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ZZ:1 Xk /n. Suppose that some of the random variables X1, Xa, ... can be
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random variables from the set {X1, Xa,...,Xn}. Under some mild con-
ditions, we prove the joint limiting distribution and the almost sure limit
theorem for (M,, — Xn, M, — Yn)
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1. Introduction

Let {X),k > 1} be a standardized stationary Gaussian sequence. Let 7, =
E X1 X, 41 and M,, = max{X, 1 < k < n}. The limiting distribution of M,, for
weakly dependent stationary Gaussian sequences has been studied by Berman
[2], i.e.,

lim P{an (M, —b,) <z} =exp{—e "} = A(x)

n—oo

as rp logn — 0, where
an = (2logn)'’2, b, = a, — log(4rlogn)/2a,. (1.1)

For the limiting distribution of the partial maxima of strongly dependent sta-
tionary Gaussian sequences, see Lin [10] and Mittal and Ylvisaker [14] for the
case of r,logn — v € (0,00) and McCormick and Mittal [13] for the case
rn logn — oo with some additional conditions.

The following more general condition for stationary Gaussian sequences was
introduced by McCormick [12]:

k’gnz 7k — 7] = o(1). (1.2)

n
k=1

Under the condition (1.2), McCormick [12] proved the limiting distribution of
the partial maximum centered at the sample mean, i.e.,

Theorem A. Let {Xj,k > 1} be a standardized stationary Gaussian sequence
with correlations {rp,n > 1} such that r, < 1 for some k > 1. Assume that
(1.2) holds. Then

lim P {an (M - bn> < x} = A(x),

where a,, and by, are defined by (1.1), and X, = > ,_, Xy/n.

In this note, we are interested in the joint limiting distribution and the almost
sure limit theorem (ASLT) of maxima centered at sample mean for complete
and incomplete samples from stationary Gaussian sequences. The joint limiting
distribution of the maxima of complete and incomplete samples has been studied
by Mladenovié¢ and Piterbarg [15]. See Theorems 3.1 and 3.2 in Mladenovi¢ and
Piterbarg [15]. The ASLTs for the maximum of i.i.d. random variables have been
studied by Fahrner and Stadtmdiller [9], Cheng et al. [5] and Berkes and Cséki [1].
For weakly dependent stationary Gaussian sequences, Csaki and Gonchigdanzan
[6] showed that

Z % I(Mp <ug)=e 7 a.s. (1.3)
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for some sequence u,, satisfying n(1 — ®(u,)) — 7 and the covariance function
ry, satisfying

rnlogn(loglogn)'™ = O(1)

for some € > 0, where I denotes an indicator function. Chen and Lin [3, 4]
extended (1.3) to the nonstationary Gaussian case. Dudzinski [7, 8] and Peng et
al. [16] studied the joint ASLT for the partial sum and maximum of stationary
sequences. For applications of ASLTSs, see Peng et al. [17].

Throughout this note, let { X}, k > 1} be a standardized stationary Gaussian
sequence with the marginal distribution ®(z) = (2r)~1/2 [*__ exp(—t?/2)dt and
correlation function r, = E X7 X, 1. Suppose that some of the random variables
X1, Xo,... can be observed and the others not. Let ¢; denote the indicator
random variable that X; is observed. Let Sy ,, = €x4+1 + €k42 + - - - + €5, denote
the number of observed random variables from the set {Xyy1, Xg42,..., X0},
and S,, = So . Define

~ max{X;,1<j<n,e =1} if S, >1,
M, = .

Assume that {ex, k > 1} and { X}, k > 1} are mutually independent sequences.

Further assume that
Sn
n

Spe(0.1]. (1.4)

2. The joint limiting distribution

In this section, we consider the joint limit distribution of the partial maxima
(centered at sample means) for complete and incomplete samples from depen-
dent Gaussian sequences.

Theorem 1. For the standardized stationary Gaussian sequence { Xy, k > 1},
assume that r, < 1 for some k > 1 and the conditions (1.2) and (1.4) hold.
Then

lim P {; Sun(a), ot un<y>} = A(@) AL (y)

vl=| 3

(I —7y)

for all —oco < x < y < 00, where u,(z) = z/an + by, for z € R and a,, and b, as
defined by (1.1).
Proof. Let o2(k) = E(Xx — X1)?%, Yo = (Xx — X,)/on(k) and p,(i,5) =
EY;.,Y; . Then

2 — — =
max o (k) = (1= ra)] (ogn

). (2.1)

by (2.8) of McCormick [12].
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Define M;¥ = maxigi<n{Yin}- Also define ]T/[:’{ = maxi<icn{Yin, & = 1} if
Sp =2 1and M} = —o0 if S,, = 0. We prove that

lim P {M; < un(@), M < un(y)} — AP(2)AYP(y) (2.2)

n—oo

holds for all x < y

Now suppose that the subset {Xj,,..., X, } has been observed from the set
{X1,...,X,}, where 0 < m < n. Let N ={1,2,...,n}, I, = {i1,42,-.-,0m}
and M} (B) = max{Y n,k € B}. Then by the Normal Comparison Lemma (cf.
Leadbetter et al. [11]) and by the arguments in the proof of Theorem 2.1 in
McCormick [12],

P (M () < 000, M N/ i) < ()} — 7 0 ()7 0, 1)
< Y g O-ga) b {20

1<i<j<n L+ [pn(i, 5)]
= o(1)

hold uniformly for all I,,, = {i1, 42, ..., %m}, m < n. So, by using the total prob-
ability formula and Theorem 3.1 in Mladenov1c and Piterbarg [15], we obtain

lim P {Mn up(x), M} < un(y)}

= lim 3T P{S, = m) 8" (1 (1)) (un(y))

m=0

= AP(2)AP(y),
which is (2.2). Clearly,

an (% - bn> = an(Yin — bn)% + anby ((Uﬂ - 1) :

and noting that by (2.1) both
on(k)/(1=71p)2 =1+ 0(1)

and

hold uniformly for all 1 < k£ < n, we have

o (g —bn> = an (0T — bu)(1 4 0(1)) + o(1)

(1- Tn)%
and
an (?IIH_;THXQ - bn> =an, (M) —b,)(1+0(1)) + o(1).

The result follows by (2.2). O
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Corollary 1. Under the conditions of Theorem 1, for x € R, we have

M, - X,
lim P - Sup(z) p = AP(2).
n— o0 (1 —7,)2
Proof. Clearly, both
M, - X, M, - X, M, — X,
——— Sup(r)p, < P T < un(7), T < un(y)
(1—r,)2 (1—-r,)2 (1—r,)2
M, - X,
+P > Up
{ (1- Tn)% (y)}
and
M, - X, M, - X,
< un (), T < un(y)
(1—rp)2

(1- Tn)%

M, — X,
M= 2o @)y > P e 2
(1—rn)2
hold. So, by Theorem A and Theorem 1,

{%iﬁi<%@ﬁ<wwm“@w4—Mw

limsupP
and
M, ~ X,
lim inf P { E < un(x)} > AP(2)AY P (y)
n—oo —7,)2

Letting y T oo, we obtain the desired result.

As a direct consequence of Theorem 1, we have

Corollary 2. Under the conditions of Theorem 1, we have

M, - X, M, - X,
lim P {7 < up(z), — <
n—oo Sn Sn

for —oco < x <y < oo, where s2 =S 1 _ (X

Proof. Since

un(y)} = AP(x)A' P (y)

- X,)?%/n.

an —b, | =an T —bn | A+ anbn, (A, — 1)
Sn (1 — TH)E
and
M, - X, M, — X,
an< —bn>an( l—bn>)\n+anbn()\n—1),
Sn (1 — TH)E
where A, = (1 —r,)% /sy, by using Lemma 2.2 in McCormick [12], we have
An 1 and anby (An — 1) = 0. So, the result follows by Theorem 1. O
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3. The almost sure limit theorem

In this section, we present and prove the ASLT for the maxima of standard-
ized stationary Gaussian sequences { Xy, k > 1}. For simplicity, denote:

Wz, = { e B LS TSRS U B2 0 =
M, = max (Yl M= Mg,

where Yy, = (Xx — X,)/on(k) and 02 (k) = E(X}, — X,,)? for 1 < k < n. Set
Tn = MaxXi<k<n |7 — Tn| and assume that

7n(logn)(loglogn)'*= = O(1) (3.1)

for some € > 0.
The main results are:

Theorem 2. Let {Xj,k > 1} be a standardized stationary Gaussian sequence
satisfying (3.1) and ry, < 1 for some k > 1. Suppose that the sequence {ej, k > 1}
is independent and independent of { Xy, k > 1} and S,/n Lpe (0,1]. Then

n

3 % I {M; < up(z), M; < uk(y)} = AP()AYP(y) as. (3.2)

for all x < y.
The following result shows that o, (k) in (3.2) can be replaced by (1 —7)'/2.

Theorem 3. Under the conditions of Theorem 2, for all x <y, we have

" (-, X .
nﬁoo 1ogn Z {7)§ < ug (), m < uk(y)} =AP(2)A"P(y) a.s.

The following two results prove the ASLTs of the maxima for complete and
incomplete samples.

Corollary 3. Under the conditions of Theorem 2, we have
1 1 _[(M,-X
lim Z —I {u < uk(y)} =Ay) a.s.

1
n—00 logn 1 k (1 — rk)z

Corollary 4. Under the conditions of Theorem 2, we have

M — X},
E —— < = AP .S.
BLUS 1ogn { (1—7y)2 \Uk(x)} M) s

To prove the main results, we need some auxiliary Lemmas. For convenience,
let C denote an absolute positive constant taken to vary from line to line.
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Lemma 1. For the standardized stationary Gaussian sequence { Xy, k > 1},
assume that vy, < 1 for some k > 1 and that (3.1) holds. Then

P (logn)(loglogn)'* = O(1),

where 5, = max{|pa(i, )|, 1 <i < j <n} and pa(isj) = B YinYin

Proof. By arguments similar to those of (2.7) and (2.8) in McCormick [12] and
(3.1), we have sup,,»; |rn| = 0 < 1 for some § > 0 and

C

—(1— < ) .
1<k [on(k) = (1 =ra)| < log n(loglogn)!+e (3:3)
So,
lpn (i, J)| = ; LQ zn:iﬁc 1= = z": (Th—i + Tk—j) +7i—j
on(t)on n
k=1 1=1 [yt
g L iii|7ﬂkl_rn|‘i' Z|Tk 1_n
1—46\n?
k=1 1=1
# 2 bey =ral lry
= iy =l i =
k=1
C
<
log n(loglogn)t+e
for sufficiently large n. The desired result follows. O

Lemma 2. Under the conditions of Lemma 1, both

> lpnli 5)| exp (— LAG >< ¢ (3.4)

1<i<j<n L+ |pn(i, 5)] (loglogn)t+e
and
k n ) )
" - - < 3.5
; :zk: (i, 7) exp( 21+ |pn(i, 5))) (loglog n)1+e (3.5)

hold for k < n.
Proof. Note that

exp (_u%(m)) ~ Cu"(x), wn(z) ~ (2logn)'/?




Z. Peng et al./Limiting distributions and almost sure limit theorems 858

for large n. So,

N u3(z)
> Il (~ )

1<i<j<n
2 ufl(x)

S e (‘ﬁ)

< n?p, exp (—(1 —p,)us (x))

< Cpul(x) exp (p,ul(x))

P

= (loglogn)ite

since p,u2(x) ~ 2p, logn < W for large n by Lemma 1. Similarly,

k n
A e [ V(@) + b (@)
2 2 len(i.)l p( 2<1+|pn<i,j>|>>

VAN
I
S
l
3
@
4
o)

N
>
S
S
3
0]
]
e}
7N
ESIN)

IN
)
I
S
l
3
VRS
e
>
—
S
S—
S
3
—
S
S~—
N———
o
™
o)
)
S
3
S
S
—
S
S~—
SN—

N

Cpptiy () exp (Py1iz ()
¢
(loglogm)ite’

/N

The proof is complete. O

Lemma 3. Under the conditions of Lemma 1, we have

(Cov (1{ M <unlw), M <)} T{ M < @), M5, < un(0) )|
O%MCW

fork<mn, x <uy.
Proof. Observe that
Cov (T{M; < un(@), Mj: < wn(y) } T{M; . < un(@), Mg, < wny)} )
= P{M; <unle), My <un(y); M < un(@), M, < n(y)

= P{ M < @), Mg < un(y) } P LM, < @), M3, < un(y) }-
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Suppose that subsets {X;,,...,X; } and {Xj;,,...,X,,} have been observed,
where {Xil, SR Xis} C {Xl, SN Xk} and {le,...,th} C {XkJrl,...,Xn}
for s =0,1,2,...,kand ¢t =0,1,2,...,n— k. Set I = {1,2,...,k}, J ={k+
1L,k+2,...,n}, Iy = {i1,i2,...,is} and Jy = {j1, ]2, .., j¢}. By Lemma 1, there
exists 0 < n < 1 such that |p, (4, 7)] < n for sufficiently large n. Now define

A = P{M*(Iy)
M*(J;)

and

Ay = PAM™(L) < up(x), M™(I/1s) < ur(y)}
X PAM*(Jy) < un(z), M*(J/J1) < un(y)}

where M*(B) = max{Yjn, k € B}. By using the Normal Comparison Lemma
and (3.5),

| A1 — As|
- C(%%E;MM%ﬁ|p< (1+MMZﬁI>

>0 Ipn(i,j)lexp( 1+|pnw

icls jeg/J,

)
+ Y len(i,j)lexp( 1+|pnw )

iel/I, jEJ:

N u?(y) + u(y)
+ 30 pn(i g)lexp (_m>>

i€l /I, jeJ/ T,

< C;;Ipn(dﬂ P( 2(1+|pn(i,j)|)>
&
(10g10gn)1+5

uniformly for all Iy = {i1,i2,...,is}, s < k and J; = {j1,72,---,Jt}, t <n—k.
So, the result follows by using the total probability formula. O

Lemma 4. Under the conditions of Theorem 2, we have
BL{M; < wnle), My < uny)} = T{ M < wnle), M < un(v) }|
k
< C (— + (loglogn)(1+5)>
n

for k <n.
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Proof. Let {Zy, k > 1} be the independent sequence associated with {Yj .,
k > 1} and let {Z;, k > 1} be independent of {ej, k > 1}. Define M,;n =
maxyi1<j<niZ;}- Also define M,;n = maxpi<j<niZy, €5 = 1} if Sk, > 1 and

’

Mk,n = —00 if Sk, = 0. Then

B (L0 < wnle), My < uny)} ~T{ M < ), M < un(0) |
< [P (0%, < wnl@). Mg, S un®)) = P (M, < un (@) My, S un(y)|

+ |P (M < (@), My, < un(9) = P (M, < un (@), My, < un(y)|

[P (M < (@), My, < un()) = P (M, < n(@), M, <
=: D; + Dy + Ds.

By the Normal Comparison Lemma and (3.4), D; < C(loglogn)~(+) for i =
1, 2. It remains to prove that D3 < C % Clearly,

Dy < |P(My, <un(@)) =P (M, < o))
[P (M < unl)) = P (M, < uny) |
< P(My > My, ) +P (M > My ).
By (5.6) in Berkes and Cséki [1], for 1 < k < n, we have

. k
P (Mk > M,m) <Z

n

So, we need to prove P(M,; > M,;n) < k/n. Noting that {Zx,k > 1} is inde-
pendent of {e, k > 1} and P(M,; > M,;n, Sk = 0) = 0, we obtain

|
B

n

k
p (Ml; > Ml;,n) = Z p (Ml; > Ml;,na Sk = t, Sk,n = 5)

t=1 s=0
k n—k 0o

= Y > P(Sk=t,5m= s)/ O (x)dd! ()
t=1 s=0 -
k n—k "

= P(Sk _t,Skm_S)t—l-S

il
»
I
o

I
=

(%)

Here, we use the convention 0/0 =: 0.

Now let p, = E(S,)/n. We have p, — p as n — oo from the dominated
convergence theorem. Note that Var(S,) = >_I ; Var(e;) < n/4 by the inde-
pendence of {eg, k > 1} and that (1 —z) < 1/4 for 0 < < 1. So, for

~| e
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0 < e < p/2 and sufficiently large n, we have

Sk o Sk Sn
() - o3

< P(&—pn >e>+E( St )
n n(pn - 6)
Var(S,,) k

<

n2e? n(p, — ¢€)
< ¢k

n

The desired result follows. O

Proof of Theorem 2. Let
&0 = T{ 0L} < wnla), M <unl) } = P (M < un(a), My < un(y))

Then

_ Z% |§k|2+2 Z é.ké.l

k=1 1<k<I<n
n
1 |E§k§z
< D@t )
k=1 1<k<I<n

It is clear that Y ,_, 1/k* < oo. Now consider E(¢&). By Lemma 3 and
Lemma 4, for 1 < k < n, we have

IE(§k&1)]

’Cov (}1{1\7,: S up(@), My < ug(y)}, I{M; < wyle), M < uz(y)}) ’
B[ < un (@), My < un(y)} = M < wilw), Miy < wi(y)

+ |Cov (AT < wn(w), M < wn(y)}, M < ), My, < wi(a)} )|

k
< C(T

for sufficient large [. By arguments similar to those in the proof of Theorem 1.1
in Csaki and Gonchigdanzan [6], we obtain

+ (loglog l)*(lﬁ))

Var (zn: % i {M,;‘ < up(z), My < uk(y)}> -0 ((1ogn)2(1og10gn)*(l+s)) .

k=1
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So, by Lemma 3.1 in Csaki and Gonchigdanzan [6], we have

lim Z =&, = 0.

n— 00 10g n

So, the desired result follows by (2.2). O

Proof of Theorem 3. For every fixed 6 > 0, there exists an integer ko = ko(6)
such that
(Z —+ akbk)
log k(loglog k)t+¢

for k > ko and fixed z € R. According to (3.3),

C

(L-re)? | _
= logk(loglog k)1 +e

O'k(i)

holds uniformly for all i < k. So, for k > kg

{Yir <up(z—0)} C {% < uk(z)} C{Yik <ur(z+0)}.

Combining with Theorem 2, we obtain

My, — X My, — X
lim su —— <ug(x), — < u
nﬁoopl Z k { l—Tk) k( ) (1 — Tk)% k(y)}

< MO+

and

Mk—Xk My — X,
lim inf T E S u(a), <u
n—oo 10gn2k { 1_Tk) k( ) (1—7"]@)% k(y)}

> AP(xz—0)A " P(y —e).
The result follows by letting 6 | 0.
Proof of Corollary 3. It is clear that

My, — X _ My — Xy My — X,
H{m guk(y)} —H{m < uk(y), m < Uk(y)} .

Furthermore, for arbitrary 6 > 0

M, - X M, - X
I{ =228 Cuply), 42 Curly)
(1—Tk)2 (1—Tk)2

M, - X M, —X
I 228 Cuply), ——F Cuply + )
(1—Tk)2 (1—Tk)2
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and
M, - X My - X
T <y —0), 7 <u(y)
(1—Tk)2 (1—Tk)2
M, - X My - X
< Iy Suy), 7 <wly) o
(1—Tk)2 (1—Tk)2
So, the desired result follows by Theorem 3 and continuity of A(z). O

Proof of Corollary 4. The result follows by using Theorem 3 and Corollary 3.

O
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