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Abstract: The Support Vector Machine (SVM) is a popular classification
paradigm in machine learning and has achieved great success in real appli-
cations. However, the standard SVM can not select variables automatically
and therefore its solution typically utilizes all the input variables without
discrimination. This makes it difficult to identify important predictor vari-
ables, which is often one of the primary goals in data analysis. In this paper,
we propose two novel types of regularization in the context of the multi-
category SVM (MSVM) for simultaneous classification and variable selec-
tion. The MSVM generally requires estimation of multiple discriminating
functions and applies the argmax rule for prediction. For each individual
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variable, we propose to characterize its importance by the supnorm of its
coefficient vector associated with different functions, and then minimize the
MSVM hinge loss function subject to a penalty on the sum of supnorms. To
further improve the supnorm penalty, we propose the adaptive regulariza-
tion, which allows different weights imposed on different variables according
to their relative importance. Both types of regularization automate vari-
able selection in the process of building classifiers, and lead to sparse multi-
classifiers with enhanced interpretability and improved accuracy, especially

for high dimensional low sample size data. One big advantage of the sup-
norm penalty is its easy implementation via standard linear programming.
Several simulated examples and one real gene data analysis demonstrate
the outstanding performance of the adaptive supnorm penalty in various
data settings.

AMS 2000 subject classifications: Primary 62H30.
Keywords and phrases: Classification, L1-norm penalty, multicategory,
sup-norm, SVM.
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1. Introduction

In supervised learning problems, we are given a training set of n examples from
K ≥ 2 different populations. For each example in the training set, we observe
its covariate xi ∈ R

d and the corresponding label yi indicating its membership.
Our ultimate goal is to learn a classification rule which can accurately predict
the class label of a future example based on its covariate. Among many clas-
sification methods, the Support Vector Machine (SVM) has gained much pop-
ularity in both machine learning and statistics. The seminal work by Vapnik
(1995, 1998) has laid the foundation for the general statistical learning the-
ory and the SVM, which furthermore inspired various extensions on the SVM.
For other references on the binary SVM, see Christianini and Shawe-Taylor
(2000), Schölkopf and Smola (2002), and references therein. Recently a few at-
tempts have been made to generalize the SVM to multiclass problems, such
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as Vapnik (1998), Weston and Watkins (1999), Crammer and Singer (2001),
Lee et al. (2004), Liu and Shen (2006), and Wu and Liu (2007a).

While the SVM outperforms many other methods in terms of classification
accuracy in numerous real problems, the implicit nature of its solution makes
it less attractive in providing insight into the predictive ability of individual
variables. Often times, selecting relevant variables is the primary goal of data
mining. For the binary SVM, Bradley and Mangasarian (1998) demonstrated
the utility of the L1 penalty, which can effectively select variables by shrinking
small or redundant coefficients to zero. Zhu et al. (2003) provides an efficient al-
gorithm to compute the entire solution path for the L1-norm SVM. Other forms
of penalty have also been studied in the context of binary SVMs, such as the L0

penalty (Weston et al., 2003), the SCAD penalty (Zhang et al., 2006), the Lq

penalty (Liu et al., 2007), the combination of L0 and L1 penalty (Liu and Wu,
2007), the combination of L1 and L2 penalty (Wang et al., 2006), the F∞ norm
(Zou and Yuan, 2006), and others (Zhao et al., 2006; Zou, 2006).

For multiclass problems, variable selection becomes more complex than the
binary case, since the MSVM requires estimation of multiple discriminating
functions, among which each function has its own subset of important predictors.
One natural idea is to extend the L1 SVM to the L1 MSVM, as done in the recent
work of Lee et al. (2006) and Wang and Shen (2007b). However, the L1 penalty
does not distinguish the source of coefficients. It treats all the coefficients equally,
no matter whether they correspond to the same variable or different variables,
or they are more likely to be relevant or irrelevant. In this paper, we propose
a new regularized MSVM for more effective variable selection. In contrast to
the L1 MSVM, which imposes a penalty on the sum of absolute values of all
coefficients, we penalize the sup-norm of the coefficients associated with each
variable. The proposed method is shown to be able to achieve a higher degree
of model parsimony than the L1 MSVM without compromising classification
accuracy.

This paper is organized as follows. Section 2 formulates the sup-norm regu-
larization for the MSVM. Section 3 proposes an efficient algorithm to implement
the MSVM. Section 4 discusses an adaptive approach to improve performance
of the sup-norm MSVM by allowing different penalties for different covariates
according to their relative importance. Numerical results on simulated and gene
expression data are given in Sections 5 and 6, followed by a summary.

2. Methodology

In K-category classification problems, we code y as {1, . . . , K} and define f =
(f1, . . . , fK) as a decision function vector. Each fk, a mapping from the input
domain R

d to R, represents the strength of the evidence that an example with
input x belongs to the class k; k = 1, . . . , K. A classifier induced by f ,

φ(x) = arg max
k=1,...,K

fk(x),
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assigns an example with x to the class with the largest fk(x). We assume the
n training pairs {(xi, yi), i = 1, . . . , n} are independently and identically dis-
tributed according to an unknown probability distribution P (x, y). Given a
classifier f , its performance is measured by the generalization error, GE(f ) =
P (Y 6= argmaxk fk(X)) = E(X,Y )[I(Y 6= argmaxk fk(X))].

Let pk(x) = Pr(Y = k|X = x) be the conditional probability of class k given
X = x. The Bayes rule which minimizes the GE is then given by

φB(x) = arg min
k=1,...,K

[1 − pk(x)] = arg max
k=1,...,K

pk(x). (2.1)

For nonlinear problems, we assume fk(x) = bk +
∑q

j=1 wkjhj(x) using a set
of basis functions {hj(x)}. This linear representation of a nonlinear classifier
through basis functions will greatly facilitate the formulation of the proposed
method. Alternatively nonlinear classifiers can also be achieved by applying the
kernel trick (Boser et al., 1992). However, the kernel classifier is often given as
a black box function, where the contribution of each individual covariate to the
decision rule is too implicit to be characterized. Therefore we will use the basis
expansion to construct nonlinear classifiers in the paper.

The standard multicategory SVM (MSVM; Lee et al., 2004) solves

min
f

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[fk(xi) + 1]+ + λ

K
∑

k=1

d
∑

j=1

w2
kj, (2.2)

under the sum-to-zero constraint
∑K

k=1 fk = 0. The sum-to-zero constraint used
here is to follow Lee et al. (2004) in their framework for the MSVM. It is imposed
to eliminate redundancy in fk’s and to assure identifiability of the solution. This
constraint is also a necessary condition for the Fisher consistency of the MSVM
proposed by Lee et al. (2004). To achieve variable selection, Wang and Shen
(2007b) proposed to impose the L1 penalty on the coefficients and the corre-
sponding L1 MSVM then solves

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

K
∑

k=1

d
∑

j=1

|wkj| (2.3)

under the sum-to-zero constraint. For linear classification rules, we start with
fk(x) = bk +

∑d

j=1 wkjxj, k = 1, . . . , K. The sum-to-zero constraint then be-
comes

K
∑

k=1

bk = 0,

K
∑

k=1

wkj = 0, j = 1, . . . , d. (2.4)

The L1 MSVM treats all wkj’s equally without distinction. As opposed to
this, we take into account the fact that some of the coefficients are associated
with the same covariate, therefore it is more natural to treat them as a group
rather than separately.

Define the weight matrix W of size K × d such that its (k, j) entry is wkj.
The structure of W is shown as follows:
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x1 · · · xj · · · xd

Class 1 w11 · · · w1j · · · w1d

· · · · · · · · · · · · · · ·

Class k wk1 · · · wkj · · · wkd

· · · · · · · · · · · · · · ·

Class K wK1 · · · wKj · · · wKd .

Throughout the paper, we use wk = (wk1, . . . , wkd)
T to represent the kth

row vector of W , and w(j) = (w1j, . . . , wKj)
T for the jth column vector of

W . According to Crammer and Singer (2001), the value bk + wT

kx defines the
similarity score of the class k, and the predicted label is the index of the row
attaining the highest similarity score with x. We define the sup-norm for the
coefficient vector w(j) as

‖w(j)‖∞ = max
k=1,··· ,K

|wkj|. (2.5)

In this way, the importance of each covariate xj is directly controlled by its
largest absolute coefficient. We propose the sup-norm regularization for MSVM:

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (2.6)

where b = (b1, . . . , bK)T.
The sup-norm MSVM encourages more sparse solutions than the L1 MSVM,

and identifies important variables more precisely. In the following, we describe
the main motivation of the sup-norm MSVM, which makes it more attractive for
variable selection than the L1 MSVM. Firstly, with a sup-norm penalty, a noise
variable is removed if and only if all corresponding K estimated coefficients are
0. On the other hand, if a variable is important with a positive sup-norm, the
sup-norm penalty, unlike the L1 penalty, does not put any additional penalties
on the other K − 1 coefficients. This is desirable since a variable will be kept in
the model as long as the sup-norm of the K coefficients is positive. No further
shrinkage is needed for the remaining coefficients in terms of variable selection.
For illustration, we plot the region 0 ≤ t1 + t2 ≤ C in Figure 1, where t1 =
max(w11, w21, w31, w41) and t2 = max(w12, w22, w32, w42). Clearly, the sup-norm
penalty shrinks sum of two maximums corresponding to two variables. This helps
to lead to more parsimonious models. In short, in contrast to the L1 penalty,
the sup-norm utilizes the group information of the decision function vector and
consequently the sup-norm MSVM can deliver better variable selection.

For three-class problems, we show that the L1 MSVM and the new proposed
sup-norm MSVM give identical solutions after adjusting the tuning parameters,
which is due to the sum-to-zero constraints on w(j)’s. This equivalence, however,
does not hold for the adaptive procedures introduced in Section 4.
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Fig 1. Illustrative plot of the shrinkage property of the sup-norm.

Proposition 2.1. When K = 3, the L1 MSVM (2.3) and the sup-norm MSVM

(2.6) are equivalent.

When K > 3, our empirical experience shows that the sup-norm MSVM
generally performs well in terms of classification accuracy.

Here we would like to point out two fundamental differences between the sup-
norm penalty and the F∞ penalty used for group variable selection (Zhao et al.,
2006; Zou and Yuan, 2006) considering their similar expressions. The purpose
of group selection is to select several prediction variables altogether if these
predictors work as a group. Therefore, each F∞ term in Zou and Yuan (2006)
is based on the regression coefficients of several variables which belong to one
group, whereas each supnorm penalty in (2.6) is associated with only one pre-
diction variable. Secondly, in the implementation of the F∞, one has to decide
in advance the number of groups and which variables belong to a certain group,
whereas in the supnorm SVM each variable is naturally associated with its own
group and the number of groups is same as the number of covariates.

As a remark, we point out that Argyriou et al. (2007, 2006) proposed a similar
penalty for the purpose of multi-task feature learning. Specifically, they used a
mixture of L1 and L2 penalties. They first applied the L2 penalty for each
feature across different tasks and then used the L1 penalty for feature selection.
In contrast, our penalty is a combination of the L1 and supnorm penalties for
multicategory classification.

The tuning parameter λ in (2.6) balances the tradeoff between the data fit
and the model parsimony. A proper choice of λ is important to assure good per-
formance of the resulting classifier. If the chosen λ is too small, the procedure
tends to overfit the training data and gives a less sparse solution; on the other
hand, if λ is too large, the solution can become very sparse but possibly with
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a low prediction power. The choice of the tuning parameter is typically done
by minimizing either an estimate of generalization error or other related perfor-
mance measures. In simulations, we generate an extra independent tuning set to
choose the best λ. For real data analysis, we use leave-one-out cross validation
of the misclassification rate to select λ.

3. Computational Algorithms

In this section we show that the optimization problem (2.6) can be converted to
a linear programming (LP) problem, and can therefore be solved using standard
LP techniques in polynomial time. This great computational advantage is very
important in real applications, especially for large data sets.

Let A be an n × K matching matrix with its entry aik = I(yi 6= k) for
i = 1, . . . , n and k = 1, . . . , K. First we introduce slack variables ξik such that

ξik =
[

bk + wT
k xi + 1

]

+
for i = 1, . . . , n; k = 1, . . . , K. (3.1)

The optimization problem (2.6) can be expressed as

min
b,w,ξ

1

n

n
∑

i=1

K
∑

k=1

aikξik + λ

d
∑

j=1

‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, j = 1, . . . , d,

ξik ≥ bk + wT
k xi + 1, ξik ≥ 0, i = 1, . . . , n; k = 1, . . . , K. (3.2)

To further simplify (3.2), we introduce a second set of slack variables

ηj = ‖w(j)‖∞ = max
k=1,...,K

|wkj|,

which add some new constraints to the problem:

|wkj| ≤ ηj , for k = 1, . . . , K; j = 1, . . . , d.

Finally write wkj = w+
kj − w−

kj, where w+
kj and w−

kj denote the positive and

negative parts of wkj, respectively. Similarly, w+
j and w−

j respectively consist of

the positive and negative parts of components in wj . Denote η = (η1, . . . , ηd)
T ;

then (3.2) becomes

min
b,w,ξ,η

1

n

n
∑

i=1

K
∑

k=1

aikξik + λ

d
∑

j=1

ηj,

subject to 1Tb = 0, 1T [w+
(j) −w−

(j)] = 0, j = 1, . . . , d,

ξik ≥ bk + [w+
k −w−

k ]Txi + 1, ξik ≥ 0, i = 1, . . . , n; k = 1, . . . , K,

w+
(j) + w−

(j) ≤ η, w+
(j) ≥ 0, w−

(j) ≥ 0, j = 1, . . . , d. (3.3)
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4. Adaptive Penalty

In (2.3) and (2.6), the same weights are used for different variables in the penalty
terms, which may be too restrictive, since a smaller penalty may be more desired
for those variables which are so important that we want to retain them in the
model. In this section, we suggest that different variables should be penalized
differently according to their relative importance. Ideally, large penalties should
be imposed on redundant variables in order to eliminate them from models more
easily; and small penalties should be used on important variables in order to
retain them in the final classifier. Motivated by this, we consider the following
adaptive L1 MSVM:

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

K
∑

k=1

d
∑

j=1

τkj|wkj|,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.1)

where τkj > 0 represents the weight for coefficient wkj.
Adaptive shrinkage for each variable has been proposed and studied in var-

ious contexts of regression problems, including the adaptive LASSO for linear
regression (Zou, 2006), proportional hazard models (Zhang and Lu, 2007), and
quantile regression (Wang et al., 2007; Wu and Liu, 2007b). In particular, Zou
(2006) has established the oracle property of the adaptive LASSO and justified
the use of different amounts of shrinkage for different variables. Due to the spe-
cial form of the sup-norm SVM, we consider the following two ways to employ
the adaptive penalties:

[I]

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

τj‖w(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.2)

[II]

min
b,w

1

n

n
∑

i=1

K
∑

k=1

I(yi 6= k)[bk + wT
k xi + 1]+ + λ

d
∑

j=1

‖(τw)(j)‖∞,

subject to 1Tb = 0, 1Tw(j) = 0, for j = 1, . . . , d, (4.3)

where the vector (τw)(j) = (τ1jw1j, . . . , τKjwKj)
T for j = 1, ..., d.

In (4.1), (4.2), and (4.3), the weights can be regarded as leverage factors,
which are adaptively chosen such that large penalties are imposed on coeffi-
cients of unimportant covariates and small penalties on coefficients of important
ones. Let w̃ be the solution to standard MSVM (2.2) with the L2 penalty. Our
empirical experience suggests that

τkj =
1

|w̃kj|
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is a good choice for (4.1) and (4.3), and

τj =
1

‖w̃(j)‖∞

is a good choice for (4.2). If w̃kj = 0, which implies the infinite penalty on wkj,
we set the corresponding coefficient solution ŵkj to be zero.

In terms of computational issues, all three problems (4.1), (4.2), and (4.3)
can be solved as LP problems. Their entire solution paths may be obtained by
some modifications of the algorithms in Wang and Shen (2007b).

5. Simulation

In this section, we demonstrate the performance of six MSVM methods: the
standard L2 MSVM, L1 MSVM, sup-norm MSVM, adaptive L1 MSVM, and
the two adaptive sup-norm MSVMs. Three simulation models are considered:
(1) a linear example with five classes; (2) a linear example with four classes; (3) a
nonlinear example with three classes. In each simulation setting, n observations
are simulated as the training data, and another n observations are generated
for tuning the regularization parameter λ for each procedure. Therefore the
total sample size is 2n for obtaining the final classifiers. To test the accuracy
of the classification rules, we also independently generate n′ observations as a
test set. The tuning parameter λ is selected via a grid search over the grid:
log2(λ) = −14,−13, . . . , 15. When a tie occurs, we choose the larger value of λ.
As we suggest in Section 4, we use the L2 MSVM solution to derive the weights
in the adaptive MSVMs. The L2 MSVM solution is the final tuned solution using
the separate tuning set. Once the weights are chosen, we tune the parameter λ
in the adaptive procedure via the tuning set.

We conduct 100 simulations for each classification method under all settings.
Each fitted classifier is then evaluated in terms of its classification accuracy and
variable selection performance. For each method, we report its average testing
error, the number of correct and incorrect zero coefficients among Kd coeffi-
cients, the model size as the number of important ones among the d variables,
and the number of times that the true model is correctly identified. The num-
bers given in the parentheses in the tables are the standard errors of the testing
errors. We also summarize the frequency of each variable being selected over 100
runs. All simulations are done using the optimization software CPLEX with the
AMPL interface (Fourer et al., 2003). More information about CPLEX can be
found on the ILOG website http://www.ilog.com/products/optimization/.

5.1. Five-Class Example

Consider a five-class example, with the input vector x in a 10-dimensional space.
The first two components of the input vector are generated from a mixture

http://www.ilog.com/products/optimization/
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Gaussian in the following way: for each class k, generate (x1, x2) independently
from N(µk, σ

2
1I2), with

µi = 2 (cos([2k − 1]π/5), sin([2k− 1]π/5)) , k = 1, 2, 3, 4, 5,

and the remaining eight components are i.i.d. generated from N(0, σ2
2). We

generate the same number of observations in each class. Here σ1 =
√

2, σ2 =
1, n = 250, and n′ = 50, 000.

Table 1

Classification and variable selection results for the five-class example. TE, CZ, IZ, MS, and
CM refer to the testing error, the number of correct zeros, the number of incorrect zeros, the
model size, and the number of times that the true model is correctly identified, respectively.

Method TE CZ IZ MS CM
L2 0.454 (0.034) 0.00 0.00 10.00 0
L1 0.558 (0.022) 24.88 2.81 6.60 21
Adapt-L1 0.553 (0.020) 30.23 2.84 5.14 40
Supnorm 0.453 (0.020) 33.90 0.01 3.39 68
Adapt-supI 0.455 (0.024) 39.92 0.01 2.08 98
Adapt-supII 0.457 (0.046) 39.40 0.09 2.17 97
Bayes 0.387 (—) 41 0 2 100

Table 1 shows that, in terms of classification accuracy, the L2 MSVM, the
supnorm MSVM, and the two adaptive supnorm MSVMs are among the best
and their testing errors are close to each other. In terms of other measurements
such as the number of correct/incorrect zeros, the model size, and the number of
times that the true model is correctly identified, the supnorm MSVM procedures
work much better than other MSVM methods.

Table 2 shows the frequency of each variable being selected by each procedure
in 100 runs. The type I sup-norm MSVM performs the best among all. Over-
all the adaptive MSVMs show significant improvement over the non-adaptive
classifiers in terms of both classification accuracy and variable selection.

Table 2

Variable selection frequency results for the five-class example.

Selection Frequency
Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

L2 100 100 100 100 100 100 100 100 100 100
L1 100 100 59 55 60 58 56 61 57 54
Adapt-L1 100 100 44 40 43 37 39 41 35 35
Supnorm 100 100 15 17 20 17 14 20 17 19
Adapt-supI 100 100 1 1 0 2 1 1 1 1
Adapt-supII 100 100 2 2 2 2 2 2 3 2

5.2. Four-Class Linear Example

In the simulation example in Section 5.1, the informative variables are important
for all classes. In this section, we consider an example where the informative vari-
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ables are important for some classes but not important for other classes. Specif-
ically, we generate four i.i.d important variables x1, x2, x3, x4 from Unif[−1, 1]
as well as six independent i.i.d noise variables x5, . . . , x10 from N(0, 82). Define
the functions

f1 = −5x1 + 5x4,

f2 = 5x1 + 5x2,

f3 = −5x2 + 5x3,

f4 = −5x3 − 5x4,

and set pk(x) = P (Y = k|X = x) ∝ exp(fk(x)), k = 1, 2, 3, 4. In this example,
we set n = 200 and n′ = 40, 000. Note that x1 is not important for distinguishing
class 3 and class 4. Similarly, x2 is noninformative for class 1 and class 4, x3 is
noninformative for class 1 and class 2, and x4 is noninformative for class 2 and
class 3.

Table 3

Classification and variable selection results for the four-class linear example.

Method TE CZ IZ MS CM

L2 0.336 (0.063) 0.0000 0.0000 10.00 0
L1 0.340 (0.069) 2.5100 0.1600 9.99 0
Adapt-L1 0.320 (0.079) 18.2300 0.2600 7.21 21
Supnorm 0.332 (0.070) 0.8500 0.1400 9.98 0
Adapt-supI 0.327 (0.076) 9.3300 0.1400 7.83 15
Adapt-supII 0.326 (0.071) 9.9000 0.1400 7.69 9
Bayes 0.1366 (—) 32 0 4 100

Table 3 summarizes the performance of various procedures, and Table 4 shows
the frequency of each variable being selected by each procedure in 100 runs. Due
to the increased difficulty of this problem, the performances of all methods are
not as good as that of the five-class example. From these results, we can see that
the adaptive procedures work better than the non-adaptive procedures both in
terms of both classification accuracy and variable selection. Furthermore, the
adaptive L1 MSVM performs the best overall. This is due to the difference be-
tween the L1 and the supnorm penalties. Our proposed supnorm penalty treats
all coefficients of one variable corresponding to different classes as a group and
removes the variable if it is non-informative across all class labels. By design of
this example, important variables have zero coefficients for certain classes. As a
result, our supnorm penalty does not deliver the best performance. Nevertheless,
the adaptive supnorm procedures still perform reasonably.
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Table 4

Variable selection frequency results for the four-class example.

Selection Frequency
Method x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

L2 100 100 100 100 100 100 100 100 100 100
L1 100 100 100 100 100 99 100 100 100 100
Adapt-L1 100 100 100 100 55 53 59 56 49 49
Supnorm 100 100 100 100 100 99 100 100 100 99
Adapt-supI 100 100 100 100 67 64 71 60 58 63
Adapt-supII 100 100 100 100 65 66 65 58 56 59
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Fig 2. The Bayes boundary for the nonlinear three-class example.

5.3. Nonlinear Example

In this nonlinear 3-class example, we first generate x1 ∼ Unif[−3, 3] and x2 ∼
Unif[−6, 6]. Define the functions

f1 = −2x1 + 0.2x2
1 − 0.1x2

2 + 0.2,

f2 = −0.4x2
1 + 0.2x2

2 − 0.4,

f3 = 2x1 + 0.2x2
1 − 0.1x2

2 + 0.2,

and set pk(x) = P (Y = k|X = x) ∝ exp(fk(x)), k = 1, 2, 3.The Bayes boundary
is plotted in Figure 2. We also generate three noise variables xi ∼ N(0, σ2),
i = 3, 4, 5. In this example, we set σ = 2 and n′ = 40, 000.

To achieve nonlinear classification, we fit the nonlinear MSVM by including
the five main effects, their square terms, and their cross products as the basis
functions. The results with n = 200 are summarized in Tables 5 and 6. Clearly,
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Table 5

Classification and variable selection results using second order polynomial basis functions
for the nonlinear example in Section 5.3 with n = 200.

Method TE CZ IZ MS CM
L2 0.167 (0.013) 0.00 0.00 20.00 0
L1 0.151 (0.012) 21.42 0.03 14.91 0
Adapt-L1 0.140 (0.010) 43.13 0.00 6.92 31
Supnorm 0.150 (0.012) 22.70 0.01 14.43 0
Adapt-supI 0.140 (0.010) 40.84 0.00 7.21 31
Adapt-supII 0.140 (0.011) 41.50 0.00 6.21 36
Bayes 0.120 (—) 52 0 3 100

Table 6

Variable selection frequency results for the nonlinear example using second order polynomial
basis functions with n = 200.

Selection Frequency
Method x1 x2

1
x2

2
x2 x3 x4 x5 x2

3
x2

4
x2

5

L2 100 100 100 100 100 100 100 100 100 100
L1 100 100 100 69 44 50 43 80 84 89
Adapt-L1 100 100 100 33 21 21 20 24 18 22
Supnorm 100 100 100 67 37 42 34 84 80 75
Adapt-supI 100 100 100 31 21 21 26 21 25 24
Adapt-supII 100 100 100 22 18 12 19 18 16 18

x1x2 x1x3 x1x4 x1x5 x2x3 x2x4 x2x5 x3x4 x3x5 x4x5

L2 100 100 100 100 100 100 100 100 100 100
L1 80 55 57 65 86 88 90 69 72 70
Adapt-L1 31 20 18 20 28 26 31 20 17 22
Supnorm 79 62 58 55 87 89 91 62 68 73
Adapt-supI 31 22 17 28 30 29 30 24 16 25
Adapt-supII 25 15 14 19 30 23 22 16 17 17

the adaptive L1 SVM and the two adaptive sup-norm SVMs deliver more ac-
curate and sparse classifiers than the other methods. In this example, there
are correlations among covariates and consequently the variable selection task
becomes more challenging. This difficulty is reflected in the variable selection
frequency reported in Table 6. Despite the difficulty, the adaptive procedures
are able to remove noise variables reasonably well.

To examine the performance of various methods using a richer set of basis
functions, we also fit nonlinear MSVMs via polynomial basis of degree 3 with
55 basis functions. Results of classification and variable selection with n = 200
and 400 are reported in Tables 7 and 8 respectively. Compared with the case of
the second order polynomial basis, classification testing errors using the third
order polynomial basis are much larger for the L2, L1, and supnorm MSVMs,
but similar for the adaptive procedures. Due to the large basis set, none of the
methods can identify the correct model. However, the adaptive procedures can
eliminate more noise variables than the non-adaptive procedures. This further
demonstrates the effectiveness of adaptive weighting. The results of variable
selection frequency (not reported due to lack of space) show a similar pattern
as that of the second order polynomial. When n increases from 200 and 400,
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Table 7

Classification and variable selection results using third order polynomial basis functions for
the nonlinear example in Section 5.3 with n = 200.

Method TE CZ IZ MS CM
L2 0.213 (0.018) 0.00 0.00 55.00 0
L1 0.170 (0.015) 59.22 0.57 40.44 0
Adapt-L1 0.138 (0.015) 120.71 0.17 19.28 0
Supnorm 0.171 (0.015) 60.08 0.61 40.06 0
Adapt-supI 0.141 (0.016) 114.29 0.17 20.22 0
Adapt-supII 0.142 (0.015) 106.78 0.22 19.75 0
Bayes 0.120 (—) 157 0 3 100

Table 8

Classification and variable selection results using third order polynomial basis functions for
the nonlinear example in Section 5.3 with n = 400.

Method TE CZ IZ MS CM
L2 0.162 (0.008) 0.00 0.00 55.00 0
L1 0.143 (0.008) 60.13 0.34 40.50 0
Adapt-L1 0.124 (0.004) 139.71 0.00 11.01 0
Supnorm 0.144 (0.010) 60.51 0.32 40.24 0
Adapt-supI 0.125 (0.005) 139.41 0.00 10.37 0
Adapt-supII 0.125 (0.004) 132.96 0.00 10.96 0
Bayes 0.120 (—) 157 0 3 100

we can see that classification accuracy for all methods increases as expected.
Interestingly, compared to the case of n = 200, the performance of variable
selection with n = 400 for non-adaptive procedures stays relatively the same,
while improves dramatically for the adaptive procedures.

6. Real Example

DNA microarray technology has made it possible to monitor mRNA expressions
of thousands of genes simultaneously. In this section, we apply our six different
MSVMs on the children cancer data set in Khan et al. (2001). Khan et al. (2001)
classified the small round blue cell tumors (SRBCTs) of childhood into 4 classes;
namely neuroblastoma (NB), rhabdomyosarcoma (RMS), non-Hodgkin lym-
phoma (NHL), and the Ewing family of tumors (EWS) using cDNA gene expres-
sion profiles. After filtering, 2308 gene profiles out of 6567 genes are given in the
data set, available at http://research.nhgri.nih.gov/microarray/Supplement/.
The data set includes a training set of size 63 and a test set of size 20. The dis-
tributions of the four distinct tumor categories in the training and test sets are
given in Table 9. Note that Burkitt lymphoma (BL) is a subset of NHL.

To analyze the data, we first standardize the data sets by applying a simple
linear transformation based on the training data. Specifically, we standardize
the expression x̃gi of the g-th gene of subject i to obtain xgi by the following
formula:

xgi =
x̃gi − 1

n

∑n

j=1 x̃gj

sd(x̃g1, · · · , x̃gn)
.

http://research.nhgri.nih.gov/microarray/Supplement/
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Table 9

Class distribution of the microarray example.

Data set NB RMS BL EWS Total
Training 12 20 8 23 63
Test 6 5 3 6 20

Table 10

Classification results of the microarray data using 200 genes.

Selected genes
Penalty Testing Error Top 100 Bottom 100
L2 0 100 100
L1 1/20 62 1
Adp-L1 0 53 1
Supnorm 1/20 53 0
Adp-supI 1/20 50 0
Adp-supII 1/20 47 0

Then we rank all genes using their marginal relevance in class separation by
adopting a simple criterion used in Dudoit et al. (2002). Specifically, the rele-
vance measure for gene g is defined to be the ratio of between classes sum of
squares to within class sum of squares as follows:

R(g) =

∑n

i=1

∑K

k=1 I(yi = k)(x̄
(k)
·g − x̄·g)

2

∑n

i=1

∑K

k=1 I(yi = k)(xig − x̄
(k)
·g )2

, (6.1)

where n is the size of the training set, x̄
(k)
·g denotes the average expression

level of gene g for class k observations, and x̄·g is the overall mean expression
level of gene g in the training set. To examine the performance of variable
selection of all different methods, we select the top 100 and bottom 100 genes
as covariates according the relevance measure R. Our main goal here is to get
a set of “important” genes and also a set of “unimportant” genes, and to see
whether our methods can effectively remove the “unimportant” genes.

All six MSVMs with different penalties are applied to the training set. We
use leave-one-out cross validation on the standardized training data with 200
genes for the purpose of tuning parameter selection and then apply the resulting
classifiers on the testing data. The results are tabulated in Table 10. All methods
have either 0 or 1 misclassification on the testing set. In terms of gene selection,
three sup-norm MSVMs are able to eliminate all bottom 100 genes and they use
around 50 genes out of the top 100 genes to achieve comparable classification
performance to other methods.

In Figure 3, we plot heat maps of both training and testing sets on the left
and right panels respectively. In these heat maps, rows represent 50 genes se-
lected by the Type I sup-norm MSVM and columns represent patients. The gene
expression values are reflected by colors on the plot, with red representing the
highest expression level and blue the lowest expression level. For visualization,
we group columns within each class together and use hierarchical clustering with
correlation distance on the training set to order the genes so that genes close
to each other have similar expressions. From the left panel on Figure 3, we can
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Training data

               

Test data

EWS BL NB RMSEWS BL NB RMS                

Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh−1c
Homo sapiens incomplete cDNA for a mutated allele of a myosin class I, myh−1c
transmembrane protein
apelin; peptide ligand for APJ receptor

recoverin
glycine cleavage system protein H (aminomethyl carrier)
Homo sapiens mRNA full length insert cDNA clone EUROIMAGE 45620
thioredoxin reductase 1
cadherin 2, N−cadherin (neuronal)
microtubule−associated protein 1B
postmeiotic segregation increased 2−like 12
glucose−6−phosphate dehydrogenase
protein tyrosine phosphatase, non−receptor type 12
transcriptional intermediary factor 1
growth associated protein 43
ESTs
dihydropyrimidinase−like 2
kinesin family member 3C
fibroblast growth factor receptor 4
presenilin 2 (Alzheimer disease 4)
sarcoglycan, alpha (50kD dystrophin−associated glycoprotein)
nuclear receptor coactivator 1
ESTs
glycine amidinotransferase (L−arginine:glycine amidinotransferase)
mesoderm specific transcript (mouse) homolog
lymphocyte−specific protein 1
Human DNA for insulin−like growth factor II (IGF−2); exon 7 and additional ORF
neurofibromin 2 (bilateral acoustic neuroma)
plasminogen activator, tissue
interleukin 4 receptor
Wiskott−Aldrich syndrome (ecezema−thrombocytopenia)
proteasome (prosome, macropain) subunit, beta type, 8 (large multifunctional protease 7)
major histocompatibility complex, class II, DM alpha
pim−2 oncogene
ESTs
proteasome (prosome, macropain) subunit, beta type, 10
protein kinase, cAMP−dependent, regulatory, type II, beta
postmeiotic segregation increased 2−like 3
Rho−associated, coiled−coil containing protein kinase 1
EST
translocation protein 1
Fc fragment of IgG, receptor, transporter, alpha
follicular lymphoma variant translocation 1
antigen identified by monoclonal antibodies 12E7, F21 and O13
caveolin 1, caveolae protein, 22kD
ATPase, Na+/K+ transporting, alpha 1 polypeptide
cyclin D1 (PRAD1: parathyroid adenomatosis 1)
protein tyrosine phosphatase, non−receptor type 13 (APO−1/CD95 (Fas)−associated phosphatase)
v−myc avian myelocytomatosis viral oncogene homolog

Fig 3. Heat maps of the microarray data. The left and right panels represent the training and
testing sets respectively.

observe four block structures associated with four classes. This implies that the
50 genes selected are highly informative in predicting the tumor types. For the
testing set shown on the right panel, we can still see the four blocks although
the structure and pattern are not as clean as the training set. It is interesting
to note that several genes in the testing set have higher expression levels, i.e.,
more red, than the training set. In summary, we conclude that the proposed
sup-norm MSVMs are indeed effective in performing simultaneous classification
and variable selection.

7. Discussion

As pointed out in Lafferty and Wasserman (2006), sparse learning is an impor-
tant but challenging issue for high dimensional data. In this paper, we propose
a new regularization method which applies the sup-norm penalty to the MSVM
to achieve variable selection. Through the new penalty, the natural group effect
of the coefficients associated with the same variable is embedded in the reg-
ularization framework. As a result, the sup-norm MSVMs can perform better
variable selection and deliver more parsimonious classifiers than the L1 MSVMs.
Moreover, our results show that the adaptive procedures work very well and im-
prove the corresponding nonadaptive procedures. The adaptive L1 procedure
can in some settings be as good as and sometimes better than the adaptive
supnorm procedures. As a future research direction, we will further investigate
the theoretical properties of proposed methods.

In some problems, it is possible to form groups among covariates. As argued
in Yuan and Lin (2006) and Zou and Yuan (2006), it is advisable to use such
group information in the model building process to improve accuracy of the
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prediction. The notion of “group lasso” has also been studied in the context of
learning a kernel (Micchelli and Pontil, 2007). If such kind of group information
is available for multicategory classification, there will be two kinds of group
information available for model building, one type of group formed by the same
covariate corresponding to different classes as considered in the paper and the
other kind formed among covariates. A future research direction is to combine
both group information to construct a new multicategory classification method.
We believe that such potential classifiers can outperform those without using
the additional information.

This paper focuses on the variable selection issue for supervised learning.
In practice, semi-supervised learning is often encountered, and many methods
have been developed including Zhu et al. (2003) and Wang and Shen (2007a).
Another future topic is to generalize the sup-norm penalty to the context of
semi-supervised learning.

Appendix

Proof of Proposition 2.1: Without loss of generality, assume that {w1j, w2j, w3j}
are all nonzero. Because of the sum-to-zero constraint w1j + w2j + w3j = 0,
there must be one component out of {w1j, w2j, w3j} has a different sign from
the other two. Suppose the sign of w1j differs from the other two and then
|w1j| = |w2j| + |w3j| by the sum-to-zero constraint. Consequently, we have

|w1j| = max{|w1j|, |w2j|, |w3j|}. Therefore,
∑3

k=1 |wkj| = 2‖w(j)‖∞. The equiv-
alence of problem (2.2) with the tuning parameter λ and problem (2.6) with the
tuning parameter 2λ can be then established. This completes the proof.
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