ) := e−µ(Λ×M)

+∞∑

n=0

1

n!

∫
f({xm1

1 , . . . , xmn

n }︸ ︷︷ ︸
ψ

)dµ⊗n(xm1

1 , . . . , xmn

n ).

Let us define the subset of all admissible configurations

Ω :=
{
ϕ ∈ Ω̃ : ϕ ∈ ∩Λ∈B2

b
RΛ

}

and denote by Ωf := Ω̃f ∩Ω. Whereas the finite energy function V (ϕ) (for any
ϕ ∈ Ωf) measures the cost of any configuration, the local energy V (ψ|ϕ) (for
any ϕ, ψ ∈ Ωf) represents the energy required to add the points of ψ in ϕ:

V (ψ|ϕ) = V (ψ ∪ ϕ) − V (ϕ) .

Let us notice that when ψ is a singleton {xm}, we denote by a slight abuse
V (xm|ϕ) instead of V ({xm}|ϕ). It is well-known that the collection of proba-
bility kernels (ΠΛ)Λ∈B2

b
satisfies the set of compatibility and measurability con-

ditions which define a local specification in the Preston’s sense (Preston (1976)).
The main condition is the consistency:

ΠΛΠΛ′ = ΠΛ for Λ
′

⊂ Λ.

Notice that some conditions are needed to ensure the existence of a probability
measure P related to any local energy V and any weight process that satisfies
the so-called Dobrushin-Lanford-Ruelle (D.L.R.) equations:

P (F |FΛc)(ϕ) = ΠΛ(ϕ, F ) for P a.e. ϕ ∈ Ω for any Λ ∈ B2
b and F ∈ F .

For the general theory of Gibbs point processes, the reader may refer to Kallenberg
(1983); Stoyan et al. (1995) and the references therein.

For some finite configuration ϕ (resp. some set G) and for all x ∈ R
2, ϕx

(resp. Gx) denotes the configuration ϕ (resp. the set G) translated of x. Finally,
in this work a non-marked point process can be viewed as a particular case of
marked point processes with M = {0}.
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3. Definitions and examples of marked Gibbs models

The framework of this paper is restricted to stationary marked Gibbs point pro-
cesses based on an energy function invariant by translation, V (ϕ; θ), parametrized
by some θ ∈ Θ, where Θ is some compact set of R

p. The model is also assumed
to belong to an exponential family, i.e.

V (ϕ; θ) = θTv(ϕ), (3.1)

where v(ϕ) = (v1(ϕ), . . . , vp(ϕ)) is the vector of sufficient statistics. The local
energy is then expressed as

V (xm|ϕ; θ) = θTv (xm|ϕ) , (3.2)

where v (xm|ϕ) = (v1(x
m|ϕ), . . . , vp(x

m|ϕ)) := v(ϕ∪ {xm}) − v(ϕ).
Our models satisfy the general condition [Mod] described by the following state-
ments:

[Mod:S] Stability of the local energy : there exists K ≥ 0 such that for all
(m,ϕ) ∈M × Ωf

V (0m|ϕ; θ) ≥ −K.

[Mod:L] Locality of the local energy : there exists D ≥ 0 such that for all
(m,ϕ) ∈M × Ωf

V (0m|ϕ; θ) = V
(
0m|ϕB(0,D); θ

)
,

where B(x, r) denotes the ball centered at x ∈ R
2 with radius r > 0.

[Mod:I] Integrability condition: for i = 1, . . . , p, there exist κ
(sup)
i ≥ 0, ki ∈ N

such that for all (m,ϕ) ∈M× Ωf

vi(0
m|ϕ) ≤ κ

(sup)
i |ϕB(0,D)|

ki .

Let us notice that, unlike [Mod:I], the assumptions [Mod:S] and [Mod:L]
cannot be directly expressed only in terms of the sufficient statistics. Neverthe-

less, [Mod] is satisfied as soon as for i = 1, . . . , p, there exist κ
(inf)
i , κ

(sup)
i ≥ 0,

ki ∈ N such that one of both following assumptions is satisfied for all (m,ϕ) ∈M × Ωf :

[Mod-1]

θi ≥ 0 and − κ
(inf)
i ≤ vi(0

m|ϕ) = vi(0
m|ϕB(0,D)) ≤ κ

(sup)
i |ϕB(0,D)|

ki .

[Mod-2]

−κ(inf)
i ≤ vi(0

m|ϕ) = vi(0
m|ϕB(0,D)) ≤ κ

(sup)
i .

Indeed, let I1 and I2 be the partition of {1, . . . , p} such that for any i ∈ I1 (resp.
i ∈ I2), vi satisfies [Mod-1] (resp. [Mod-2]) then

V (0m|ϕ; θ) =
∑

i∈I1

θivi(0
m|ϕ) +

∑

i∈I2

θivi(0
m|ϕ)

≥ −p

(
max
i∈I1

(
θiκ

(inf)
i

)
−max
i∈I2

(
|θi| × max(κ

(inf)
i , κ

(sup)
i )

))
:=−K(θ)
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which ensures [Mod:S] with K := supθ∈ΘK(θ) ([Mod:L] and [Mod:I] are
clearly satisfied).
Let us also point out that

• the well-known characteristics [Mod:S] and [Mod:L] associated with fi-
nite energies that are translation invariant ensure the existence of station-
ary measures (see Bertin et al. (1999a)).

• the local stability implies the Ruelle-bound correlation function (see Ruelle

(1970)) leading to: E
(∣∣ΦB(0,D)

∣∣β
)
< +∞ for any β > 0.

• A key-ingredient of our proofs is the following one: for any α > 0, any
θ ∈ Θ and any i = 1, . . . , p

E
(
|vi(0

M |Φ)|αe−θ
T

v(0M |Φ)
)
< +∞. (3.3)

This condition is fulfilled under the assumptions [Mod:S] and [Mod:I].

Let us now present some examples. Except the one based on the k-nearest-
neighbour graph, all examples are really classical and can be found e.g. in
Baddeley and Turner (2000) and Møller and Waggepetersen (2003). For each
example, we present the model through the sufficient statistics, the set of the
parameters values (including Θ) for which the model is defined in the littera-
ture and then we verify that [Mod] is satisfied. This proves in particular the
existence of stationary Gibbs states in R

2.
First of all, note that when vi(0

m|ϕ) := 1, then vi obviously satisfies [Mod-
2]. Recall that for a non-marked point process M = {0}.

Overlap area point process

• This non-marked process is defined for p = 2 and R > 0 by

v1(ϕ) := |ϕ| and v2(ϕ) :=
∑

{x,y}∈P2(ϕ)

|B (x, R/2)∩ B (y, R/2)| ,

where Pk(ϕ) (k ≥ 1) is the set of all subsets of ϕ with k elements. Alter-
natively,

v1(0|ϕ) := 1 and v2(0|ϕ) :=
∑

x∈ϕ

|B (0, R/2)∩ B (x, R/2)| .

Let us notice that

|B (0, R/2)∩ B (x, R/2)|

=
1

2

(
R2Arcos

||x||

R
− ||x||

√
R2 − ||x||2

)
1[0,R](||x||).

• θ ∈ R × R
+.

• v2 satisfies [Mod-1] with κ
(inf)
2 = 0, κ

(sup)
2 = πR2

4 , D = R and k2 = 1.
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Multi-Strauss marked point process

• LetM = {1, . . . ,M}, λm the uniform probability measure onM and p ≥ 2.
Decompose ϕ = ∪Mm=1ϕ

m with ϕm := {xm ∈ Ω : xm ∈ ϕ} for any m ∈M.
The finite energy of this process is defined by

V (ϕ; θ) :=

M∑

m1=1

θm1,m1

1 vm1,m1

1 (ϕm1 )

+
∑

1≤m1≤m2≤M

pm1 ,m2∑

i=2

θm1 ,m2

i vm1,m2

i (ϕm1 ∪ ϕm2 )

with for all m1, m2 ∈M and i = 2, . . . , p

vm1,m1

1 (ϕ) := vm1,m1

1 (ϕm1 ) := |ϕm1 |

vm1,m2

i (ϕ) := vm1,m2

i (ϕm1 ∪ ϕm2 )

=
∑

{x
m1
1 ,x

m2
2 }∈P2(ϕ)

1[D
m1 ,m2
i−1

,D
m1 ,m2
i

[(||x1 − x2||) (3.4)

where 0 ≤ Dm1 ,m2

1 < Dm1,m2

2 < . . . < Dm1,m2

pm1 ,m2 < +∞. In particular, the
vector θ could be ordered as follows:

θ = (θ1, θ2, . . . , θM ) where θm = (θm,m , θm,m+1 , . . . , θm,M )

with

θm1 ,m2 =

{
(θm1 ,m2

1 , θm1,m2

2 , . . . , θm1,m2

pm1 ,m2 ) if m1 = m2

(θm1 ,m2

2 , θm1,m2

3 , . . . , θm1,m2

pm1 ,m2 ) otherwise.

where p = M +
∑

1≤m1≤m2≤M

(pm1,m2 − 1). One then derives the expression

of the local energy

V (0m1 |ϕ; θ) = θm1 ,m1

1 +

M∑

m2=1

pm1,m2∑

i=2

θm1,m2

i vm1 ,m2

i (0m1 |ϕm2)

where for convenience θm1,m2

i and θm2,m1

i denote the same parameter.
• For all m1, m2 ∈ M and i = 2, . . . , pm1,m2 : θm1,m1

1 ∈ R and θm1,m2

i ∈{
R when Dm1,m2

1 = δ > 0
R

+ when Dm1,m2

1 = 0.
• When Dm1,m2

1 = 0 and θm1,m2

i ≥ 0, vm1 ,m2

i satisfies [Mod-1] with

κ
(inf)
i(m1,m2) = 0, κ

(sup)
i(m1,m2) = 1, D = maxm1≤m2 D

m1,m2

pm1 ,m2 and ki(m1,m2) = 1,

where θm1,m2

i = θi(m1,m2) is the i(m1 , m2)−th element of the vector θ. Un-
der the hard-core assumption Dm1,m2

1 = δ > 0, vm1 ,m2

i satisfies [Mod-2]

with κ
(inf)
i(m1,m2)

= 0, κ
(sup)
i(m1,m2) = ⌈D

2

δ2 ⌉ and D = maxm1≤m2 D
m1,m2

pm1 ,m2 .
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k−nearest-neighbour multi-Strauss marked point process

• This marked point process is defined similarly as the multi-Strauss marked
point process except that the complete graph P2(ϕ) in (3.4) is replaced
by the k-nearest-neighbour graph (k ≥ 1).

• For all m1, m2 ∈M and i = 2, . . . , pm1,m2 : θm1 ,m2

i ∈ R.
• In Bertin et al. (1999b), it is proved that vm1,m2

i satisfies [Mod-2] with

κ
(inf)
i(m1,m2) = κ

(sup)
i(m1,m2)

= 13k and D = 2 maxm1≤m2 D
m1,m2

pm1 ,m2 .

Strauss type disc process

• Let M = [0,Mmax] with 0 < Mmax < +∞, λm the uniform probability
measure on M and p = 2. This model is defined by

v1(ϕ) = |ϕ| and v2(ϕ) =
∑

{x
m1
1 ,x

m2
2 }∈P2(ϕ)

1[0,m1+m2 ](||x2 − x1||).

Alternatively,

v2(0
m|ϕ) =

∑

xm′
∈ϕ

1[0,m+m′ ](||x||).

• θ ∈ R × R
+.

• v2 satisfies [Mod-1] with κ
(inf)
2 = 0, κ

(sup)
2 = 1, D = Mmax and k2 = 1.

Geyer’s triplet interaction point process

• This non-marked point process is defined for p = 3 and R > 0 by

V (ϕ; θ) = θ1|ϕ| + θ2v2(ϕ) + θ3v3(ϕ)

where
v2(ϕ) =

∑

{x1,x2}∈P2(ϕ)

1[0,R](||x1 − x2||)

and
v3(ϕ) =

∑

ξ∈P3(ϕ)

∏

{x1,x2}∈P2(ξ)

1[0,R](||x1 − x2||).

Note that v3(ϕ) represents the number of triangles of ϕ with edges of
lengths lower than R. Alternatively

v2(0|ϕ) =
∑

x∈ϕ

1[0,R](||x||)

and
v3(0|ϕ) =

∑

{x,y}∈P2(ϕ)

∏

{x1,x2}∈P2({x,y,0})

1[0,R](||x1 − x2||).
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• θ ∈ R
2 × R

+ \ {0}.

• When θ2 ≥ 0, v2 and v3 satisfy [Mod-1] with D = R, κ
(inf)
2 = κ

(inf)
3 = 0,

κ
(sup)
2 = κ

(sup)
3 = 1, k2 = 1 and k3 = 2. When θ2 < 0, v2 satisfies

neither [Mod-1] nor [Mod-2]. However, Geyer (1999) proved that the
local energy is stable and local (i.e. [Mod:S] and [Mod:L]) and [Mod:I]

is satisfied with D = R, κ
(sup)
2 = κ

(sup)
3 = 1, k2 = 1 and k3 = 2.

Area interaction point process

• This model is the one-type marginal of the two-type Widom-Rowlinson
model. Let p = 2 and R > 0

V (ϕ; θ) = θ1|ϕ|+ θ2v2(ϕ), with v2(ϕ) := |∪x∈ϕB(x, R)| .

Note that v2(ϕ) represents the area of the union of discs of radius R
centered at the points. Alternatively,

v2(0|ϕ) :=
∣∣∣∪x∈ϕB(0,2R)∪{0}B(x, R) \ ∪x∈ϕB(0,2R)

B(x, R)
∣∣∣ .

• θ ∈ R
2.

• v2 satisfies [Mod-2] with κ
(inf)
2 = 0, κ

(sup)
2 = πD2 and D = 2R.

Remark 1. Jensen and Møller (1991) have already proved the consistency prop-
erty in the inhibition case, i.e. [Mod:S] with K = 0. In particular, they did not
consider the area-interaction model with negative parameters θ1 and θ2 (for in-
stance). This gap has now been filled by extending the result in the case when
[Mod:S] is satisfied. However, unlike these authors, we require the additional as-
sumption [Mod:I]. In order to simplify our assumptions, we deliberately decided
not to propose this particular case since this last assumption is not restrictive
and is satisfied for all examples considered above.

Remark 2. Note that unlike the Multi-Strauss marked point process, neither in-
hibition nor hard-core assumption is required for the k−nearest-neighbour multi-
Strauss marked point process since its local energy is naturally stable.

Remark 3. Concerning the Geyer’s triplet process, the case θ3 = 0 is not
considered since it is a particular case of a multi-Strauss marked point process.

Remark 4. Through these different examples, one may note that some param-
eters are assumed to be known: for example, the parameters Dm1 ,m2

i for the
multi-Strauss marked point process, the hard-core parameter δ, the parameter
Mmax for the Strauss type disc process, the parameter R for the Geyer’s triplet
process or the area interaction point process, . . . . Their estimations could be
investigated by using ad hoc methods.
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4. MPLE: presentation and asymptotic results

4.1. Pseudolikelihood

As specified in the introduction, the idea of maximum pseudolikelihood is due
to Besag (1974) who first introduced the concept for Markov random fields in
order to avoid the normalizing constant. This work was then widely extended
and Jensen and Møller (1991) (Theorem 2.2) obtained a general expression for
marked Gibbs point processes. With our notation and up to a scalar factor, the
pseudolikelihood defined for a configuration ϕ and a domain of observation Λ is
denoted by PLΛ (ϕ; θ) and given by

PLΛ (ϕ; θ) = exp

(
−

∫

Λ×M e−V (xm|ϕ;θ)µ(dxm)

) ∏

xm∈ϕΛ

e−V (xm|ϕ\xm;θ). (4.1)

It is more convenient to define (and work with) the log-pseudolikelihood, denoted
by LPLΛ (ϕ; θ).

LPLΛ (ϕ; θ) = −

∫

Λ×M e−V (xm|ϕ;θ)µ(dxm) −
∑

xm∈ϕΛ

V (xm|ϕ \ xm; θ) . (4.2)

Our data consist in the realization of a point process with energy func-
tion V (·; θ⋆) satisfying [Mod]. Thus, θ⋆ is the true parameter to be esti-

mated and it is assumed that θ⋆ ∈ Θ̊. The Gibbs measure will be denoted
by Pθ⋆ . Moreover the point process is assumed to be observed in a domain
Λn ⊕ D∨ = ∪x∈Λn

B(x,D∨) for some D∨ ≥ D. For the asymptotic normality
result, it is also assumed that Λn ⊂ R

2 can de decomposed into ∪i∈In
∆i where

In = B (0, n) and for i = (i1, i2) ∈ Z
2, ∆i = ∆i(D̃) for some D̃ > 0 fixed from

now on. As a consequence, as n → +∞, Λn → R
2 such that |Λn| → +∞ and

|∂Λn|

|Λn|
→ 0.

Define for any configuration ϕ, Un (ϕ; θ) = − 1
|Λn|

LPLΛn
(ϕ; θ). The maxi-

mum pseudolikelihood estimate (MPLE) denoted by θ̂n(ϕ) is then defined by

θ̂n(ϕ) = arg max
θ∈Θ

LPLΛn
(ϕ; θ) = arg min

θ∈Θ

Un (ϕ; θ) .

We will also need the following basic notations:

• Gradient vector of Un: U
(1)
n (ϕ; θ) := −|Λn|−1LP L

(1)
Λn

(ϕ; θ) where for any

bounded Borel set Λ,
(
LP L

(1)
Λ (ϕ; θ)

)

j
is defined for j = 1, . . . , p by

(
LP L

(1)
Λ (ϕ; θ)

)

j
=

∫

Λ×M vj(x
m|ϕ)e−V (xm|ϕ;θ)µ(dxm)−

∑

xm∈ϕΛ

vj(x
m|ϕ\xm)
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• Hessian matrix of Un: U
(2)
n (ϕ; θ) := −|Λn|−1LP L

(2)
Λn

(ϕ; θ) where for any

bounded Borel set Λ,
(
LP L

(2)
Λ (ϕ; θ)

)

j,k
is defined for j, k = 1, . . . , p by

(
LP L

(2)
Λ (ϕ; θ)

)

j,k
=

∫

Λ×M vj(x
m|ϕ)vk(x

m|ϕ)e−V (xm|ϕ;θ)µ(dxm)

Finally, note that from the decomposition of the observation domain Λn, one
has

U (1)
n (ϕ; θ) = |Λn|

−1
∑

i∈In

LP L
(1)
∆i

(ϕ; θ)

and
U (2)
n (ϕ; θ) = |Λn|

−1
∑

i∈In

LP L
(2)
∆i

(ϕ; θ) .

4.2. Asymptotic results of the MPLE

This section provides consistency and asymptotic normality of the maximum
pseudolikelihood estimator. Let us first consider the following assumption

[Ident] Identifiability condition: there exists A1, . . . , Aℓ, ℓ ≥ p events of Ω and
Am1 , . . . , Amℓ events of M such that:

• the ℓ events Bj := Amj ×Aj are disjoint and satisfy λm⊗Pθ⋆(Bj) > 0

• for all ((m1, ϕ1), . . . , (mℓ, ϕℓ)) ∈ B1 × · · · ×Bℓ the (ℓ, p) matrix with
entries vj(0

mi |ϕi) is injective.

Theorem 1. Under the assumptions [Mod] and [Ident], for Pθ⋆−almost every

ϕ, the maximum pseudolikelihood estimate θ̂n(ϕ) converges towards θ⋆ as n
tends to infinity.

For the next result consider

[SDP] For some Λ := ∪
i∈B(0,⌈D

D

⌉)∆i(D) with D > 0, there exists A0, . . . , Aℓ,

ℓ ≥ p disjoint events of Ω :=
{
ϕ ∈ Ω : ϕ∆i(D) = ∅, 1 ≤ |i| ≤ 2

⌈
D

D

⌉}
such

that

• for j = 0, . . . , ℓ, Pθ⋆(Aj) > 0.

• for all (ϕ0, . . . , ϕℓ) ∈ A0 × · · · × Aℓ the (ℓ, p) matrix with entries(
LP L

(1)

Λ
(ϕi; θ)

)

j
−
(
LP L

(1)

Λ
(ϕ0; θ)

)

j
is injective.

Theorem 2. Under the assumptions [Mod] and [Ident], we have, for any fixed

D̃, the following convergence in distribution as n → +∞

|Λn|
1/2 U (2)

n (Φ; θ⋆)
(
θ̂n(Φ) − θ⋆

)
→ N (0,Σ(θ⋆)) , (4.3)
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where

Σ(θ⋆) =
∑

i∈B(0,⌈D⌉)

E

(
LP L

(1)
∆0(1)

(Φ; θ⋆)LP L
(1)
∆i(1)

(Φ; θ⋆)
T
)
. (4.4)

In addition under the assumption [SDP]

|Λn|
1/2 Σ̂n(Φ;D∨, D̃, θ̂n(Φ))−1/2 U

(2)
n (Φ; θ̂n(Φ))

(
θ̂n(Φ) − θ⋆

)
→ N

(
0, Ip

)
,

(4.5)

where for some θ and any configuration ϕ, the matrix Σ̂n(ϕ;D∨, D̃, θ) is defined
by

Σ̂n(ϕ;D∨, D̃, θ) = |Λn|
−1
∑

i∈In

∑

j∈B(i,⌈D∨

D̃

⌉)
∩In

LP L
(1)
∆i

(ϕ; θ)LP L
(1)
∆j

(ϕ; θ)
T
.

(4.6)

Remark 5. Let us underline that the scaling that yields to asymptotic normality
corresponds to the usual parametric rate. Indeed, in the d-dimensional case one
would obtain

|Λn|
1/2 = |Λn(D̃)|1/2 = |In|

1/2×|∆i(D̃)|1/2=D̃d/2((2n+1)d)1/2∼(2D̃)d/2(nd)1/2.

Remark 6. We would like to underline that Σ(θ⋆) = Σ(D̃, θ⋆) = Σ(1, θ⋆)

where for all D̃ > 0

Σ(D̃, θ⋆) = D̃−2
∑

i∈B(0,

⌈
D

D̃

⌉)
E

(
LP L

(1)
∆0

(Φ; θ⋆) LP L
(1)
∆i

(Φ; θ⋆)
T
)
. (4.7)

5. Back to examples

This section is devoted to proving that all of our examples satisfy both assump-
tions [Ident] and [SDP]. For the assumption [Ident] V denotes the matrix
with entries vj(0

mi |ϕi) where (mi, ϕi) ∈ Bi have to be defined according to the
different examples. The assumption [SDP] may be rewritten for all k = 1, . . . , ℓ
and for all ϕk ∈ Ak and ϕ0 ∈ A0:

(
∀y ∈ R

p, yT

(
LP L

(1)

Λ
(ϕk; θ⋆)−LP L

(1)

Λ
(ϕ0; θ

⋆)
)
=yT (L(ϕk; θ⋆)−R(ϕk))=0

)
⇒y = 0,

where for any configuration ϕ ∈ Ω and ϕ0 ∈ A0

L(ϕ; θ⋆) :=

∫

Λ×M v (xm|ϕ) e−θ
⋆T

v(xm|ϕ)µ(dxm)

−

∫

Λ×M v (xm|ϕ0) e
−θ

⋆T
v(xm|ϕ0)µ(dxm)

R(ϕ) :=
∑

xm∈ϕ∩Λ

v (xm|ϕ \ xm) −
∑

xm∈ϕ0∩Λ

v (xm|ϕ0 \ x
m) .
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Concerning this assumption, we choose D > D in all our examples.

5.1. Overlap area point process

Assumption [Ident]

Consider

A1 :=
{
ϕ ∈ Ω : ϕB(0,D) = ∅

}

A2 :=
{
ϕ ∈ Ω : ϕB(0,D) = {z}, z ∈ B((0, D/2), D/4)

}
.

We have for all (ϕ1, ϕ2) ∈ A1 ×A2

V =

(
1 0
1 v2(0|ϕ2)

)
.

For every ϕ2 ∈ A2 such that (ϕ2)B(0,D) = {z} with for all z ∈ B((0, D/2), D/4),
one remarks that |B (0, R/2)∩ B (z, R/2)| := g2(||z||) > 0, then det(V ) 6= 0.

Assumption [SDP]

Denote by A0 any configuration set. Consider An(η) for n ≥ 1 and for some
0 < η < D the following configuration set

An(η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {z1, . . . , zn} with z1, . . . , zn ∈ B(0, η)

}
.

For any ϕn ∈ An(η), we have
∣∣∣∣
∫

Λ

vj(x|ϕn)e
−θ

⋆T
v(x|ϕn)dx

∣∣∣∣ ≤
{
|Λ|eK if j=1
nπR2|Λ|eK if j=2.

where K comes from the local stability property. Let us also remark that

yTR(ϕn) = ny1 + y2 ×
∑

x∈ϕn∩Λ

v2(x|ϕn \ x) − yT
∑

x∈ϕ0∩Λ

v (x|ϕ0 \ x)

with

0 < n(n − 1)g2(η) ≤
∑

x∈ϕn∩Λ

v2(x|ϕn \ x) ≤ n(n− 1)
πR2

4
.

Therefore by combining these arguments, for every ε > 0, we have for n large
enough

|y2|g2(η) ≤

∣∣∣∣∣∣
1

n(n− 1)
y2

∑

x∈ϕn∩Λ

v2(x|ϕn \ x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
1

n(n− 1)



y2
∑

x∈ϕn∩Λ

v2(x|ϕn \ x)+yT (L(ϕn; θ⋆) − R(ϕn))





∣∣∣∣∣∣
≤ ε.
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By choosing ε = |y2|g2(η)
2

, this leads to y2 = 0. Then, for every ε′ > 0 we may
obtain for n large enough

|y1| =

∣∣∣∣y1 +
1

n
(y1 , 0)

T
(L(ϕn ; θ⋆) − R(ϕn))

∣∣∣∣ ≤ ε′.

By choosing ε′ = |y1|/2, this leads to y1 = 0.

5.2. Multi-Strauss marked type models

Assumption [Ident]

Define for any m,m1, m2 ∈ {1, . . . ,M} with m2 ≥ m1 and for any i = 2,
. . . , pm1,m2

A0 :=
{
ϕ ∈ Ω : ϕB(0,D) = ∅

}

Amm := {m}

Am1,m2

i :=
{
ϕ ∈ Ω : ϕB(0,D) = {zm1}, with z ∈ B(0, Dm1,m2

i ) \ B(0, Dm1,m2

i−1 )
}

The following events Bm1 ,m2

i are defined for any i = 1, . . . , pm1,m1 when m1 =
m2 and any i = 2, . . . , pm1,m2 when m1 < m2 such that:

Bm1,m2

i =

{
Amm1

× A0 if m1 = m2 and i = 1
Amm1

× Am1,m2

i otherwise

One may order these ℓ = p events as B1, . . . , Bℓ where Bkm1,m2
i

:= Bm1,m2

i with

km1,m2

i =(m1−1+δm1 ,m2)+



i− 1 +

m2−1∑

m′

2=m1

(pm1,m
′

2 − 1)+

m1−1∑

m′

1=1

M∑

m2=m′

1

(pm
′

1,m2 − 1)



 .

The corresponding matrix is then V =




V1 0 · · · 0

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 VM




with

Vm =




1 Vm,m 0 · · · 0
... 0

. . .
...

...
...

. . .
. . . 0

1 0 · · · 0 Vm,M




and Vm1,m2 =




0 · · · · · · 0

1
. . .

...

0
. . .

. . .
...

...
. . .

. . . 0
0 · · · 0 1




.



J.-M. Billiot et al./MPLE for marked Gibbs point processes 248

Assumption [SDP]

Let us first introduce the following sets for any η > 0 and d > 0

A(η, d) =

{
(z1, z2) ∈ ∆0(D)2 : z1 ∈B

(
(0, 0),

η

4

)
and z2 ∈B

(
(d, 0),

3η

4

)}

A−(η, d) =

{
(z1, z2) ∈ ∆0(D)2 : z1 ∈B

(
(0, 0),

η

4

)
and z2 ∈B

(
(d−

η

2
, 0),

η

4

)}

⊂ A(η, d)

A+(η, d) =

{
(z1, z2) ∈ ∆0(D)2 : z1 ∈B

(
(0, 0),

η

4

)
and z2 ∈B

(
(d+

η

2
, 0),

η

4

)}

⊂ A(η, d).

For any i ∈ {2, . . . , pm1,m2}, when η is small enough, the couple of points
(z1, z2) ∈ A(η,Dm1,m2

i ) (resp. A−(η,Dm1,m2

i ) and A+(η,Dm1,m2

i )) are such
that Dm1,m2

i−1 < Dm1,m2

i − η < d(z1, z2) < Dm1,m2

i + η < Dm1,m2

i+1 (resp.
Dm1 ,m2

i−1 < Dm1 ,m2

i − η < d(z1, z2) < Dm1,m2

i and Dm1,m2

i < d(z1, z2) <
Dm1 ,m2

i + η < Dm1 ,m2

i+1 ).
We now derive the following events

A0 :=
{
ϕ ∈ Ω : ϕ∆0(D) = ∅

}

Am1,m2

i (η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {zm1

1 , zm2

2 } with (z1, z2) ∈ A(η,Dm1,m2

i )
}

Am1,m2

i,− (η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {zm1

1 , zm2

2 } with (z1, z2) ∈ A−(η,Dm1,m2

i )
}

⊂ Am1,m2

i (η)

Am1,m2

i,+ (η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {zm1

1 , zm2

2 } with (z1, z2) ∈ A+(η,Dm1,m2

i )
}

⊂ Am1,m2

i (η).

First of all note that for any ϕ0 ∈ A0,

yTLP L
(1)

Λ
(ϕ0; θ

⋆) =

M∑

m=1

ym,m1 e−θ
⋆,m,m

1 |Λ| − 0

For any ϕm1,m2

i,− ∈ Am1,m2

i,− and any ϕm1,m2

i,+ ∈ Am1,m2

i,+ for i = 2, . . . , pm1,m2

yTR(ϕm1,m2

i,− ) = ym1 ,m1

1 + ym2,m2

1 + 2ym1,m2

i

yTR(ϕm1,m2

i,+ ) = ym1 ,m1

1 + ym2,m2

1 + 2ym1,m2

i (1 − δi,pm1 ,m2 )

We leave the reader to check that for every ε > 0 there exists η > 0 small enough
such that ∣∣yTL(ϕm1,m2

i,+ ; θ⋆) − yTL(ϕm1 ,m2

i,− ; θ⋆)
∣∣ ≤ ε.
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Therefore for every ε > 0 we have for η small enough

2|ym1,m2

pm1,m2 | =
∣∣∣yT

(
L(ϕm1,m2

pm1 ,m2 ,+; θ⋆) − R(ϕm1,m2

pm1 ,m2 ,+)
)

− yT
(
L(ϕm1,m2

pm1 ,m2 ,−; θ⋆) − R(ϕm1 ,m2

pm1 ,m2 ,−)
)

+ 2ym1,m2

pm1 ,m2

∣∣∣ ≤ ε.

By choosing ε = |ym1,m2

pm1 ,m2 |, this leads to ym1 ,m2

pm1 ,m2 = 0. By iterating this argument,
we obtain that for any m1, m2 ∈ {1, . . . ,M}, ym1 ,m2

2 = · · · = ym1,m2

pm1 ,m2 = 0. It

remains to prove that y1,1
1 = · · · = yM,M

1 = 0. For this, consider the following
configuration set indexed by n ≥ 1

Am1
n =

{
ϕ ∈ Ω : ϕ∆0(D) = {zm1

1 , . . . , zm1
n } with z1, . . . , zn ∈ ∆0(D)

}
.

For any ϕm1
n ∈ Am1

n , we have

yTL(ϕm1,m1
n ; θ⋆) =

M∑

m1=1

ym1 ,m1

1

∫

Λ×M e−V (xm|ϕ
m1
n ;θ⋆)µ(dxm) − |Λ|e−θ

⋆,m1,m1
1

yTR(ϕm1,m1
n ) = nym1 ,m1

1

Hence for every ε > 0 we have for n large enough by using the local stability
property

|ym1,m1

1 | =

∣∣∣∣
1

n
yT (L(ϕm1,m2

n ; θ⋆) + R(ϕm1,m2
n )) + ym1,m1

1

∣∣∣∣

≤
2|Λ|

n
eK

M∑

m1=1

|ym1,m1

1 | ≤ ε.

By choosing ε = |ym1,m1

1 |/2, this leads to ym1 ,m1

1 = 0.

5.3. k−nearest-neighbour multi-Strauss marked point process

Assumption [Ident] (resp. [SDP]) is proven without any change in the proof
of the multi-Strauss marked point process for every k ≥ 1 (resp. k ≥ 2). The
proof of [SDP] for k = 1 is omitted.

5.4. Strauss disc process

Assumption [Ident]

Consider

A1 :=
{
ϕ ∈ Ω : ϕB(0,D) = ∅

}

A2 :=
{
ϕ ∈ Ω : ϕB(0,D) = {zm

′

}, z ∈ B(0, D/2), m′ ∈ [D/2, D]
}
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and define B1 :=M × A1 and B2 :=M × A2. Then, for any (m1, ϕ1, m2, ϕ2) ∈
B1 ×B2

V =

(
1 0
1 1

)
,

which is injective since det(V ) = 1.

Assumption [SDP]

Consider for n ≥ 1

A0 :=
{
ϕ ∈ Ω : ϕ∆0(D) = ∅

}

An :=
{
ϕ ∈ Ω : ϕ∆0(D) = {zm1

1 , . . . , zmn

n },

z1, . . . , zn ∈ B(0, D/2), m1 , . . . , mn ∈ [D/2, D]
}
.

Note that for every ϕ0 ∈ A0 and any ϕn ∈ An

yTR(ϕn) = ny1 + n(n− 1)y2

Note also that from the local stability property |yTL(ϕn; θ⋆) ≤ 2(|y1|+|y2|)|Λ|eK .
Then, for every ε > 0 we have for n large enough

|y2| =

∣∣∣∣
1

n(n− 1)
yT (L(ϕn; θ⋆) − Rn(ϕn)) + y2

∣∣∣∣ ≤ ε.

By choosing ε = |y2|/2, this leads to y2 = 0. Then, for every ε′ > 0 we have for
n large enough

|y1| =

∣∣∣∣
1

n
(y1, 0)

T
(L(ϕn; θ⋆) − Rn(ϕn)) + y1

∣∣∣∣ ≤ ε′.

By choosing ε′ = |y1|/2, this leads to y1 = 0.

5.5. Geyer’s triplet point process

Assumption [Ident]

By considering
A1 :=

{
ϕ ∈ Ω : ϕB(0,D) = ∅

}
,

A2 :=
{
ϕ ∈ Ω : ϕB(0,D) = {z}, z ∈ B((0, D/2), D/4), ϕB(0,2D)\B(0,D) = ∅

}

and

A3 :=
{
ϕ ∈ Ω : ϕB(0,D) = {z1, z2}, z1, z2 ∈B((0, D/2), D/4), ϕB(0,2D)\B(0,D)= ∅

}
,
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we have for any (ϕ1, ϕ2, ϕ3) ∈ A1 × A2 ×A3

V =




1 0 0
1 1 1
1 2 3


 ,

which is clearly injective since detV = 1.

Assumption [SDP]

Denote by A0 any configuration set. Consider An(η) for n ≥ 1 and for some
0 < η < D the following configuration set

An(η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {z1, . . . , zn} with z1, . . . , zn ∈ B(0, η)

}
.

We leave the reader to chek that for j = 1, . . . , p and for any ϕn ∈ An(η)

∣∣∣∣
∫

Λ

vj(x|ϕn)e−θ
⋆T

v(x|ϕn)dx

∣∣∣∣ ≤ nj−1|Λ|eK ,

where K comes from the local stability property. Let us also remark that

yTR(ϕn) = ny1 + n(n− 1)y2 +
n(n− 1)(n− 2)

2
y3 − yT

∑

x∈ϕ0∩Λ

v (x|ϕ0 \ x) .

Therefore by combining these two arguments, for every ε > 0, we have for n
large enough

|y3|

2
=

∣∣∣∣
y3
2

+
yT (L(ϕn; θ⋆) − R(ϕn))

n(n− 1)(n − 2)

∣∣∣∣ ≤ ε.

By choosing ε = |y3|
4 , this leads to y3 = 0. Then, for every ε′, we may obtain for

n large enough

|y2| =

∣∣∣∣∣y2 +
(y1, y2, 0)

T
(L(ϕn; θ⋆) − R(ϕn))

n(n− 1)

∣∣∣∣∣ ≤ ε′.

By choosing ε′ = |y2|/2, this leads to y2 = 0. And then for every ε′′ for n large
enough

|y1| =

∣∣∣∣∣y1 +
(y1, 0, 0)

T
(L(ϕn; θ⋆) − R(ϕn))

n

∣∣∣∣∣ ≤ ε′′.

By choosing ε′′ = |y1|
2

, this finally leads to y1 = 0.
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5.6. Area-interaction model

Assumption [Ident]

By considering
A1 :=

{
ϕ ∈ Ω : ϕB(0,D) = ∅

}

and for some small η > 0

A2 := A2(η) =
{
ϕ ∈ Ω : ϕB(0,D) = {z}, z ∈ B(0, η)

}
.

we obtain for any (ϕ1, ϕ2) ∈ A1 × A2

V =

(
1 πR2

1 v2(0|ϕ2)

)
.

Since for any η < R, 0 < v2(0|ϕ2) < πR2, det(V ) 6= 0.

Assumption [SDP]

Consider Ak(η) for k = 0, 1, 2 and for some 0 < η < D the following configura-
tion set

Ak(η) =
{
ϕ ∈ Ω : ϕ∆0(D) = {z1, . . . , zk+1} with z1, . . . , zk+1 ∈ B(0, η)

}

For any ϕk ∈ Ak(η) for k = 0, 1, 2,

R(ϕ1) = 2y1 + y2g1(ϕ1)) − (y1 + y2πR
2)

R(ϕ2) = 3y1 + y2g2(ϕ2) − (y1 + y2πR
2)

For every ε > 0, there exists η > 0 such that for any ϕk ∈ Ak(η) (k = 1, 2),
|yTL(ϕk ; θ

⋆)| ≤ ε and such that |y2gk(ϕk)| ≤ ε. Then,

|y1| =
∣∣y1 − yT (L(ϕ1; θ

⋆) − L2(ϕ2; θ
⋆)) − (R(ϕ1) − R(ϕ2))

∣∣ ≤ 4ε.

By choosing ε = |y1|/8, this leads to y1 = 0. Now,

|y2|πR
2 =

∣∣∣y2πR2 − (0, y2)
T (L(ϕ1; θ

⋆) −R(ϕ1))
∣∣∣ ≤ 2ε.

And by choosing ε = πR2|y2|/4, this finally leads to y2 = 0.

6. Annex: Proofs

6.1. Tools

Let us start by presenting a particular case of the Campbell Theorem combined
with the Glötzl Theorem that is widely used in our future proofs.
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Corollary 3. Assume that the (marked) point process Φ with probability mea-
sure P is stationary. Let Λ be a bounded Borel set, let ϕ ∈ Ω and let g be a
function satisfying g(xm, ϕx) = g(0m, ϕ) for all xm ∈ S. Define M a random
variable with its distribution λm and f(m,ϕ) = g(0m, ϕ)e−V (0m|ϕ) and assume
that f ∈ L1(λm ⊗ P ). Then,

E
( ∑

xm∈ΦΛ

g(xm,Φ \ xm)
)

= |Λ| E
(
g
(
0M ,Φ

)
e−V (0M |Φ)

)
(6.1)

Proof.

E
( ∑

xm∈ΦΛ

g(xm,Φ \ xm)
)

=

∫

Ω

∑

xm∈ϕ

g(xm, ϕ \ xm)1Λ(x)P (dϕ)

=

∫S ∫Ω

g(xm, ϕ)1Λ(x)P !
xm(dϕ)NP (dxm)

=

∫S ∫Ω

g(xm, ϕ)1Λ(x)νP (xm)P !
xm(dϕ)µ(dxm)

=

∫S ∫Ω

g(xm, ϕ)1Λ(x)e−V (xm|ϕ)P (dϕ)µ(dxm)

=

∫

Λ×M ∫Ω

g(xm, ϕ)e−V (xm|ϕ)P (dϕ)µ(dxm)

= |Λ|

∫M ∫Ω

g(xm, ϕ)e−V (xm|ϕ)P (dϕ)λm(dm)

= |Λ|E
(
g(0M ,Φ)e−V (0M |Φ)

)

where νP (·) is the Radon-Nikodym derivative of NP with respect to µ.
Let us now present a version of an ergodic theorem obtained by

Nguyen and Zessin (1979) and widely used in this paper. Let D̃ > 0 and denote
by ∆0 the following fixed domain

Theorem 4 (Nguyen and Zessin (1979)). Let {HG, G ∈ B2
b} be a family of

random variables, which is covariant, that for all x ∈ R
2,

HGx
(ϕx) = HG(ϕ), for a.e. ϕ

and additive, that is for every disjoint G1, G2 ∈ B2
b ,

HG1∪G2 = HG1 +HG2 , a.s.

Let I be the sub−σ−algebra of F consisting of translation invariant (with proba-
bility 1) sets. Assume there exists a nonnegative and integrable random variable
Y such that |HG| ≤ Y a.s. for every convex G ⊂ ∆0. Then,

lim
n→+∞

1

|Gn|
HGn

=
1

|∆0|
E(H∆0 |I), a.s.

for each regular sequence Gn → R
2.
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6.2. Proof of Theorem 1

Due to the decomposition of stationary measures as a mixture of ergodic mea-
sures (see Preston (1976)), one only needs to prove Theorem 1 by assuming
that Pθ⋆ is ergodic. From now on, Pθ⋆ is assumed to be ergodic. The tool used
to obtain the almost sure convergence is a convergence theorem for minimum
contrast estimators established by Guyon (1995).
We proceed in three stages.
Step 1. Convergence of Un(Φ; θ).

Decompose Un(ϕ; θ) = 1
|Λn|

(H1,Λn
(ϕ) +H2,Λn

(ϕ)) with

H1,Λn
(ϕ) =

∫

Λn×M e−V (xm|ϕ;θ)µ(dxm)

and
H2,Λn

(ϕ) =
∑

xm∈ΦΛn

V (xm|ϕ \ xm; θ) .

Under the assumption [Mod], one can apply Theorem 4 (Nguyen and Zessin
(1979)) to the process H1,Λn

. And from Corollary 3, we obtain Pθ⋆−almost
surely as n→ +∞

1

|Λn|
H1,Λn

→ E
(∫M e−V (0m|Φ;θ)λm(dm)

)
= E

(
e−V (0M |Φ;θ)

)
. (6.2)

Now, let G ⊂ ∆0, we clearly have

|H2,G(ϕ)| ≤
∑

xm∈ΦG

|V (xm|ϕ \ xm; θ) | ≤
∑

xm∈ϕ∆0

|V (xm|ϕ \ xm; θ) |

Under the assumption [Mod] and from Corollary 3, we have

E




∑

xm∈Φ∆0

|V (xm|Φ \ xm; θ) |



 = |∆0|E
(
|V
(
0M |Φ; θ

)
|e−V (0M |Φ;θ⋆)

)
< +∞

This means that for all G ⊂ ∆0, there exists a random variable Y ∈ L1(Pθ⋆)
such that |H2,G| ≤ Y . Thus, under the ssumption [Mod] and from Theorem 4
(Nguyen and Zessin (1979)) and from Corollary 3, we have Pθ⋆−almost surely

1

|Λn|
H2,Λn

→
1

|∆0|
E
( ∑

xm∈Φ∆0

V (xm|Φ \ xm; θ)
)

= E
(
V
(
0M |Φ; θ

)
e−V (0M |Φ;θ⋆)

)
. (6.3)

We have the result by combining (6.2) and (6.3): Pθ⋆−almost surely

Un(·; θ) → U(θ) = E
(
e−V (0M |Φ;θ) + V

(
0M |Φ; θ

)
e−V (0M |Φ;θ⋆)

)
(6.4)
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Step 2. Un(Φ; ·) a contrast function
Recall that Un(·; θ) is a contrast function if there exists a function K(·, θ⋆)

(i.e. nonnegative function equal to zero if and only if θ = θ⋆) such that Pθ⋆−almost
surely Un(ϕ; θ) − Un(ϕ; θ) → K(θ, θ⋆). From Step 1, we have as n→ +∞

K(θ, θ⋆) = E
(
e−V (0M |Φ;θ⋆)

(
eV (0M |Φ;θ)−V (0M |Φ;θ⋆)

−
(
1 + V

(
0M |Φ; θ

)
− V

(
0M |Φ; θ⋆

) )))

= E
(
e−θ

⋆T
v(0M |ϕ)

(
e(θ−θ

⋆)T v(0M |Φ) − (1 + (θ − θ⋆)
T
v
(
0M |Φ

)
)
))
.

(6.5)

Let y ∈ R
p+1 \ {0}, and assume yTv (0m|ϕ) = 0 for λm ⊗ Pθ⋆−a.e. (m,ϕ).

By assuming [Ident], it follows that for i = 1, . . . , ℓ (ℓ ≥ p) yTv (0mi |ϕi) = 0
for all (mi, ϕi) ∈ Bi. From the injectivity of the matrix with entries vj(0

mi |ϕi)
for all (m1, ϕ1, . . . , mℓ, ϕℓ) ∈ B1 × . . .×Bℓ it comes that y = 0 which leads to a

contradiction. Therefore, for θ 6= θ⋆, the assertion (θ − θ⋆)Tv (0m|ϕ) 6= 0 holds
for λm ⊗ Pθ⋆−a.e. (m,ϕ).

By noticing that the function t 7→ et − (1 + t) is nonnegative and is equal to

zero if and only if t = 0, one concludes that the random variable e−θ
⋆T

v(0M |Φ)×(
e(θ−θ

⋆)T v(0M |Φ)−(1+(θ − θ⋆)
T
v
(
0M |Φ

)
)
)

is almost surely positive for θ 6= θ⋆

and equals to zero when θ = θ⋆.
Before ending this step, note that for any ϕ, Un(ϕ; ·) and K(·, θ⋆) are clearly

continuous functions.
Step 3. Modulus of continuity.

The modulus of continuity of the contrast process defined for all ϕ ∈ Ω and
all η > 0 by

Wn(ϕ, η) = sup
{∣∣∣Un(ϕ; θ) − Un(ϕ; θ′)

∣∣∣ : θ, θ′ ∈ Θ, ||θ − θ′|| ≤ η
}

is such that there exists a sequence (εk)k≥1, with εk → 0 as k → +∞ such that
for all k ≥ 1

P

(
lim sup
n→+∞

(
Wn

(
Φ,

1

k

)
≥ εk

))
= 0. (6.6)

Let us start to write Wn

(
ϕ, 1

k

)
≤W1,n

(
ϕ, 1

k

)
+W2,n

(
ϕ, 1

k

)
with

W1,n

(
ϕ,

1

k

)
= sup

{∣∣∣
1

|Λn|

∫

Λn×M (e−V (xm|ϕ;θ) − e−V (xm|ϕ;θ′)
)
µ(dxm)

∣∣∣

: θ, θ′ ∈ Θ, ||θ − θ′|| ≤
1

k

}
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and

W2,n

(
ϕ,

1

k

)
= sup

{∣∣∣
∑

xm∈ϕΛn

V (xm|ϕ \ xm; θ) − V (xm|ϕ \ xm; θ′)
∣∣∣

: θ, θ′ ∈ Θ, ||θ − θ′|| ≤
1

k

}
.

From the assumption [Mod] it comes

W1,n

(
ϕ,

1

k

)
≤ sup

{
1

|Λn|

∫

Λn×M (|(θ − θ′)
T
v (xm|ϕ) |eK

)
µ(dxm)

: θ, θ′ ∈ Θ, ||θ − θ′|| ≤
1

k

}

≤
eK

k

1

|Λn|

∫

Λn×M ||v (xm|Φ) ||µ(dxm).

Under the assumption [Mod], one can apply Theorem 4 (Nguyen and Zessin
(1979)) to obtain as n → +∞

1

|Λn|

∫

Λn×M ||v (xm|Φ) ||µ(dxm) → E
(
||v
(
0M |Φ

)
||
)
, for Pθ⋆ − a.e. ϕ.

So there exists n
(1)
0 (k) such that for all n ≥ n

(1)
0 (k) we have

W1,n

(
ϕ,

1

k

)
≤

2eK

k
E
(
||v
(
0M |Φ

)
||
)
,

for Pθ⋆-a.e. ϕ. By using the same arguments, one can prove that there exists

n
(2)
0 (k) such that for all n ≥ n

(2)
0 (k) we have

W2,n

(
ϕ,

1

k

)
≤

2

k
E

(
||v
(
0M |Φ

)
||e−V (0M |Φ;θ⋆)

)
≤

2eK

k
E
(
||v
(
0M |Φ

)
||
)
,

for Pθ⋆−a.e. ϕ. And so for all n ≥ n0(k) = max(n
(1)
0 (k), n

(2)
0 (k)), we have

Pθ⋆−a.s.

Wn

(
ϕ,

1

k

)
≤W1,n

(
ϕ,

1

k

)
+W2,n

(
ϕ,

1

k

)
<
δ

k
, for Pθ⋆ − a.e. ϕ.

with δ = 4eKE
(
||v
(
0M |Φ

)
||
)
. Since,

lim sup
n→+∞

{
Wn

(
ϕ,

1

k

)
≥
δ

k

}
=

⋂

m∈N

⋃

n≥m

{
Wn

(
ϕ,

1

k

)
≥
δ

k

}

⊂
⋃

n≥n0(k)

{
Wn

(
ϕ,

1

k

)
≥
δ

k

}
, for Pθ⋆ − a.e. ϕ.

the expected result (6.6) is proved.
Conclusion step. The Steps 1, 2 and 3 ensure the fact that we can apply a
consistency result on minimum contrast estimators, see Guyon (1995).
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6.3. Proof of Theorem 2

Step 1. Asymptotic normality of U
(1)
n (Φ; θ⋆)

The aim is to prove that for any fixed D̃, the following convergence in distri-
bution as n→ +∞

|Λn|
1/2 U (1)

n (Φ; θ⋆) → N
(
0,Σ(D̃, θ⋆)

)
(6.7)

where the matrix Σ(D̃, θ⋆) is defined by (4.4).

The idea is to apply to U
(1)
n (Φ; θ⋆) a central limit theorem obtained by

Jensen and Künsch (1994), Theorem 2.1. The following conditions have to be
fulfilled to apply this result. For all j = 1, . . . , p+ 1

(i) For all i ∈ Z
2, E

((
LP L

(1)
∆i

(Φ; θ⋆)
)

j
|Φ∆c

i

)
= 0.

(ii) For all i ∈ Z
2, E

(∣∣∣∣
(
LP L

(1)
∆i

(Φ; θ⋆)
)

j

∣∣∣∣
3
)
< +∞.

(iii) The matrix Var
(
|Λn|1/2U

(1)
n (Φ; θ⋆)

)
converges to the matrix Σ(D̃, θ⋆).

Condition (i): From the stationarity of the process, it is sufficient to prove that

E

((
LP L

(1)
∆0

(Φ; θ⋆)
)

j
|Φ∆c

0

)
= 0.

Recall that for any configuration ϕ

(
LP L

(1)
∆0

(ϕ; θ⋆)
)

j
= −

∫

∆0×M vj(x
m|ϕ)e−V (xm|ϕ;θ⋆)µ(dxm)

+

∫

∆0×M vj(x
m|ϕ \ xm)ϕ(dxm). (6.8)

Denote respectively by G1(ϕ) and G2(ϕ) the first and the second right-hand
term of (6.8) and by Ei = E

(
Gi(Φ)|Φ∆c

0
= ϕ∆c

0

)
. From the definition of Gibbs

point processes,

E2 =
1

Z∆0 (ϕ∆c
0
)

∫

Ω∆0

Q(dϕ∆0 )

∫Sϕ∆0 (dx
m)1∆0 (x)vj(x

m|ϕ\xm)e
−V
(
ϕ∆0 |ϕ∆c

0
;θ⋆
)
.

Denote by ϕ′ = (ϕ∆0 , ϕ
′
∆c

0
). Since Q is a Poisson process we can write

E2 =
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ′)

∫S ϕ′(dxm)1∆0(x)vj(x
m|ϕ \ xm)e

−V
(
ϕ∆0 |ϕ∆c

0
;θ⋆
)

=
1

Z∆0(ϕ∆c
0
)

∫

Ω

Q(dϕ′)

×

∫S ϕ′(dxm)1∆0 (x)vj(x
m|ϕ′

∆0
∪ ϕ∆c

0
\ xm)e

−V
(
ϕ′

∆0
|ϕ∆c

0
;θ⋆
)
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Now, from Campbell Theorem (applied to the Poisson measure Q)

E2 =
1

Z∆0 (ϕ∆c
0
)

∫

∆0×M µ(dxm)

×

∫

Ω

Q!
xm(dϕ′)vj(x

m|ϕ′
∆0

∪ ϕ∆c
0
)e

−V
(
ϕ′

∆0
∪xm|ϕ∆c

0
;θ⋆
)
.

Since from Slivnyak-Mecke Theorem, Q = Q!
x, one can obtain

E2 =
1

Z∆0 (ϕ∆c
0
)

∫

Ω

Q(dϕ′)

∫

∆0×Mµ(dxm) vj(x
m|ϕ′

∆0
∪ ϕ∆c

0
)e

−V
(
ϕ′

∆0
∪xm|ϕ∆c

0
;θ⋆
)

=
1

Z∆0 (ϕ∆c
0
)

∫

Ω

Q(dϕ∆0 )

∫

∆0×M µ(dxm)vj(x
m|ϕ)e−V (xm|ϕ;θ⋆)e

−V
(
ϕ∆0 |ϕ∆c

0
;θ⋆
)

= −E1

Condition (ii): For any bounded domain ∆ and any configuration ϕ, one may
write for j = 1, . . . , p+ 1

∣∣∣∣
(
LP L

(1)
∆ (ϕ; θ⋆)

)

j

∣∣∣∣
3

≤ 4

∣∣∣∣
∫

∆×M vj(x
m|ϕ)e−V (xm|ϕ;θ⋆)µ(dxm)

∣∣∣∣
3

+ 4

∣∣∣∣∣
∑

xm∈ϕ∆

vj(x
m|ϕ \ xm)

∣∣∣∣∣

3

From [Mod], both right-hand terms are integrable with respect to Pθ⋆ , which
implies that for any domain ∆ and in particular for ∆i,

E

(∣∣∣∣
(
LP L

(1)
∆i

(Φ; θ⋆)
)

j

∣∣∣∣
3
)
< +∞.

Condition (iii): let us start by noting that the vector LP L
(1)
∆i

(ϕ; θ⋆) depends

only on ϕ∆j
for j ∈ B(i, ⌈D

D̃

⌉)
. Let

Ei,j := E

(
LP L

(1)
∆i

(Φ; θ⋆)LP L
(1)
∆j

(Φ; θ⋆)
T
)

= E0,j−i,

by using the stationarity of the process. From definitions, we can obtain

Var
(
|Λn|

1/2U (1)
n (Φ; θ⋆)

)

= |Λn|
−1

Var

(
∑

i∈In

LP L
(1)
∆i

(Φ; θ⋆)

)

= |Λn|
−1

∑

i,j∈In

Ei,j

= |Λn|
−1
∑

i∈In

(
∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j +

∑

j∈In∩B(i,⌈D

D̃

⌉)c

Ei,j

)
.
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By using condition (i), one may assert that for any j ∈ In ∩B(i, ⌈D
D̃

⌉)c

E := E

(
LP L

(1)
∆i

(Φ; θ⋆)LP L
(1)
∆j

(Φ; θ⋆)
T
)

= E

(
E

(
LP L

(1)
∆i

(Φ; θ⋆)LP L
(1)
∆j

(Φ; θ⋆)
T
|Φ∆j

))

= E

(
E

(
LP L

(1)
∆i

(Φ; θ⋆) |Φ∆j

)
LP L

(1)
∆j

(Φ; θ⋆)
T
)

= 0

Denote by Ĩn the following set

Ĩn = In ∩

(
∪i∈∂In

B(i, ⌈D
D̃

⌉))
.

We now obtain

Var
(
|Λn|

1/2U (1)
n (Φ; θ⋆)

)
= |Λn|

−1
∑

i∈In

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j

= |Λn|
−1

(
∑

i∈In\Ĩn

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j

+
∑

i∈Ĩn

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j

)

Using the stationarity and the definition of the domain Λn, one obtains

|Λn|
−1

∑

i∈In\Ĩn

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j = |Λn|

−1|In \ Ĩn|
∑

j∈B(0,

⌈
D

D̃

⌉)
E0,j

→ Σ(D̃, θ⋆),

as n → +∞ and

|Λn|
−1

∣∣∣∣∣∣∣∣∣

∑

i∈Ĩn

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j

∣∣∣∣∣∣∣∣∣

≤ |Λn|
−1|Ĩn|

∑

j∈B(0,

⌈
D

D̃

⌉)
|E0,j| → 0
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as n → +∞. Hence as n → +∞

Var
(
|Λn|

1/2U (1)
n (Φ; θ⋆)

)
= |Λn|

−1
∑

i∈In

∑

j∈In∩B(i,⌈D

D̃

⌉)
Ei,j

∼ |In||Λn|
−1

︸ ︷︷ ︸
D̃−2

∑

k∈B(0,

⌈
D

D̃

⌉)
E0,k = Σ(D̃, θ⋆).(6.9)

Step 2. Domination of U
(2)
n (Φ; θ) in a neighborhood of θ⋆ and convergence of

U (2)
n (Φ; θ⋆)

Let j, k = 1, . . . , p, recall that
(
U (2)
n (ϕ; θ)

)

j,k
is defined for any configuration

ϕ by

(
U (2)
n (ϕ; θ)

)

j,k
=

1

|Λn|

∫

Λn×M vj(x
m|ϕ)vk(x

m|ϕ)e−V (xm|ϕ;θ)µ(dxm).

Using the local stability property it comes

(
U

(2)
n (ϕ; θ)

)

j,k
≤

eK

|Λn|

∫

Λn×M vj(x
m|ϕ)vk(x

m|ϕ)µ(dxm).

From [Mod], one can apply Theorem 4 (Nguyen and Zessin (1979)). It follows
that there exists n0 such that for all n ≥ n0

∣∣∣∣
(
U(2)
n (ϕ; θ)

)

j,k

∣∣∣∣ ≤ 2 × eKE
(∣∣vj(0M |Φ)vk(0

M |Φ)
∣∣) for Pθ⋆ − a.e. ϕ.

Note that from Theorem 4 (Nguyen and Zessin (1979)), for all θ (and in par-

ticular θ = θ⋆), U (2)
n (·; θ) converges almost surely as n→ +∞ towards U (2)(θ)

which is the (p, p) matrix with elements
(
U (2)(θ)

)

j,k
= E

(
vj(0

m|Φ)vk(0
m|Φ)e−V (0m|ϕ;θ)

)
, for j, k = 1, . . . , p.

Let us underline that U
(2)(θ) is a symmetric definite positive matrix. Indeed,

it is a positive matrix since for all y ∈ R
p+1

yTU (2)(θ)y =
∑

j,k

yjE
(
vj(0

M |Φ)vk(0
M |Φ)e−V (0M |Φ;θ)

)
yk

= E
((

yTv
(
0M |Φ

))2
e−V (0M |Φ;θ)

)
≥ 0.

And it is definite since, for all y ∈ R
p+1 \ {0} from [Ident], yTv (0m|ϕ) = 0 for

λm ⊗ Pθ⋆−a.e. (m,ϕ) implies y = 0.
Conclusion Step Under the assumptions [Mod] and [Ident], and using Steps
1 and 2, one can apply a classical result concerning asymptotic normality for
minimum contrast estimators, see Guyon (1995) in order to obtain (4.3).
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Now, the result (4.5) is proved in three substeps:
(i) We first prove that the matrix Σ(θ⋆) = Σ(D, θ⋆) is a symmetric definite

positive matrix. From Equation (6.9), it is sufficient to prove that the matrix

Var(|Λn(D)|−1/2LP L
(1)

Λn(D)
(Φ; θ⋆)) is definite positive for n large enough. Let

y ∈ R
p \ {0}, the aim is to prove that

V := yTVar
(
|Λn(D)|−1/2LP L

(1)

Λn(D)
(Φ; θ⋆)

)
y > 0.

Let Λ = ∪
i∈B(0,⌈D

D

⌉)∆i(D), using the same argument of Jensen and Künsch

(1994) (Equation (3.2)), one can write

V ≥ |Λn(D)|−1 E

(
Var

(
yTLP L

(1)

Λn(D)
(Φ; θ⋆) |Φ∆k(D), k /∈ (2

⌈
D

D

⌉
+ 1)Z2

))
.

Note that for i 6= j ∈ In,

Cov

(
yTLP L

(1)

∆i(D)
(ϕ; θ⋆) , yTLP L

(1)

∆j(D)
(ϕ; θ⋆) |Φ∆k(D), k /∈ (2

⌈
D

D

⌉
+ 1)Z2

)

= 0

due to the independence of LP L
(1)

∆i(D)
(ϕ; θ⋆) and LP L

(1)

∆j(D)
(ϕ; θ⋆) condi-

tionally on Φ∆k(D), k /∈ (2
⌈
D

D

⌉
+ 1)Z2 when i, j ∈ In ∩ (2

⌈
D

D

⌉
+ 1)Z2 and

LP L
(1)

∆i(D)
(ϕ; θ⋆) or LP L

(1)

∆j(D)
(ϕ; θ⋆) is constant when either i or j /∈ In ∩

(2
⌈
D

D

⌉
+ 1)Z2. As a direct consequence,

V ≥ |Λn(D)|−1
E

(
Var

(
y

T
∑

i∈In

LP L
(1)

∆i(D)
(Φ; θ⋆)

∣∣Φ
∆k(D)

, k /∈ (2
⌈

D

D

⌉
+ 1)Z2

))

= |Λn(D)|−1
∑

i∈In

E

(
Var

(
y

T
LP L

(1)

∆i(D)
(Φ;θ⋆)

∣∣Φ∆k(D), k /∈ (2
⌈

D

D

⌉
+ 1)Z2

))

= |Λn(D)|−1
∑

ℓ∈In∩(2
⌈

D

D

⌉
+1)Z2\Ĩn

E


Var


y

T
∑

i∈In∩B(ℓ,

⌈
D

D

⌉)
LP L

(1)

∆i(D)
(Φ;θ⋆)

∣∣Φ∆k(D), k /∈ (2
⌈

D

D

⌉
+ 1)Z2







+ |Λn(D)|−1
∑

ℓ∈(2
⌈

D

D

⌉
+1)Z2∩Ĩn

E


Var


y

T
∑

i∈In∩B(ℓ,

⌈
D

D

⌉)
LP L

(1)

∆i(D)
(Φ;θ⋆)

∣∣Φ∆k(D), k /∈ (2
⌈

D

D

⌉
+ 1)Z2









J.-M. Billiot et al./MPLE for marked Gibbs point processes 262

Following the proof of Step 1, condition (iii) one may prove that the second
right-hand term tends to 0 as n→ +∞. Therefore by using the stationarity, we
have for n large enough

V ≥
1

2
|Λn(D)|−1

∣∣∣In ∩ (2
⌈

D

D

⌉
+ 1)Z2

∣∣∣

× E

(
Var

(
y

T
LP L

(1)

Λ
(Φ; θ⋆)

∣∣Φ∆k(D), 1 ≤ |k| ≤ 2
⌈

D

D

⌉))

=
D

−2

2

|In ∩ (2
⌈

D

D

⌉
+ 1)Z2|

|In|

× E

(
Var

(
y

T
LP L

(1)

Λ
(Φ; θ⋆)

∣∣Φ∆k(D), 1 ≤ |k| ≤ 2
⌈

D

D

⌉))

≥
D

−2

2



 3

4
⌈

D

D

⌉
+ 1




2

× E

(
Var

(
y

T
LP L

(1)

Λ
(Φ; θ⋆)

∣∣Φ∆k(D), 1 ≤ |k| ≤ 2
⌈

D

D

⌉))

Assume there exists some positive constant c such that Pθ⋆−a.s.

yTLP L
(1)

Λ
(Φ; θ⋆) = c when the variables Φ∆k(D), 1 ≤ |k| ≤ 2

⌈
D

D

⌉
are (for

example) fixed to ∅. By assuming [SDP] it follows that for any ϕi ∈ Ai for

i = 0, . . . , ℓ (with ℓ ≥ p), yT
(
LP L

(1)

Λ
(ϕi; θ

⋆) − LP L
(1)

Λ
(ϕ0; θ

⋆)
)

= 0. Since

for all (ϕ0, . . . , ϕℓ) ∈ A0×. . .×Aℓ, the matrix with entries
(
LP L

(1)

Λ
(ϕi; θ

⋆)
)

j
−

(
LP L

(1)

Λ
(ϕ0; θ

⋆)
)

j
is assumed to be injective, this leads to y = 0 and hence

to some contradiction. Therefore, when the variables Φ∆k(D), 1 ≤ |k| ≤ 2
⌈
D
D

⌉

are fixed to ∅, the variable yTLP L
(1)

Λ
(Φ; θ⋆) is almost surely not a constant.

Hence, Σ(θ⋆) is a symmetric definite positive matrix.

(ii) Convergence of Σ̂n(ϕ;D∨, D̃, θ).
Let us recall that for any ϕ ∈ Ω, D∨ ≥ D and θ ∈ Θ we define

Σ̂n(ϕ;D∨, D̃, θ) =
D̃−2

|In|

∑

i∈In

∑

j∈In∩B(i,⌈D∨

D̃

⌉)
LP L

(1)
∆i

(ϕ; θ)
T
LP L

(1)
∆j

(ϕ; θ)

We also define

Xi(ϕ) := Xi(ϕ)k,ℓ =
∑

j∈In∩B(i,⌈D∨

D̃

⌉)

(
LP L

(1)
∆i

(ϕ; θ)
)

k

(
LP L

(1)
∆j

(ϕ; θ)
)

ℓ
,

Yi(ϕ) := Xi(ϕ) − E(Xi(Φ)) and Y n(ϕ) = |In|−1
∑

i∈In
Yi(ϕ). Since one may

notice that E(Xi(Φ)) = D̃2
(
Σ(D̃, θ)

)

k,ℓ
, we have

Y n(ϕ) = D̃2
(
Σ̂n(ϕ;D∨, D̃, θ) − Σ(D̃, θ)

)

k,ℓ
.
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Thus, the aim is to prove that as n → +∞, Y n(ϕ) → 0 for Pθ⋆−a.e. ϕ. Since
the process {Yi, i ∈ Z

2} is stationary, it is sufficient to prove, see e.g. Guyon
(1995)

• (a) E
(
Y0(Φ)2

)
< +∞

• (b) E
(
|In|Y n(Φ)2

)
< +∞.

(a) We leave the reader to verify that [Mod] ensures this integrability con-
dition.

(b) Note that Yi(ϕ) depends only on ϕ∆j
for j ∈ B(i, ⌈D∨

D̃

⌉
+
⌈
D

D̃

⌉)
. Hence,

by choosing j ∈ In ∩B (i, αD∨,D)c with αD∨,D = αD∨,D(D̃) := 2
⌈
D∨

D̃

⌉
+
⌈
D

D̃

⌉
,

the variables Yi and Yj are independent. Then, we obtain

E
(
|In|Y n(Φ)2

)
=

1

|In|

∑

i,j∈In

E (Yi(Φ)Yj(Φ))

=
1

|In|

∑

i∈In

(
∑

j∈In∩B(i,αD∨,D)

E (Yi(Φ)Yj(Φ))

+
∑

j∈In∩B(i,αD∨,D)
c

E (Yi(Φ)Yj(Φ))

)

=
1

|In|

∑

i∈In

∑

j∈In∩B(i,αD∨,D)

E (Yi(Φ)Yj(Φ))

∼
∑

k∈B(0,αD∨,D)

E (Y0(Φ)Yk(Φ)) ≤ (2αD∨,D + 1)E
(
Y0(Φ)2

)
.

Therefore, for all D∨ ≥ D and for all θ ∈ Θ, we have for Pθ⋆−a.e. ϕ as n → +∞

Σ̂n(ϕ;D∨, D̃, θ) → Σ(D̃, θ) = Σ(θ). (6.10)

(iii) Since for any ϕ, the functions U (2)
n (ϕ; ·) and Σ̂n(ϕ;D∨, D̃, ·) are con-

tinuous, it follows from Step 2 and (6.10) that one obtains for Pθ⋆−a.e. ϕ, as
n → +∞

U (2)
n (ϕ; θ̂) → U (2)(θ⋆) and Σ̂n(ϕ;D∨, D̃, θ̂) → Σ(θ⋆).

Finally, note that the previous convergence also implies that for n large enough
Σ̂n(Φ;D∨, D̃, θ̂) is almost surely a symmetric definite positive matrix.
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